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1. DESCRIPTION OF THE PROBLEM 

 
Rheology has been a powerful tool for characterizing and quantifying asphalt binder properties. 

Furthermore, it has been established that the properties of the asphalt binder have a major 

influence on pavement performance and on the rate of deterioration under different load and 

environmental conditions. 

Rheological testing and models of asphalt binder are widely used to describe and evaluate the 

behavior of binder. The majority of these rheological models are based on time derivatives of 

integer order. 

The cookbook attempts to present the assumptions and models applied to asphalt binder for 

pavement design. The models are examined presented in the particular conditions under which 

experiments are carried out on the binders, particularly in shear flow and, for a solid as opposed 

to liquid state, a bending beam rheometer).  

 

1.1 BACKGROUND 

 

Rheology is defined as the study of the flow and deformation of material. In flow, elements of the 

liquids are deforming, and adjacent points in the liquids are moving relative to one another. The 

two basic flows are: 

a) Shear flow – when liquid elements flow over or past each other 

b) Extensional flow – adjacent elements flow toward or away from each other 

A significant number of pavement distresses such as ruts, cracks, and fatigue failure are related 

to the rheological properties of asphalt binder, mixture load, and environmental conditions. It is 

important to note that most of the data used to determine the Performance Grade (PG) of 

pavement materials are obtained from rheological tests (Carret et al., 2015).  
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1.1.1 MEASURING RHEOLOGICAL PROPERTIES 

 

The rheological behavior of materials is typically measured using viscometers and rheometers. A 

viscometer principally measures the viscosity of fluids, and a rheometer measures a host of 

rheological properties over an extended range of conditions (Hackley and Ferraris, 2001). The 

underlying principle behind most (shearing) rheometric measuring devices is rotation. Basically, 

the test fluid is sheared between two surfaces, of which either one or both are rotating.  Often the 

imposed strain (motion of the moving surface) is small amplitude and oscillatory, with the resulting 

stress tracked and the in phase and out of phase components identified in this linear deformation, 

or consists of a step strain with the resulting relaxation (stress) of the material measured.  These 

testing protocols confine information to the linear regime. In order to understand the nonlinear 

properties, the material a continuous shearing (shear rate control) or a fixed torque is applied with 

the resulting stress, respectively shear rate measured.    

Thus, rotational rheometers can characterize rheological properties of a material under controlled-

stress or controlled shear-rate conditions. The rheometer system is made up of these four basic 

parts: 

(i) Measurement tool with a well-defined geometry; 

(ii) Device for applying constant torque or rotational speed; 

(iii) Device for measuring shear stress and shear rate response; and 

(iv)  Temperature-controlling device. 

 

 In measuring rheological properties of binders, the success of the performance grade (PG) 

system can be attributed to the following: 

a) The application of fundamental and mathematical concepts to asphalt binder 

characterization 

b) Detailed and comprehensive test methods and analyses 

The data required to determine the PG of a binder are obtained from two experimental testing 

procedures: 
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- Frequency sweep performance dynamic shear rheometer (DSR) (AASHTO 315, 2012) 

at high and intermediate temperatures 

- Bending creep tests performed with a bending rheometer (BBR) (AASHTO T 313, 2012) 

at low temperatures 

In a frequency sweep test, the structure of the material is investigated at a strain below the critical 

strain. This is achieved by measurements made at a constant oscillation amplitude, and 

temperature over a range of oscillation frequencies. For an elastic solid, the storage modulus, 𝐺′ 

, is independent of the frequency at low strains, and so if the material’s 𝐺′ is dependent on the 

frequency in a frequency sweep test, the material exhibits fluid-like or gel-like behavior. In such 

materials, the loss modulus, 𝐺′′, may dominate at low frequencies indicating a fluid-like behavior.  

The presence of both viscous and elastic properties suggests a system with an internal network 

structure which can be disturbed with ease. Using the storage, 𝐺′, and loss moduli, 𝐺′′, the 

complex modulus of the material can be calculated. 

 

1.1.2 DYNAMIC SHEAR RHEOMETER (DSR) TESTS 

 

The parameters obtained in DSR are: 

a) |𝐺∗| represents the absolute value of the shear complex modulus. 

In testing a shearing strain of the form 𝛾0 sin(𝜔 𝑡) is applied and the resultant stress is 

tracked, 𝜎 = Re(𝐺 ∗ 𝜔 ∗ 𝑒𝑖𝜔𝑡). The complex shear modulus is defined mathematically as:  

|𝐺∗| = √𝐺′2 + 𝐺′′2                                                    (1) 

Or  

𝐺∗ = 𝐺′ + 𝑖𝐺′′,                                                       (2) 

where  𝐺′ and 𝐺′′ are is the in phase component amplitude (Imaginary part of G*), the 

storage modulus, and the out of phase component amplitude, the loss modulus.  Here 𝑖 =

√−1. 

b) 𝛿(𝑤) represents the phase angle. 

The phase angle refers to the phase shift between the deformation and the measured 

stress on a material in a rheological test (Somwangthanaroj, 2010). For elastic solids, the 

stress is proportional to the strain. The stress is always in phase with the sinusoidal strain 

deformation.  For viscous liquids, the stress is proportional to the rate of strain deformation. 
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The applied strain and stress are out of phase with a phase angle of 𝜋
2⁄ . The 

proportionality constant for the solids is the elastic modulus, and the proportionality 

constant for the liquids represents the viscosity. 

For viscoelastic materials, the stress response has contributions which are in and out of 

phase with the strain. This reveals the extent of solid-like and liquid like behavior in the 

material. Therefore, the phase angle is 0 < 𝛿 < 𝜋
2⁄  (Wyss et al., 2007). See Figure 1 for 

an illustration of phase angle. 

The phase angle can be expressed in terms of the loss and storage moduli as: 

𝛿 = tan−1(𝐺′′

𝐺′⁄ )                                                         (3) 

where the symbols have the same meanings defined previously. 

 

 

 

Figure 1. Phase Angle for Elastic solids, Viscous liquids, and Viscoelastic Materials 
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1.1.3 BENDING BEAM RHEOMETER (BBR) TESTS  

 

Bending Beam Rheometer (BBR) tests are performed to provide information on the asphalt 

binder’s ability to resist low temperature cracking. The parameters obtained from BBR are known 

as the creep stiffness, represented by S(t), and the m-value. 

a) Creep Stiffness, S(t): Creep stiffness, expressed as a function of time, can be calculated using 

standard beam theory with the equation: 

𝑆(𝑡) =
𝑃𝐿3

4𝑏ℎ3𝛿(𝑡)
,                                                                (4) 

where 𝑆(𝑡) is the binder stiffness at time 𝑡, 𝑃  is the applied constant load, 𝐿  is the distance 

between beam supports, 𝑏  represents beam width, ℎ  is the beam thickness, and 𝛿(𝑡) is the 

deflection of the beam at time 𝑡. Creep refers to the slow continuous increase in strain after a 

sudden application of a constant stress (Moczo et al., 2006). Removal of stress yields recovery; 

classifications of creep and recovery are shown in Table 1 below.  

Table 1. Classification of Creep 

application 

of 

constant 

stress 

 

creep - 

slow 

continuou

s increase 

of strain 

 

 

removal of 

the stress 
  

recovery - 

gradual 

decrease 

of strain 

complete 
elastic 

creep 
  

partial 
elastic 

flow 
  

no flow 

linear 

strain 

rate 

viscous flow 

nonlinear 

strain 

rate 

plastic flow 
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Table 2. Classification of Relaxation 

application of 
constant strain 

  
relaxation - gradual 
decrease of stress 

in material 
characterized by elastic 
flow 

relaxation to 
nonzero 
stress 

in material 
characterized by elastic 
creep 

relaxation to 
zero stress 

 

 

b) m-value: The m-value represents the slope of the master stiffness curve and is a measure of 

the rate at which the asphalt binder relieves stress through plastic flow (Pavement Interactive, 

2011). 

 

1.2 RESEARCH OBJECTIVE 

 

The objective of this research is to develop a guidebook that will provide some guidelines for using 

the appropriate rheological models of asphalt binders. A sound knowledge of the rheological 

properties of asphalt binders can have a major impact on the workability and durability of asphalt 

during and after construction. For example, asphalt that deforms slowly will be susceptible to 

rutting and bleeding while asphalt that is too stiff can lead to fatigue and cracking (Yussof et al., 

2011). The guidebook will present various rheological models from the Maxwell Model to non-

linear models and will attempt to discuss when to use appropriate models, explaining the 

advantages and disadvantages of each model. 

 

2. APPROACH 

 
The guidebook will present the mathematical equations of various rheological models without 

providing any derivation. The main focus will be the summary of the models in the existing 

literature for pavement engineering and other related topics.  Rheological experiments generally 

consider shearing flows, or separately extensional flows of the materials.  In pavement testing 

shearing flows are used for evaluation of sample fluidic properties and for an extensional 
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experiment the solid material is subject to bending beam testing. For this reason, we focus on 

modeling under these conditions.  

3. FINDINGS 

3.1 MECHANICAL ELEMENT MODELS 

 

Mechanical Element Models provide a means of expressing viscoelastic material behavior 

mathematically by combining elements of Hooke’s Model for elastic solids and Newton’s Model 

for Newtonian fluids. An elastic solid that obeys Hooke’s Law will have a constant relationship 

between stress and strain. A Newtonian fluid on the other hand, extends at a rate proportional to 

the applied stress. A mechanical model can be built by considering linear elastic springs and 

linear viscous dash-pots (Kelly, 2015). To understand mechanical element models in rheology, 

the basic mechanical models for the elastic spring and viscous dash-pot must be first explained. 

 

3.1.1 LINEAR ELASTIC SPRING 

 

For a linear elastic spring of stiffness, E, shown in Figure 2, the response can be modeled by: 

 

Figure 2. Elastic Body 

 

𝜀 =
1

𝐸
𝜎                                                                   (5) 

Where 𝐸= stiffness, 𝜀= strain, and 𝜎= applied stress. 

The elastic material, illustrated by the spring, undergoes instantaneous strain after loading. It then 

undergoes instantaneous de-straining upon release of the load. 
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3.1.2 LINEAR VISCOUS DASH-POT 

The linear viscous dash-pot can be imagined as a piston-cylinder arrangement filled with a 

viscous fluid, shown in Figure 3 (Kelly, 2015). The response relates the stress and the strain rate 

by the expression: 

𝜀̇ =
1

𝜂
𝜎                                                                    (6) 

Where 𝜀̇=strain rate, 𝜂= viscosity, and 𝜎=applied stress. 

The relationship between stress and strain can be expressed in terms of compliance, 𝐽(𝑡), as: 

𝜀(𝑡) = 𝜎0. 𝐽(𝑡)                                                             (7) 

Where 𝐽(𝑡) =
𝑡

𝜂
 and 𝜎0 is an instantaneous load. 

 

Figure 3. Linear Viscous Dash-pot 

 

3.1.3 MAXWELL MODEL 

 

The Maxwell Model consists of a spring element and a dash-pot in series, as shown in Figure 4 

(Kelly, 2015). Total strain in the system is obtained from the spring and dash-pot and therefore 

expressed as: 

Total strain = (spring 𝜀1) + (dash-pot 𝜀2)                                       (8) 

The Maxwell Model can be expressed mathematically as: 

𝜎 +
𝜂

𝐸
𝜎 = 𝜂𝜀̇                                                               (9) 
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All symbols have the meanings as defined previously. 

 

Figure 4. Maxwell Model 

 

3.1.4 KELVIN MODEL 

The Kelvin Model consists of an elastic spring and a dash-pot in parallel. With this arrangement, 

the strain in the spring is the same as the strain in the viscous dash-pot (Kelly, 2011). See Figure 

5. 

The Kelvin Model is expressed as: 

𝜎 = 𝐸𝜀 + 𝜂𝜀̇                                                             (10) 

All symbols have the same meanings as previously defined. 

 

Figure 5. Kelvin Model 
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3.1.5 HUET MODEL 

 

The Huet Model was developed by Christian Huet to model the rheological behavior of asphalt 

and bitumen (Yussof et al., 2011). The model is made up of a spring and two parabolic creep 

elements, k and h. This is illustrated in Figure 6.  

 

Figure 6. Huet Model 

 

The parabolic element is an analogical model with a parabolic creep function. Creep compliance 

is expressed as: 

𝐽(𝑡) = 𝑎(𝑡
𝜏⁄ )ℎ                                                              (11) 

and complex shear modulus, 𝐺∗, as: 

𝐺∗ =
(𝑖𝜔𝜏)ℎ

𝑎Γ(ℎ+1)
                                                                (12) 

Where 𝐽(𝑡) is the creep function, ℎ is within the range 0 < ℎ < 1, 𝑎 is a dimensionless constant, 𝑡 

is the loading time, Γ is the gamma function, 𝑖 = √−1, 𝜔 is the angular frequency, and 𝜏 is the 

characteristic time.  

An analytical expression for the complex modulus is: 

𝐺∗ =
𝐺∞

1+𝑜(𝑖𝜔𝜏)−𝑘+(𝑖𝜔𝜏)−ℎ                                                        (13) 
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Where 𝐺∞ is the limit of the complex modulus, h and k are exponents with the range 0 < ℎ < 𝑘 <

1, and o is a dimensionless constant. The other symbols represent the same factors defined 

above.  

Two major drawbacks with this model are that there is no viscous element for simulating 

permanent deformation, and the model is unable to accurately model modified bitumen. 

 

3.1.6 HUET-SAYEGH MODEL 

 

This is a generalization of the Huet Model by Sayegh. It is similar to the Huet Model with the 

parallel addition of a small spring of relatively lower rigidity compared to 𝐺∞. This is illustrated in 

Figure 7. 

 

Figure 7. Huet-Sayegh Model 

 

The complex modulus is defined for the Huet-Sayegh Model as: 

𝐺∗ =
𝐺∞−𝐺0

1+𝑜(𝑖𝜔𝜏)−𝑘+(𝑖𝜔𝜏)−ℎ                                                          (14) 

Where 𝐺0 is the elastic modulus and the remaining symbols represent the same factors defined 

for the Huet Model. The Huet-Sayegh Model also lacks any form of representation for the 



 

12 
 

permanent deformation characteristics of bitumen. The model does not perform well for bitumen 

at very low frequencies (Yussof et al., 2011). 

 

3.1.7 DI BENEDETTO AND NEIFAR (DBN) MODEL 

 

This model takes into account the linear viscoelastic behavior in the low strain regions and plastic 

behavior in the large strain regions (Yussof et al., 2011). The DBN model can simulate the 

behavior of any bituminous binder, mastic, and mixes (Carret et al., 2015). The DBN Model is 

illustrated in Figure 8 below. It consists of one spring and a number of elementary bodies in 

parallel with dashpots. 

 

Figure 8. Di Benedetto and Neifar (DBN) Model 

 

The complex modulus for the DBN Model is expressed as: 

𝐺∗ = (
1

𝐺0
+ ∑

1

𝐺𝑖+𝑖𝜔𝜂𝑖(𝑇)
𝑛
𝑖=1 )−1                                                   (15) 

Where 𝐺0 is the elastic modulus of the spring and 𝜂𝑖 is the viscosity function of the temperature 

T. The number of elementary bodies, n, can be arbitrarily chosen. 
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3.1.8 THE 2S2P1D MODEL 

 

The 2-spring, 2-parabolic-1-linear dashpot (2S2P1D) Model developed by Di Benedetto and Olard 

is an improved version of the Huet Models (Woldekidan, 2011). The model is illustrated in Figure 

9 below.  

 

Figure 9. The 2S2P1D Model 

 

The complex modulus, 𝐺∗ is expressed as: 

𝐺∗ =
𝐺∞−𝐺0

1+𝑜(𝑖𝜔𝜏)−𝑘+(𝑖𝜔𝜏)−ℎ+(𝑖𝜔𝜏𝛽)−1                                                       (16) 

Where o and 𝛽 are dimensionless constants, and all other symbols have the same meanings as 

previously defined. The model does not fit well when the phase angle is between 50° and 70° 

(Yussof et al., 2011). 

 

3.1.9 THREE-ELEMENT MODELS 

 

More realistic material responses can be modelled using more elements. Four possible three-

element models are shown in Figure 10 below. Figure 10 (a) and (b) are solids while Figure 10 

(c) and (d) are considered liquids. The constitutive equations are: 
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(a)      𝜎 +
𝜂

𝐸1+𝐸2
�̇� =

𝐸1𝐸2

𝐸1+𝐸2
𝜀 +

𝜂𝐸1

𝐸1+𝐸2
𝜀̇                                                      (17) 

(b)          𝜎 +
𝜂

𝐸2
�̇� = 𝐸1𝜀 +

𝜂(𝐸1+𝐸2)

𝐸2
𝜀̇                                                        (18) 

(c)      𝜎 +
𝜂

𝐸2
�̇� = (𝜂1 + 𝜂2)𝜀̇ +

𝜂1𝜂2

𝐸
𝜀̈                                                      (19) 

(d)         𝜎 +
𝜂1+𝜂2

𝐸
�̇� = 𝜂1𝜀̇ +

𝜂1𝜂2

𝐸
𝜀̈                                                         (20) 

 

 

Figure 10. Three-Element Model 

 

Of course adding enough parameters one can fit most any curve, so the real question is what is 

the basic relationship between the deformation and the stress. 
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3.1.10 GENERALIZED MODELS 

 

These are complex models in the form of a Generalized Maxwell Model or a Generalized Kelvin 

Chain (Kelly, 2015).  Figure 11 illustrates the Generalized Maxwell Model, which consists of a 

series of Maxwell units in parallel. The absence of an isolated spring ensures a fluid-type response 

while the absence of a dash-pot ensures instantaneous response (Kelly, 2015). 

 

Figure 11. Generalized Maxwell Model 

 

The Generalized Kelvin Chain consists of multiple Kelvin models as illustrated in Figure 12. 
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Figure 12. Generalized Kelvin Chain 

 

3.2 EMPIRICAL ALGEBRAIC EQUATION MODELS 

 

The complex moduli of bituminous binders have been studied and explored using different 

algebraic equations. In some literature, they are referred to as the functional forms of rheological 

models. The functions can extend results, providing better data for fitting mechanical models 

(Rowe et al., 2011). Examples are the Dobson’s Model, the Christensen and Anderson (CA) 

Model, and many others. A few of them are explained below. 

 

3.2.1 JONGEPIER AND KUILMAN’S MODEL 

 

In 1969, Jongepier and Kuilman developed rheological functions based on their suggestion that 

relaxation spectra for asphalt cement are approximately log normal in shape. The model is 

expressed using several equations. The first one involves the conversion of the reduced 

frequency into a dimensionless frequency parameter, 𝜔𝑟, expressed as (Anderson et al., 1994): 

𝜔𝑟 = 𝜔𝜂0/𝐺𝑔                                                               (21) 

Where 𝜔𝑟  is the reduced frequency, 𝜂0 is the steady-state Newtonian Viscosity, and 𝐺𝑔 is the 

glassy modulus. 

The relaxation spectrum, 𝐻(𝜏), is also expressed as: 
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𝐻(𝜏) =
𝐺𝑔

𝛽√𝜋
𝑒

−{
𝐼𝑛𝜏

𝜏𝑚⁄

𝛽
}2

                                                       (22) 

𝐺𝑔 is the glassy modulus, 𝜏 is the relaxation time, 𝜏𝑚 is the exponential mean of the natural log of 

relaxation time, and 𝛽 is the scale parameter for the log normal distribution. 

The tangent of the phase shift is the ratio of the loss modulus to the storage modulus expressed 

by the following equations: 

Loss modulus, 

 𝐺′ =
𝐺𝑔

𝛽√𝜋
𝑒−{

𝛽(𝑥−1
2⁄

2
}2

𝑥 ∫ 𝑒
−(

𝑢

𝛽
)2cosh(𝑥−1

2⁄ )

cosh 𝑢
𝑑𝑢∞

0
                                  (23) 

and  

Storage modulus, 

 𝐺′′ =
𝐺𝑔

𝛽√𝜋
𝑒−{

𝛽(𝑥−1
2⁄

2
}2

𝑥 ∫ 𝑒
−(

𝑢

𝛽
)2cosh(𝑥+1

2⁄ )

cosh 𝑢
𝑑𝑢∞

0
                              (24) 

Where all variables have the same meanings as previously defined and 𝑥 = (2
𝛽2⁄ ) 𝐼𝑛𝜔𝑟 and 𝑢 =

𝐼𝑛 𝜔𝑟𝜏 . This model did not perform well for asphalts with large 𝛽  values. Another major 

disadvantage of the Jongepier and Kuilman’s Model is its complexity, which makes it difficult to 

use for routine applications in paving technology (Anderson et al., 1994). 

 

3.2.2 CHRISTENSEN AND ANDERSON (CA) MODEL 

 

With this model, the primary parameters used to define the rheological behavior of materials were 

the glassy modulus (𝐺𝑔), crossover frequency (𝜔𝑐), steady state viscosity (𝜂𝑠𝑠), and rheological 

index (R). The absolute complex modulus is expressed as (Yussof et al., 2010): 

|𝐺∗| = 𝐺𝑔 [1 + (𝜔𝑐 𝜔)⁄ log2 𝑅⁄
]

𝑅 log 2⁄
                                            (25) 

Over the years, research has shown that this model does not perform well at high temperatures, 

long loading times, or the combination of these two conditions. The parameters for the CA model 

are illustrated in Figure 13. 
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Figure 13. Definition of Parameters from the Christensen and Anderson Model 

 

3.2.3 CHRISTENSEN ANDERSON AND MARASTEANU (CAM) MODEL 

 

The CAM Model is a modified version of the Christensen Anderson Model. This model improves 

fitting in the low and high zone frequency range for bitumens. It is expressed as: 

|𝐺∗| = 𝐺𝑔[1 + (𝜔𝑐 𝜔)⁄ 𝑣
]

−𝑤 𝑣⁄
                                                  (26) 

Where the symbols have the same meanings as defined in the CA model, with v representing 

log 2
𝑅⁄ .  The w parameter addresses the rate at which the absolute complex modulus converges 

at the two asymptotes. Subsequent research indicated that this model shows lack of fit at high 

temperatures (Yussof et al., 2011).  

 

3.2.4 POLYNOMIAL MODEL 

 

The Polynomial Model can be used to describe the complex modulus for both asphalt and 

bitumen. It can be expressed in this form: 

log|𝐺∗| = 𝐴(log 𝑓)3 + 𝐵(log 𝑓)2 + 𝐶(log 𝑓) + 𝐷                                 (27) 
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Where A, B, and C are shape parameters, f is the reduced frequency, and D is the scaling 

parameter. The only downside is that, as temperatures increase, the model leads to skewed 

curves. Also, the polynomial does not account for the phase shift (Yussof et al., 2011).  

 

3.2.5 SIGMOIDAL MODEL 

 

The Sigmoidal Model is expressed as: 

log|𝐺∗| = 𝜈 +
𝛼

1+𝑒𝛽+𝛾(log(𝜔))                                                         (28) 

Where log(𝜔) is the reduced frequency, 𝜈 is the lower asymptote, and 𝛼 is the difference between 

the lower and upper asymptote. 𝛽 and 𝛾 represent the shape between the asymptotes and the 

inflection point (Yussof et al., 2011).  

4. CONCLUDING REMARKS 

 
The current rheological models of asphalt binders are based on differential equations of integer 

order. This does not give a true picture of the response. A more physically accurate description 

for asphalt binders may require the introduction of fractional differential equations. 

 
 

 
 

  


