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EXECUTIVE SUMMARY 

Project Objectives 

The primary goal of this research was to use large streams of truck-GPS data to analyze the travel routes 
(or paths) chosen by freight trucks to travel between different origins and destinations in metropolitan 
regions of Florida. To that end, the project used large streams of truck-GPS data acquired for two projects 
funded by the Florida Department of Transportation (FDOT)—one by the FDOT Central Office and another 
by FDOT District 7. The first project obtained more than 100 million raw GPS data points of several 
thousand trucks traveling in Florida to derive a variety of data products, including data on truck travel paths 
for more than 70,000 trips in Florida. Such raw GPS data were obtained from the American Transportation 
Research Institute (ATRI) for four months (April–July) in 2010. The details of this FDOT project and its 
outcomes can be obtained from the project report published by FDOT (Pinjari et al., 2014) The second 
project obtained more than 96 million raw GPS records from ATRI for the first 15 days in October 2015, 
December 2015, April 2016, and June 2016 for the Tampa Bay region of Florida. The truck-GPS data were 
used to develop route choice data for the Tampa Bay region and resulted in a database of more than 230,000 
truck trips and corresponding routes (Tahlyan et al., 2017).  

This is perhaps the largest amount of data used to date in the truck modeling literature to analyze truck 
route choice patterns. This offered an unprecedented opportunity to observe and analyze truck travel paths 
of a large number of trips between different origin and destination locations in Florida. Using such rich 
data, the following specific objectives were pursued in the project: 

1. Measure and analyze diversity in truck route choice patterns in Florida.  
2. Evaluate the performance of truck route choice set generation algorithms for developing truck route 

choice models in Florida.  

Each of these objectives is briefly discussed in the following sections. 

Objective 1: Measurement and Analysis of Truck Route Choice Diversity in Florida 

This task involved measurement and analysis of the diversity of travel paths chosen by trucks between 
selected origin and destination (OD) locations in Florida. To measure the diversity in truck routes between 
a given OD pair, the research team developed the following six metrics: (1) number of unique routes, (2) 
average commonality factor, (3) average path size, (4) non-overlapping index, (5) standardized variance of 
route usage, and (6) standardized Shannon entropy of route usage. Each metric helped to measure one of 
the following three dimensions of diversity: (1) number of distinct routes used to travel between OD pairs, 
(2) extent of overlap (or lack thereof) among routes, and (3) evenness (or dominance) of the use of different 
unique routes. The diversity metrics were used to examine truck route choice diversity from more than 
73,000 truck trips derived from more than 200 million GPS records of a large truck fleet. Descriptive 
analysis and statistical models of the diversity metrics offered insights on the determinants of various 
dimensions of truck route choice diversity between an OD pair. The research team compiled an extensive 
set of variables characterizing truck travel characteristics, OD location characteristics, and network 
structure characteristics between these OD pairs that could potentially influence the extent of route choice 
diversity. Negative binomial regression models were estimated to explore the influence of these variables 
on the number of unique routes traveled between an OD pair, and fractional response models were estimated 
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to explore the determinants of average path size (overlap among routes) and standardized Shannon entropy 
(evenness) of route usage. 

The analysis suggests that short-haul truck travel exhibit greater diversity in route choice than long-haul 
travel in terms of number of unique routes observed, the extent of non-overlap between unique routes, and 
the evenness of usage of different unique routes. 

Objective 2: Performance Evaluation of Truck Route Choice Set Generation Algorithms 

This task evaluated truck route choice set generation algorithms and derived guidance on using the 
algorithms for effective generation of choice sets for modeling truck route choice. Specifically, route choice 
sets generated from the breadth first search link elimination (BFS-LE) algorithm were evaluated against 
observed truck routes derived from large streams of GPS traces of a sizeable truck fleet in the Tampa Bay 
region of Florida. A carefully-designed evaluation approach was used to determine an appropriate 
combination of spatial aggregation and minimum number of trips to be observed between each OD location 
for evaluating algorithm-generated route choice sets. The evaluation was based on both the ability to 
generate relevant routes that are considered by the travelers and the generation of irrelevant (or extraneous) 
routes that are seldom chosen. Based on the evaluation, the research offers guidance on effectively using 
the BFS-LE approach to maximize the generation of relevant truck routes while eliminating irrelevant 
routes in a post-processing step. Finally, route choice models were estimated and applied on validation 
datasets to confirm findings from the above evaluation. 

The results demonstrate the benefit of evaluating algorithm-generated choice sets against observed choice 
sets from large datasets at a spatially-aggregated OD-pair level (instead of performing trip-level 
evaluations). Doing so helped in evaluating the ability to generate relevant and irrelevant routes. Based on 
the evaluation results, it was found that a carefully-chosen spatial aggregation (of generated routes) can 
reduce the need to generate substantial numbers of routes for each trip. In the current empirical context of 
truck route choice, it was found that generating up to a maximum of five routes at the trip level and then 
aggregating such routes to a TAZ-level spatial aggregation (of up to 2 km2) provided similar coverage of 
observed routes as that from generating more than 20 routes for each trip without spatial aggregation. The 
implication is that an effective and computationally-efficient use of the BFS-LE algorithm for generating 
truck route choice sets will generate a small number of routes at the disaggregate-level and then aggregate 
such routes from nearby OD locations. 
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CHAPTER 1: INTRODUCTION 

Freight is gaining increasing importance at all levels of government in the United States. Many states and 
regions are positioning themselves as hubs for international and domestic trade and freight flows to promote 
freight and logistics-led economic development. Accelerated growth in the volume of freight shipped on 
US highways has led to a significant increase in truck traffic, influencing traffic operations, safety, and state 
of repair of highway infrastructure. Traffic congestion, in turn, has impeded the speed and reliability of 
freight movement, leading to increased costs for producers and consumers, passenger traffic congestion, 
and environmental and economic impacts. 

An essential step toward enhancing highway freight mobility is to gain a thorough understanding of freight 
truck travel behavior in the transportation network, including demand for travel between different origins 
and destinations, modes of travel, and routes of travel. An understudied dimension among these aspects is 
truck route choice. Measuring and monitoring the travel routes (or paths) taken by trucks and understanding 
why they do so can help design short-term truck routing policies aimed at congestion mitigation, improved 
reliability, and maintenance of good repair. In addition, it is essential for understanding and forecasting 
truck travel route choice and the aggregate level network performance for medium- to long-term decisions 
such as the designation of truck routes, addition of new truck corridors, and bypass routes. In addition, 
understanding individual truck route choice patterns can help in estimating link-level truck traffic volumes 
that have a bearing on highway pavement management decisions. 

A primary challenge for all such investigations, however, is the lack of availability of observed data on 
truck routes. Traditional travel surveys do not allow for the observation of truck travel routes. In the absence 
of such data, transportation planners have to make assumptions on truck route choice behavior that may not 
necessarily hold true in the context of freight movement. Another challenge that also stems from the lack 
of availability of data is the dearth of truck route choice models that can be used to analyze and forecast 
truck travel routes and traffic volumes under alternative scenarios of traffic performance (congestion, 
reliability, etc.) and routing policies. 

In the recent past, there has been an increasing interest in using alternate sources of data such as truck-GPS 
data (or probe data) to understand truck travel patterns. GPS technologies enable passive collection of large 
streams of data on truck movements over a wide range of temporal and spatial scales. Such data offer an 
unprecedented opportunity to observe and compare the route choices of a large number of trips, as opposed 
to observing only one of a few trips, between several origin and destination (OD) locations. Therefore, it is 
fruitful to use such data to understand freight truck route choice behavior.  

The overarching goal of this research was to use large streams of truck-GPS data to analyze the travel routes 
(or paths) chosen by freight trucks to travel between different origins and destinations in metropolitan 
regions of Florida. To that end, the project used large streams of truck-GPS data acquired for two projects 
funded by the Florida Department of Transportation (FDOT)—one by the FDOT Central Office and another 
by FDOT District 7. The first project obtained more than 100 million raw GPS data points of several 
thousand trucks traveling in Florida to derive a variety of data products, including data on truck travel paths 
for more than 70,000 trips in Florida. Such raw GPS data were obtained from the American Transportation 
Research Institute (ATRI) for four months (April–July 2010). The details of this FDOT project and the 
outcomes of the project can be obtained from the project report published by FDOT (Pinjari et al., 2014). 
The second project obtained more than 96 million raw GPS records from ATRI for the first 15 days in 
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October 2015, December 2015, April 2016, and June 2016 for the Tampa Bay region of Florida. The truck-
GPS data were used to develop route choice data for the Tampa Bay region and resulted in a database of 
more than 230,000 truck trips and corresponding routes (Tahlyan et al., 2017).  

This is perhaps the largest amount of data used to date in the truck modeling literature to analyze truck 
route choice patterns and offered an unprecedented opportunity to observe and analyze truck travel paths 
of a large number of trips between different OD locations in Florida. Using such rich data, the following 
specific objectives were pursued in the project: 

1. Measure and analyze diversity in truck route choice patterns in Florida.  

2. Evaluate the performance of truck route choice set generation algorithms for developing truck route 
choice models in Florida. 

To achieve these two objectives, two studies were conducted in this project, each focusing on one objective. 
Chapter 2 describes the first study, which was aimed at a comprehensive explanatory analysis of the truck 
route choice diversity in Florida. Chapter 3 describes the second study, which focused on performance 
evaluation of choice set generation algorithms for modeling truck route choice. Chapter 4 summarizes the 
findings from the two studies and identifies the avenues for future research. Please note that Chapters 2 and 
3 are written so they can stand alone to reduce the need to refer to the reports of the FDOT projects that 
resulted in the route choice data used for this research (Pinjari et al., 2014; Tahlyan et al., 2017). However, 
the reader will benefit from skimming through these reports for details on ATRI’s raw GPS data, the 
procedures used to convert the raw data into truck trips, and the procedures used to derive travel routes of 
the truck trips. 
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CHAPTER 2: COMPREHENSIVE EXPLORATORY ANALYSIS OF  
TRUCK ROUTE CHOICE DIVERSITY IN FLORIDA 

2.1 Introduction 

Highway freight mobility is critical to a region’s economic growth. An essential step toward enhancing 
highway freight mobility is to improve our understanding of freight movement. For example, measuring 
and monitoring the routes that trucks use to travel from origins to destinations can help design short-term 
truck routing policies aimed at mitigating congestion and improving travel time reliability. Due to limited 
data on truck movements, however, truck route choice has been an understudied dimension of freight 
movement. The recent availability of global positioning systems (GPS) data has started to fill this gap. A 
few studies have used GPS data to understand route choice behaviors of freight trucks, passenger cars, and 
bicycles, and several studies have processed GPS data to derive freight performance measures (Brown and 
Racca, 2012; Chen-Fu, 2014; Liao, 2014; Wang et al., 2016; Woodard et al., 2017). However, not much 
attention has been paid to understanding the diversity of truck route choice. 

This study pursues a comprehensive exploratory analysis of truck route choice diversity in Florida for both 
long-haul and short-haul travel segments. Specifically, the study addresses two broad questions: (1) How 
can the degrees of diversity in the routes trucks use to travel between an OD pair be measured? (2) What 
factors influence the diversity of truck route choice between an OD pair? To this end, six metrics were used 
to measure the following three different dimensions of diversity in route choice between a given OD pair: 
(1) number of different routes used between the OD pair, (2) extent of overlap (or lack thereof) among the 
routes, and (3) evenness (or the dominance) of the use of different unique routes between that OD pair. 
These metrics were applied to quantify truck route choice diversity using large streams of GPS data (200+ 
million GPS traces) from a large fleet of trucks traveling in Florida. Next, statistical models were estimated 
to explore the influence of various determinants on the three dimensions of route choice diversity between 
different OD pairs. The models provided insights into the influence of truck travel characteristics, OD 
location characteristics, and network structure characteristics between an OD pair on the diversity of route 
choice between that OD pair. These insights potentially can help travel modelers improve choice set 
generation algorithms for modeling truck route choice and help planners design resilient road systems for 
truck travel.  

The next section describes the truck-GPS data used for this study, and the following section describes the 
metrics used to quantify diversity in truck route choice. Next, the statistical models used in this study are 
described, and empirical results are presented, beginning with a descriptive analysis of the diversity metrics 
followed by empirical findings from statistical models on the determinants of diversity. The last section 
summarizes and concludes the study.  

2.2 Data Description 

The truck-GPS data used in this study was provided by the American Transportation Research Institute 
(ATRI) for two FDOT funded projects (Pinjari et al., 2014; Tahlyan et al., 2017). The data used to derive 
long-haul truck trips (trips longer than 50 miles) comprised more than 145 million GPS records 
corresponding to a fleet of nearly 50,000 freight trucks. The long-haul GPS data spanned spatially over the 
state of Florida and temporally over a four-month period (March–June 2010). The data used to derive short-
haul trips (trips shorter than 50 miles) comprised more than 96 million GPS records corresponding to a fleet 
of nearly 110,000 freight trucks and spanned six counties of the Tampa Bay region in Florida. Temporally, 
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the short-haul data corresponded to first 15 days in October 2015, December 2015, April 2016, and June 
2016. 

The raw truck-GPS data first were converted into a database of truck-trips using algorithms developed by 
Thakur et al. (2015) and later refined by Pinjari et al. (2015) for the same data. To derive the chosen route 
for each trip, raw GPS records corresponding to each trip were map-matched using the procedure developed 
by Kamali et al. (2016) to high-resolution NAVTEQ roadway networks provided by FDOT. The 2010 
NAVTEQ network used to derive long-haul routes comprised more than 1.5 million links and 5.8 million 
nodes whereas the 2015 NAVTEQ network used for short-haul routes comprised over 1.8 million links and 
more than 6.9 million nodes. Before map-matching, both networks were thoroughly checked for directional 
and topological consistency to detect any potential errors or disconnectivity in the network. After the map-
matching and validation process, a database of more than 78,000 long-haul trips and 225,000 short-haul 
trips was retained, and a portion was used for the diversity analysis. Refer to Tahlyan et al. (2017) for more 
details on the procedures used to convert the raw GPS data to trips and corresponding routes. 

To analyze route choice and the diversity therein, it is useful to aggregate trip end locations to larger spatial 
units. This allows analysts to observe a sufficient number of trips to get an uncensored view of the various 
routes trucks choose between two locations. Without aggregation, the number of trips observed between 
many OD pairs would be too small to observe the complete diversity of routes. Even if a substantial number 
of trips was observed between disaggregate OD locations, it might not exhibit the complete diversity in 
route choice due to lack of diversity in the truck drivers and/or operators and due to businesses imposing 
restrictions on truck routes. Aggregating trips from nearby locations potentially can help in observing the 
diversity in truck routes due to heterogeneity in truck drivers and operators and the businesses they serve. 
As such, practical implementations of route choice analysis and modeling consider spatially-aggregated 
units such as traffic analysis zones (TAZs). Therefore, in this study, all trip end locations were aggregated 
to the TAZs defined in Florida’s statewide travel demand model. Further, only those TAZ OD pairs that 
had at least 50 trips for long-haul data and at least 30 trips for short-haul data were selected, as OD pairs 
with few trips might not offer a complete picture of truck route diversity. The final long-haul dataset used 
in this analysis comprised 277 TAZ OD pairs with a total of 30,263 trips that were longer than 50 miles. 
The short-haul dataset comprised 527 TAZ OD pairs totaling 42,884 trips that were 5–50 miles long. In the 
context of truck travel, trips shorter than 5 miles would not have many route choice options. Figure 2.1 
presents the trip length distribution of all trips used for analyzing truck route diversity in this project for 
long-haul trips and short-haul trips.  
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Figure 2.1 Trip Length Distributions of Long-haul and Short-haul Trips used for  
Route Diversity Analysis 

2.3 Diversity Metrics 

To measure diversity in truck route choice between a given OD pair, the following six metrics were 
employed: (1) number of unique routes, (2) average commonality factor, (3) average path size, (4) non-
overlapping index, (5) standardized variance of route usage, and (6) standardized Shannon entropy of route 
usage. The first metric measures the number of unique routes traveled by trucks between an OD pair. The 
next three metrics measure the extent of overlap (or lack thereof) among the observed unique routes. The 
last two metrics measure the evenness (or, otherwise, dominance) in the usage of the routes between the 
OD pair. These three dimensions together provide a complete picture of the diversity in truck route choice 
between an OD pair. Each of the metrics are defined and discussed next. 

2.3.1 Number of Unique Routes 

Many routes traveled between an OD pair are different by only a few links. To determine a set of distinct 
or unique routes traveled between an OD pair, we used the commonality factor proposed by Cascetta et al. 
(1996). Commonality factor (𝐶𝐶𝑖𝑖𝑖𝑖) between routes 𝑖𝑖 and 𝑗𝑗 is defined as 𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑖𝑖𝑖𝑖 �𝐿𝐿𝑖𝑖𝐿𝐿𝑗𝑗⁄ , where 𝐿𝐿𝑖𝑖 and 𝐿𝐿𝑗𝑗 
represent the length of routes 𝑖𝑖 and 𝑗𝑗, respectively, and 𝑙𝑙𝑖𝑖𝑖𝑖 is the length of the shared portion between the 
two routes. The two routes are referred to as unique from each other if the commonality factor between the 
two routes is below 0.95. To determine the number of unique routes observed between an OD pair, all 
routes between that OD pair are arranged in an ascending order of route length. The shortest route is the 
first unique route. The commonality factor of each subsequent route is computed with respect to all previous 
unique routes to determine if it is a unique route (if 𝐶𝐶𝑖𝑖𝑖𝑖  is less than 0.95). The result of this process is a set 
of unique routes between an OD pair, where the commonality factor between any two unique routes is less 
than 0.95. The size of this unique route set represents the number of unique routes used between that OD 
pair.  
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2.3.2 Average Commonality Factor 

Average commonality factor for a given OD pair is the mean value of the commonality factors computed 
across all pairs of unique routes between that OD pair. Since the earlier metric (number of unique routes) 
does not consider the extent of overlap (or lack thereof) between the unique routes, this metric measures 
the degree of overlap between all unique routes in an OD pair. Ranging between 0 and 1, an average 
commonality factor value closer to 0 (or 1) represents low (or high) overlap between the unique routes.  

2.3.3 Average Path Size 

Path size is a commonly-used metric in the route choice literature to measure the degree of overlap of two 
routes between an OD pair. Proposed by Ben-Akiva and Bierlaire (1999), the path size for a unique route 𝑖𝑖 
is defined as 𝑃𝑃𝑃𝑃𝑖𝑖 = ∑ �𝑙𝑙𝑎𝑎

𝐿𝐿𝑖𝑖
� 1
∑ 𝛿𝛿𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗

𝑎𝑎𝑎𝑎𝛤𝛤𝑖𝑖 , where Γi is the set of all links composing route 𝑖𝑖, 𝑙𝑙𝑎𝑎 is the length of 

link 𝑎𝑎, 𝐿𝐿𝑖𝑖 is the length of route 𝑖𝑖, and 𝛿𝛿𝑎𝑎𝑎𝑎 is equal to 1 if a route 𝑗𝑗 belonging to the unique route set 𝑘𝑘 uses 
link 𝑎𝑎, and zero otherwise. The maximum possible value of PS is 1, and the minimum value tends to 0. A 
route with no overlap with any other routes has a PS value 1. Average PS in an OD pair is the mean value 
of PS across all unique routes between that OD pair.  

2.3.4 Non-overlapping Index  

Complementary to the above two metrics, the degree of non-overlap among the unique routes between an 
OD pair is quantified using the non-overlapping index. This index is measured as the ratio between the total 
length of links (on unique routes) that were used only once to the total length of all links (on unique routes) 
that were used at least once. This index ranges between 0 and 1, where a value closer to 1 represents low 
overlap among unique routes.  

2.3.5 Standardized Variance of Route Usage between an OD Pair 

Another dimension of diversity is based on the evenness of the usage of different unique routes between an 
OD pair. The most even usage is when all observed trips between an OD pair are equally distributed among 
the observed unique routes between that OD pair. A complementary concept is the degree of dominance, 
when most trips are observed to have taken only one or a few unique routes.  

To measure the degree of evenness in usage, the distribution of N trips among K different unique routes 
between a given OD pair may be characterized as a multinomial distribution, with each trip being allocated 
to any one of the K different unique routes. If the random variable 𝑋𝑋𝑘𝑘  (𝑘𝑘 = 1,2,3, … ,𝐾𝐾) indicates the 
number of trips choosing route 𝑘𝑘 and 𝑝𝑝𝑘𝑘 is the proportion of trips allocated to route 𝑘𝑘, vector 𝑋𝑋 =
(𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝐾𝐾) follows a multinomial distribution with parameters 𝑁𝑁 and 𝑝𝑝, where 𝑝𝑝 = (𝑝𝑝1,𝑝𝑝2, … , 𝑝𝑝𝐾𝐾). The 
variance of such multinomial-distributed random variables is 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑘𝑘) = 𝑁𝑁 ∗ 𝑝𝑝𝑘𝑘 ∗ (1 − 𝑝𝑝𝑘𝑘).  

The variance of route usage between an OD pair is defined as the sum of variances of usage frequency for 
each route, as: 𝑁𝑁 ∗ ∑ 𝑝𝑝𝑘𝑘 ∗ (1 − 𝑝𝑝𝑘𝑘)𝐾𝐾

1 . This metric is influenced by three factors: (1) total number of unique 
routes between the OD pair (more routes, higher the variance), (2) total number of observed trips between 
the OD pair (more trips, higher the variance), and (3) evenness of the distribution of the observed trips 
among various unique routes. To measure solely the nature of trip distribution without being influenced by 
the number of observed trips (N) or unique routes (K), this metric may be standardized as follows. For a 
given OD pair with N observed trips and K unique routes, the maximum possible value of variance of route 
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usage is: N ∗ K ∗ (1 K)⁄ ∗ (1 − 1 K⁄ ) = N ∗ (1 − 1 K⁄ ), when all trips are evenly distributed among all 
unique routes. Standardized variance of route usage is the ratio of the variance of usage to the maximum 
possible variance, defined as: [∑ pk ∗ (1 − pk)K

1 ] (1 − 1/K)⁄ . The closer this metric is to its maximum 
possible value 1, the more evenly-distributed the observed trips are among various unique routes. For 
example, if there are 100 trips using two unique routes in an OD pair, the standardized variance of usage 
for that OD pair would be 1 if 50 trips take the first route and the other 50 trips take the second route. The 
value of this metric would become 0.36 if 90 trips take the first route and 10 trips take the second route. 

2.3.6 Standardized Shannon Entropy of Route Usage between an OD Pair  

Shannon entropy (Shannon, 2001) is a metric typically-used to measure the evenness of distribution of 
different entities among a given number of categories. Proposed in the field of information science, the 
concept of entropy has been applied widely by transportation researchers to quantify the degrees of 
geodiversity, etc., in a land use context (Brown et al., 2009; Li et al., 2016; Yabuki et al., 2009). The 
Shannon entropy of usage of K unique routes between an OD pair is defined as ∑ pkln (pk)K

1 , where pk is 
the proportion of trips taking the kth unique route. The maximum value of the Shannon entropy of route 
usage is K ∗ (1 K⁄ ) ∗ ln(1 K⁄ ) = ln (1 K⁄ ) when all trips are equally distributed among the identified unique 
routes between an OD pair. To eliminate the effect of number of unique routes between an OD pair, the 
standardized Shannon entropy of route usage is computed as [∑ pkln (pk)]K

1 [ln(1 K⁄ )]⁄ , whose maximum 
possible value is 1 when all trips are evenly distributed among all unique routes.  

2.3.7 Illustration 

To illustrate the application of the above diversity metrics, Figure 2.2 presents examples of observed unique 
routes between two different OD pairs observed in the data. The first OD pair is from the long-haul data, 
with 8 unique routes that are 62 miles to 82 miles long. Note that many of the 8 unique routes overlap quite 
a bit with each other. Such overlap is measured by the average commonality factor and average path size. 
A total of 53 of the 65 trips observed between this OD pair used the first unique route, indicating the 
dominance of the first unique route. The second OD pair is from short-haul data, with 32 observed trips 
that are more evenly distributed among the different routes than those between the first OD pair. Such 
differences in dominance (or evenness) of route usage are measured by the standardized variance of usage 
and the standardized Shannon entropy of usage.  
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Figure 2.2: Examples of Unique Routes (bold red lines)  
for Long-haul OD Pair and Short-haul OD Pair 

2.4 Modeling Methodology 

This section explains the statistical model structures used to analyze the determinants of the following three 
of the six metrics developed in this study—number of unique routes between and OD pair, average path 
size of unique routes between an OD pair, and standardized Shannon entropy of route usage between an 
OD pair. 

2.4.1 Count Data Models for Number of Observed Unique Routes between an OD Pair 

Negative binomial (NB) regression (Washington et al., 2010) is an appropriate choice to model count data 
given by the number of observed unique routes in this research. Typically, Poisson regression is preferred 
if the mean of the count process is equal to the variance. If there is a significant difference between the 
mean and the variance of the count process, the data are said to be over-dispersed, and NB regression is 
preferred. Current empirical data supported the use of NB regression over Poisson regression, because of 
over-dispersion in the data. 

In NB regression, the probability 𝑃𝑃(𝑦𝑦𝑖𝑖) of an OD pair 𝑖𝑖 having 𝑦𝑦𝑖𝑖 number of unique routes is: 𝑃𝑃(𝑦𝑦𝑖𝑖) =
𝛤𝛤(1 𝛼𝛼� +𝑦𝑦𝑖𝑖)
𝛤𝛤(1 𝛼𝛼� )𝑦𝑦𝑖𝑖!

� 1/𝛼𝛼
(1 𝛼𝛼� )+𝜆𝜆𝑖𝑖

�
1/𝛼𝛼

� 𝑦𝑦𝑖𝑖
(1 𝛼𝛼� )+𝜆𝜆𝑖𝑖

�
𝑦𝑦𝑖𝑖

 , where 𝛤𝛤(∙) is the gamma function, 𝜆𝜆𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽𝑋𝑋𝑖𝑖 + 𝜀𝜀𝑖𝑖), 𝑋𝑋𝑖𝑖 is a vector 

of explanatory variables, 𝛽𝛽 is a vector of parameters to be estimated, and 𝑒𝑒𝑒𝑒𝑒𝑒(𝜀𝜀𝑖𝑖) is a Gamma-distributed 
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disturbance term with unit mean and variance given by the dispersion parameter 𝛼𝛼. The model parameters 
can be estimated using a maximum likelihood estimation technique.  

Depending on the count process being modeled, the regression can be right, left, or two-side truncated. To 
model the number of unique routes between an OD pair, count data models were left-truncated at 1, because 
any OD pair would have at least one unique route.  

2.4.2 Fractional Response Models for Average Path Size and Standardized Shannon Entropy of Route 
Usage 

It is worth noting that all diversity metrics proposed in this study, except the number of unique routes, 
ranged between 0 and 1. The fractional response model structure proposed by Papke and Wooldridge (1993) 
may be used to model such quantities whose values lie between 0 and 1. Although proportion data may be 
modeled by logit transformation of the dependent variable [i. e. , 𝑙𝑙𝑙𝑙 (𝑦𝑦𝑖𝑖 (1 − 𝑦𝑦𝑖𝑖)⁄ = 𝛽𝛽𝑋𝑋𝑖𝑖] followed by 
ordinary least squares regression, this transformation cannot be used when the dependent variable might 
take values of 0 or 1. This issue can be resolved with the fractional response model (Papke and Wooldridge, 
1993) whose expected value of the dependent variable is: 𝐸𝐸(𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖) = 𝐺𝐺(𝑥𝑥𝑖𝑖𝛽𝛽), where 𝐺𝐺(∙) is a known 
function with 0 < 𝐺𝐺(𝑧𝑧) < 1 ∀𝑧𝑧 ∈ ℝ. Two possible functional forms for 𝐺𝐺(𝑧𝑧) are (1) logistic function, 
𝐺𝐺(𝑧𝑧) = 𝑒𝑒𝑒𝑒𝑒𝑒 (𝑧𝑧) (1 + 𝑒𝑒𝑒𝑒𝑒𝑒 (𝑧𝑧)⁄ ) and (2) cumulative density function of a standard normal distribution. 
According to this model, the quasi likelihood of an OD pair with an observed value 𝑦𝑦𝑖𝑖 is given by ℒ𝑖𝑖(𝛽𝛽) =
𝑦𝑦𝑖𝑖 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙[𝐺𝐺(𝑥𝑥𝑖𝑖𝛽𝛽)] + (1 − 𝑦𝑦𝑖𝑖) ∗ 𝑙𝑙𝑙𝑙𝑙𝑙 [1 − 𝐺𝐺(𝑥𝑥𝑖𝑖𝛽𝛽)]. The parameter estimation is done using maximization of 
the quasi log-likelihood function.   

2.5 Descriptive Analysis 

This section provides a descriptive analysis of various metrics of diversity derived for both long-haul and 
short-haul datasets and the potential determinants of diversity.  

2.5.1 Diversity Metrics 

Table 2.1 summarizes the mean and standard deviation values of all diversity metrics calculated for the 
long-haul and short-haul datasets used in this study. There were 19 OD pairs in the long-haul data and 22 
OD pairs in the short-haul data that had one observed unique route. Except for the number of unique routes 
metric, all other diversity metrics reported in the table were computed after excluding such OD pairs with 
a single unique route. 

Table 2.1: Descriptive Statistics of Diversity Metrics 

No. Diversity Metrics Long-haul Short-haul 
Average SD Average SD 

1 Number of unique routes 8.61 6.54 9.03 6.51 
2 Average commonality factor 0.69 0.17 0.68 0.18 
3 Average path size 0.28 0.12 0.29 0.14 
4 Non-overlapping index 0.26 0.13 0.32 0.15 
5 Standardized variance of usage  0.62 0.26 0.65 0.25 
6 Standardized Shannon entropy of usage  0.57 0.21 0.61 0.21 

From Table 2.1, a noteworthy pattern shows that the short-haul routes exhibit greater diversity than long-
haul routes with higher average values of observed unique routes, non-overlapping index, standardized 
variance of route usage, and standardized Shannon entropy of route usage. The standard deviations are also 
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higher for short-haul data, suggesting a greater incidence of higher values for this data. In other words, 
short-haul routes are move diverse than long-haul routes from the standpoint of lower overlap as well as 
lower dominance in their usage. 

2.5.2 Potential Determinants of Diversity 

To explore the correlates of diversity in route choice between various OD pairs, a variety of factors 
describing observed travel demand, OD locations, and network structure between the OD pairs were 
extracted. These explanatory variables are presented in Table 2.2 and briefly discussed next. 

Table 2.2: Descriptive Statistics of Explanatory Variables for Route Diversity Analysis 

No. Potential Determinants of Diversity Long-haul Short-haul 
Average SD Average SD 

1 No. of trips observed for an OD pair 109.3 99.7 81.1 123.7 
2 No. of trucks observed for an OD pair 19.7 16.6 68.3 113.5 
3 OD airway distance (mi) 109.8 69.6 21.9 11.0 
4 

Travel time of trips taking most used 
route (min) 

SD 7.5 3.6 4.8 18.4 
5 Average 146.1 73.9 31.4 13.0 
6 95th percentile 158.5 77.4 35.9 14.3 
7 5th percentile 136.9 71.7 27.8 12.1 
8 Ratio of most used route length to airway OD distance  1.2 0.1 1.2 0.4 
9 

Employment density of OD TAZs (1000 
jobs/sq. mi.) 

All types 7.0 5.5 5.7 4.0 
10 Industrial 1.5 1.1 0.9 0.7 
11 Service 3.4 3.1 3.0 2.8 
12 Commercial 2.1 1.9 1.8 1.3 
13 Average area of OD TAZs (mi2) 2.2 2.8 2.3 3.4 
14 Indicator if both OD TAZs are urban  0.8 0.3 0.9 0.3 

15 Average distance from centroid of all trip ends to each trip 
end (mi) 0.4 0.5 0.8 1.0 

16 Average distance from the TAZ centroid to major arterials 
(mi) 6.0 3.5 4.7 3.2 

17 
Length of major arterials (mi) 

Long ellipse 331.8 411.8 27.1 27.9 
18 Short ellipse 274.2 386.1 15.7 17.5 
19 Ending buffers 29.0 23.6 8.8 10.0 
20 

Length of minor arterials (mi) 
Long ellipse 621.4 855.4 42.6 49.4 

21 Short ellipse 502.6 800.1 18.2 25.9 
22 Ending buffers 62.8 60.2 17.8 24.0 
23 

Length of collectors (mi) 
Long ellipse 1276.6 1561.8 110.5 114.3 

24 Short ellipse 1031.3 1446.2 48.7 62.2 
25 Ending buffers 137.9 96.0 48.1 56.7 
26 

Length of local roads (mi) 
Long ellipse 10155.1 14471.0 673.1 639.2 

27 Short ellipse 9867.2 11496.5 311.3 349.2 
28 Ending buffers 1212.1 768.9 259.8 279.2 
29 Toll roads (mi) Long ellipse 81.4 117.6 5.8 8.2 
30 

No. of rest stops 
Long ellipse 9.2 12.1 1.0 1.4 

31 Short ellipse 8.1 11.6 0.6 1.0 
32 Ending buffers 0.3 0.9 0.4 0.8 
33 

No. of interchanges 
Long ellipse 84.4 124.6 9.3 12.1 

34 Short ellipse 60.5 107.6 4.0 6.7 
35 Ending buffers 18.1 24.3 4.2 7.1 
36 

No. of traffic signals 
Long ellipse 728.6 1043.8 59.2 86.3 

37 Short ellipse 532.9 901.4 25.0 47.4 
38 Ending buffers 136.2 168.4 29.1 53.0 
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2.5.2.1 Trip characteristics 

The first category of variables includes the number of trips observed for each OD pair and the number of 
trucks taking those trips (a measure of truck travel demand), spatial separation (straight-line distance or 
direct distance) between the OD locations, and travel conditions measured between the OD pair 
(particularly on the most used route). For the most used unique route, travel time variability and level of 
route circuity (defined as the ratio of route length to the direct OD distance) were measured.  

2.5.2.2 OD location characteristics 

Characteristics of origin and destination TAZs include land-use descriptors (employment densities, TAZ 
size, urban/rural classification) and spatial dispersion of freight activity centers (calculated as the average 
distance of all trip end centroid to each trip end location).  

2.5.2.3 Network Structure 

To explore the impact of network structure on the diversity of observed routes, two different areas of 
influence between OD pairs were hypothesized, as illustrated in Figure 2.3. In the first hypothesis, the 
diversity of route choice between an OD pair was provided by the entire road network inside an elliptical 
area of influence connecting that OD pair, referred to as the long ellipse (see illustration on left side in 
Figure 2.3). The long ellipse’s major axis was assumed to be the same distance and orientation of the straight 
line connecting the centroids of origin and destination TAZs. Its minor axis was set to be one-third of the 
major axis length. In the second hypothesis, the diversity of route choice between an OD pair was 
differentially impacted by two different areas of influence. The first area of influence was a circular area 
around the OD TAZ centroids, referred to as circular buffers. The buffer radii explored were 1, 2, and 5 
miles for direct distances of 5–10, 10–20, and more than 20 miles, respectively. The second area of 
influence was elliptically shaped, referred to as the short ellipse, with the major axis as the difference of 
straight-line distance and radius of the circular buffers on each end (see illustration on right in Figure 2.3).  

 

 
Figure 2.3 Long Ellipse, Short Ellipse, and Circular Buffers 

Within these hypothesized areas of influence for each OD pair, densities of various road types (major 
arterials, minor arterials, collectors, and local roads) were computed to characterize the network structure 
between the OD pair. In addition, other facilities along the roadway, such as traffic signals, intersections, 
interchanges, truck rest stops, were counted within long and short ellipses and circular buffers.  



12 

 

2.6 Estimation Results  

Statistical models were estimated separately for long-haul and short-haul datasets to analyze the 
determinants of diversity metrics, including number of unique routes, average path size, and standardized 
Shannon entropy. This section presents the empirical model results.  

2.6.1 NB Regression Model for Number of Unique Routes 

Table 2.3 presents the NB regression estimation results for the number of unique routes between an OD 
pair, separately for long-haul and short-haul travel segments. Both model results indicate that OD pairs with 
a higher number of observed trucks are likely to have more unique routes. This was an expected result 
because more trucks traveling between an OD pair may lead to greater diversity in route choice due to 
heterogeneity in preferences of truck drivers, operators, and the businesses they serve. Similarly, OD pairs 
with more observed trips had more unique routes, in both long- and short-haul travel segments (specifically, 
when there are more than 150 trips in the short-haul segment). More trips represent a greater demand for 
travel and may lead to greater diversity in route choices as well.  

The next variable in the long-haul model, indicating high travel time variability (when the difference 
between 95th and 5th percentile travel time on the most used route is greater than 15 minutes), suggests more 
unique routes since the variability in travel conditions or low reliability in travel time causes travelers to 
prefer alternative routes. Furthermore, in the long-haul model, deviation of the most used route from the 
straight-line OD distance (measured as the ratio of the most used route length to straight-line distance) had 
a positive influence on the number of observed unique routes. When the most-used route is more circuitous, 
more available routes in the network may exist (or travelers may look for more alternatives), which 
decreases trucker preference for any particular route. Interestingly, neither travel time variability nor route 
circuity had a significant influence in the short-haul segment.  

In the context of OD location characteristics, OD pairs with larger OD TAZs were likely to have lower 
number of unique routes in both travel segments, perhaps because those TAZs were typically in areas with 
sparse network, population, and employment density and, therefore, had fewer network options to travel. 
For the same reason, both OD locations being in an urban zone is associated with a higher number of unique 
routes in the short-haul model. In the context of direct distance, OD pairs within 200 miles separation are 
likely to have more unique routes than those that are farther from each other. In the short-haul segment, the 
diversity of route choice appears to increase as spatial separation increases from small (<10 miles) to 
moderate (10–20 miles) and then decreases in the highest length segment. This may be because the network 
does not offer too many route options both for short-length (<10 miles) or long-length (>40 miles) travel. 
In the short-haul model, employment densities at the OD TAZs were positively correlated with the number 
of unique routes, perhaps because a greater employment density is a surrogate for the heterogeneity of 
businesses served by freight trucks, which leads to a greater diversity in route choice.  

Similarly, the average distance between the TAZ-centroid of the trip ends and each trip’s end coordinates 
(a measure of spatial dispersion of the freight activity generators in the OD TAZs) is positively associated 
with the number of unique routes observed between an OD pair (only in the short-haul model). The next 
variable in the short-haul model, average distance from TAZ-centroids to the nearest major arterial, is a 
surrogate for how quickly the trucks can reach a major arterial, which is negatively correlated with the 
number of observed unique routes.  
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Table 2.3 Estimation Results of Truncated Negative Binomial Regression of  
Number of Unique Routes for Long-haul and Short-haul Datasets 

Variable Description Long-haul Data Short-haul Data 
Coefficient t-stat Coefficient t-stat 

Trip Characteristics     
Logarithm of number of truck IDs 0.293 5.53 0.358 10.93 
Logarithm of number of trips 0.379 4.97 -- -- 
Indicator (1 if more than 150 trips, 0 otherwise) -- -- 0.159 1.80 
Travel time variability on most used route indicator (1 if 
difference of 95th and 5th percentile of travel time greater than 
15 minutes, 0 otherwise) 

0.172 1.86 -- -- 

Ratio of length of most used route to direct OD distance 
(mi/mi) 1.486 3.51 -- -- 

OD Characteristics     
Average area of OD TAZs (mi2) -0.040 -1.85 -0.036 -3.85 
Indicator if both OD TAZs are urban zone -- -- 0.277 3.83 
Indicator if direct OD distance indicator between 50 and 200 
miles 0.381 3.59 N/A N/A 

Indicator if direct OD distance between 10 and 20 miles N/A N/A 0.128 2.84 
Indicator if direct OD more than 40 miles N/A N/A -0.671 -6.52 
Industrial employment density (1000 jobs/mile2) -- -- 0.215 6.41 
Commercial employment density (1000 jobs/mile2) -- -- 0.059 2.95 
Average distance from centroid of all trip ends to each trip end 
(mi) -- -- 0.283 12.54 

Average distance from TAZ centroids to nearest major or 
minor arterials (mi) -- -- 0.042 4.87 

Network Structure     
Ratio of toll roads to major arterials in long ellipse (mi/mi) 1.283 3.09 -- -- 
Density of major and minor arterials in 5-mile buffers around 
both endings (mi/mi2) -0.583 -2.87 -- -- 

Density of collectors in 5-mile buffers around both endings 
(mi/mi2) 0.340 2.29 -- -- 

Density of major, minor arterials and collectors in short ellipse 
(mi/mi2) 0.231 2.12 -- -- 

Density of minor arterials and collectors in the long ellipse 
(mi/mi2) -- -- 0.108 2.70 

Proportion of major arterials to total length of major, minor 
arterials and collectors in long ellipse (miles/mile) -- -- -0.534 -2.41 

Proportion of minor arterials and collectors to total length of 
major and minor arterials and collectors in short ellipse 
(mi/mi) 

1.375 2.24 -- -- 

Constant -3.997 -5.06 -0.254 -1.41 
Dispersion parameter 0.235 5.78 0.075 5.80 
Number of observations (OD pairs) 277 527 
Log likelihood at convergence -782.90 -1372.45 
Log likelihood for constant-only model -842.92 -1617.90 
Adjusted ρ2 with respect to constant-only model 0.056 0.141 

Note: For variables that have significant influence in one model but not in other, “--” appears in place of 
parameter estimate and t-stat for that variable in latter model. N/A used when variable not applicable to 
specific model. 
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In the context of network characteristics, long-haul OD pairs with a higher ratio of toll roads to major 
arterials captured in the long ellipse are likely to have more unique routes, because truck operators might 
look for alternative routes to avoid tolls. However, this variable is insignificant in the short-haul model 
mostly because the study region for the short-haul segment does not have many toll roads. In the long-haul 
model, OD locations with a higher density of major and minor arterials in circular buffers around trip ends 
likely are associated with a lower number of unique routes, whereas the OD locations with a higher density 
of collectors likely are associated with more unique routes. This may be because access to more major and 
minor arterials at the OD locations reduces the need to search for alternative routes. On the other hand, OD 
pairs with a higher density of major and minor arterials and collectors in the short ellipse are likely to have 
more unique routes, probably because of an increased number of route options. For similar reasons, OD 
pairs with a greater proportion of minor arterials and collectors (with respect to major and minor arterials 
and collectors) in the short ellipse are likely to have a greater number of observed unique routes in the long-
haul model. In the short-haul model, whereas the density of the minor arterials and collectors in the long 
ellipse has a positive influence on the number of observed unique routes, the influence of the proportion of 
major arterials (with respect to major, minor arterials and collectors) is negative. All these results highlight 
subtle but notable differences in the influence of network structure on the diversity of truck route choice 
between long-haul and short-haul travel segments.  

2.6.2 Fractional Response Models for Average Path Size and Standardized Shannon Entropy of Usage 

Table 2.4 presents the fractional response model estimation results for average path size estimated for OD 
pairs with at least two observed unique routes.  

Table 2.4 Estimation Results of Fractional Response Models for Average Path Size 

Variables in Average Path Size Model Long-haul Data Short-haul Data 
Coefficient t-stat Coefficient t-stat 

Number of unique routes -0.068 -9.66 -0.056 -9.74 
Proportion of trips on the most used route 0.534 3.72 0.705 6.25 
Direct OD distance (mi) -- -- -0.012 -5.71 
Direct OD distance indicator (1 if more than 200 
miles, 0 otherwise) -0.175 -1.95 -- -- 

Constant -0.665 -4.73 -0.539 -4.70 
Number of observations (OD pairs) 258 505 
Log pseudo likelihood at convergence -101.08 -202.11 
Log pseudo likelihood for constant-only model -106.37 -211.61 
Rho-square with respect to constant-only model 0.050 0.045 

Table 2.5 presents the fractional response model estimation results for standardized Shannon entropy of 
usage, estimated for OD pairs with at least two observed unique routes.  

With regard to the average path size models, as expected, OD pairs with a higher number of observed 
unique routes are likely to have lower average path size (i.e., greater overlap) in both models. OD pairs 
with a higher proportion of trips on the most used route are likely to have higher average path size (i.e., 
lower overlap) in both models. The presence of a dominant route may imply the presence of other longer 
routes that do not overlap much and are less preferable. A greater spatial separation of OD pairs is associated 
with a smaller value of path size (i.e., greater overlap) of the different unique routes in both models; perhaps 
because an increase in spatial separation may reduce the number of travel routes offered by the network.  
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Table 2.5 Estimation Results of Fractional Response Models for  
Standardized Shannon Entropy of Usage 

Variables in Standardized  
Shannon Entropy Model 

Long-haul Data Short-haul Data 
Coefficient t-stat Coefficient t-stat 

Number of unique routes 0.059 5.76 0.052 6.37 
Number of trips -0.003 -4.83 -0.002 -3.74 
Average path size -1.345 -1.78 -1.667 -4.31 
Average distance from centroid of all trip ends to each trip 
end (mi) -- -- 0.255 4.60 

Constant 0.498 1.81 0.462 2.80 
Number of observations (OD pairs) 258 505 
Log pseudo likelihood at convergence -119.19 -224.05 
Log pseudo likelihood for constant-only model -126.39 -241.98 
Rho-square with respect to constant-only model 0.057 0.074 

As expected when modeling standardized Shannon entropy, OD pairs with a higher number of observed 
unique routes are likely to have a higher Shannon entropy (i.e., more even distribution of trips among unique 
routes) in both models. OD pairs with a higher number of observed trips are likely to have a more even 
usage of the routes in both models. OD pairs with a higher average path size (or lower overlap) among 
unique routes demonstrate a more uneven usage of different routes in both models. Such OD pairs with less 
overlapping routes are likely to have one or few dominant routes that are largely preferred over other routes. 
In the short-haul model, OD pairs with a greater average distance from the centroid of the trip end TAZs to 
all trip ends (i.e., greater spatial dispersion of freight activity generators) are likely to be associated with a 
more even distribution of trips among different unique routes. This suggests the influence of heterogeneity 
or spatial dispersion in trip ends on the heterogeneity of preferences for truck routes.  

2.7 Summary and Conclusions 

This study presents a comprehensive exploratory analysis of truck route choice diversity in Florida for both 
long-haul and short-haul truck travel segments. To measure the diversity in truck routes between a given 
OD pair, the following six metrics were developed: (1) number of unique routes, (2) average commonality 
factor, (3) average path size, (4) non-overlapping index, (5) standardized variance of route usage, and (6) 
standardized Shannon entropy of route usage. The first of these metrics measured the number of distinct 
routes traveled by trucks between an OD pair. The next three metrics measured the extent of overlap (or 
lack thereof) among the routes whereas the last two metrics measure the evenness (or, otherwise, the 
dominance) of the usage of the routes between the OD pair. These three dimensions together provide a 
complete picture of the diversity in truck route choice between an OD pair. The diversity metrics were used 
to describe truck route choice diversity in Florida from a database of more than 73,000 truck trips, which 
were, in turn, derived from more than 200 million GPS traces of a large fleet of trucks traveling in Florida. 
A rich database of diversity metrics was derived for 277 TAZ OD pairs for long-haul travel (trips longer 
than 50 miles) in Florida and 527 TAZ OD pairs for short-haul travel (trips between 5–50 miles) in the 
Tampa Bay region. In addition, an extensive set of variables characterizing the truck travel characteristics, 
OD location characteristics, and network structure characteristics between these OD pairs that could 
potentially influence the extent of route choice diversity was compiled. Negative binomial regression 
models were estimated to explore the influence of these variables on the number of unique routes traveled 
between and OD pair, and fractional response models were estimated to explore the determinants of average 
path size (overlap among routes) and standardized Shannon entropy (evenness) of route usage. 
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The analysis suggests that short-haul truck travel exhibits greater diversity in route choice than long-haul 
travel in terms of number of unique routes observed, extent of non-overlap between unique routes, and 
evenness of usage of different unique routes. Within the long-haul segment, OD pairs farther than 200 miles 
from each other exhibited lower diversity than those that were closer. Among the short-haul OD pairs, short 
distance (<10 miles) travel and long-distance travel (>40 miles) exhibited lower diversity than medium 
distance travel. OD pairs in urban zones were associated with a greater diversity in route choice  because 
urban areas offer wider network options for route choice, and OD pairs with a greater number of trips and/or 
trucks observed (i.e., greater demand for travel) were associated with a higher number of unique routes. 
OD pairs with greater variability in travel conditions (travel time) and those with routes that deviate more 
from a straight-line had more diverse traveled routes. In addition, the network structure variables had a 
considerable influence on the diversity of truck route choices. OD pairs with a higher number of observed 
unique routes had greater overlap (i.e., lower average path size) and lower dominance of route usage, 
whereas OD pairs with fewer overlapping routes exhibited greater dominance of usage. Another important 
finding is that the determinants and their extent of influence differed between short-haul and long-haul 
travel segments. For example, OD TAZ land use (employment density and diversity of freight activity 
locations) had a significant influence on route choice diversity only in the short-haul segment. Furthermore, 
network structure variables had differential impacts on route diversity between the two segments.  

The findings from this study can be used for improving the algorithms used in the literature for generating 
choice sets for truck route choice modeling. Route choice set generation algorithms can be customized 
based on truck travel demand, OD location, and network structure characteristics found to be influential in 
this analysis. An enhanced understanding of truck route choice diversity also can help improve truck routing 
policies and inform routing decisions during emergency situations.  
  



17 

 

CHAPTER 3: PERFORMANCE EVALUATION OF CHOICE SET GENERATION 
ALGORITHMS FOR MODELING TRUCK ROUTE CHOICE:  
INSIGHTS FROM LARGE STREAMS OF TRUCK-GPS DATA 

3.1 Introduction 

Route choice set generation is an essential precursor to analyzing traveler route choice. Route choice set 
for a given OD location pair is a subset of feasible alternative routes offered by the transportation network 
between that OD pair. However, the number of feasible routes in real life networks is typically very large, 
computationally difficult to enumerate, not readily distinguishable from each other (due to overlaps), 
unknown to travelers, and varies substantially from one OD pair to another (Bovy, 2009). Therefore, 
extraction of the set of routes known to and potentially considered by travelers (which comprises the 
consideration set) (Hoogendoorn-Lanser, 2005; Ton et al., 2017)) is a challenging task. A variety of 
different choice set generation algorithms have been used in the literature to generate route choice sets 
(Ben-Akiva et al., 1984; Bovy and Fiorenzo-Catalano, 2007; de la Barra et al., 1993; Frejinger et al., 2009; 
Prato and Bekhor, 2006; Rieser-Schüssler et al., 2013; Schuessler and Axhausen, 2009). Most of these 
algorithms focus on generating alternative routes that are behaviorally realistic (for example, acyclic routes) 
and diverse (i.e., routes that do not overlap too much to become indistinguishable), with a primary goal to 
maximize the generation of relevant routes that are likely to be taken by travelers while reducing the 
generation of irrelevant routes that are not typically considered by travelers (for example, routes that involve 
large detours from shortest paths). As the composition of choice sets potentially can have a significant 
impact on route choice model estimation and prediction results (Bliemer and Bovy, 2008; Prato and Bekhor, 
2007), evaluation of the generated choice sets is an important step prior to using them for route choice 
analysis.  

A widely-used approach to evaluate route choice set generation algorithms is to measure the extent to which 
the generated choice sets include the observed travel routes. This approach operates at a trip level, where 
for each observed trip, it is assessed whether the generated route choice set includes the observed route 
within a certain tolerance level (Bekhor et al., 2006; Prato and Bekhor, 2007). The proportion of observed 
trips for which the generated choice sets include the observed routes is called the coverage. Many studies 
in the literature report coverage ranging from 22% to 96.6% for tolerance levels ranging from 0% to 30% 
for various route choice set generation algorithms (Bekhor et al., 2006; Hess et al., 2015; Prato and Bekhor, 
2006, 2007; Rieser-Schüssler et al., 2013; Ton et al., 2017). Using this evaluation approach, coverage can 
be improved by generating more routes (which may increase the computation time), improving the 
algorithm itself, using a better algorithm, or combining the choice sets from different algorithms. In doing 
so, however, one may end up with numerous irrelevant routes, which may not be considered by travelers 
and, therefore, potentially cause bias in estimation of choice model parameters and choice probabilities. 
The trip-level evaluation approach does not offer simple ways to evaluate the generation of irrelevant 
routes, because the analyst cannot observe the traveler consideration set from a single trip.  

One way to overcome issues associated with trip-level evaluation is to perform an evaluation at an OD pair 
level. That is, if one can observe the routes of a sufficiently large number of trips between a given OD pair, 
one might get close to observing the travelers’ consideration set for that OD pair. At the least, it is 
reasonable to assume that any feasible routes between an OD pair that are not used even after observing a 
sufficiently large number of trips are unlikely to be in traveler consideration choice sets and, therefore, need 
not be included in the choice sets used for analyzing route choice. With increasing availability of large data 
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sources (such as GPS data), it is now possible to observe a substantial number of trips made by multiple 
travelers between a given OD pair. Therefore, using such data sources, analysts can compare observed 
choice sets with algorithm-generated choice sets at an OD pair level to evaluate the algorithm’s ability to 
generate observed (i.e., relevant and/or considered) choice sets as well as the extent of generation of 
irrelevant routes. An evaluation of both aspects—the ability to generate relevant routes and the generation 
of irrelevant routes—can help improve choice set generation algorithms by increasing the capture of 
relevant routes while reducing irrelevant routes. Another appeal behind generating and evaluating choice 
sets at the OD pair-level is that typical application of route choice models for transport modeling and 
planning is anyway at some level of spatial aggregation in OD locations (such as traffic analysis zones).  

There are a few practical issues associated with evaluating choice set generation algorithms at an OD pair 
level. First, for any given OD pair, a sufficiently large number of trips should be observed for an unbiased 
evaluation of the choice set generation algorithms. Using a small number of observed trips is likely to cause 
biased evaluation because those trips might provide only a censored view of the traveler consideration 
choice sets. The natural question is, how many trips are necessary to observe the complete (or uncensored) 
consideration choice set between an OD pair? Conceptually, a rather substantial number of trips should be 
observed for each OD pair, but the data requirements may become prohibitively large to do so. Therefore, 
it may be pragmatic to determine a certain minimum number of trips that is, for practical purposes, sufficient 
to observe most of the consideration choice set.  

The second practical issue is related to the spatial aggregation of trip ends (or OD locations). A 
disaggregate-level representation of OD locations for route choice analysis purposes is the link-level, where 
the OD pair is represented in the form of the network links at the trip ends; i.e., the first link of the route 
starting from the origin and the last link of the route ending at the destination. With such disaggregate 
spatial units, however, even with large data sources, it may not be easy to observe sufficient number of trips 
at the OD pair level. In addition, even if one observes a sufficient number of trips for a link-level OD pair, 
the observed route choices might not be diverse enough as these trips are typically made by only one or a 
few travelers (or, in case of freight travel, one or a few trucks belonging to only one or a few trucking 
companies). One way to overcome these issues is the consideration of spatially-aggregated OD pair 
locations, so it becomes easier to (1) observe sufficient number of trips for each (spatially) aggregated OD 
pair and (2) capture the diversity in route choices due to diversity in the travelers and their OD locations 
(or, in case of freight, diversity in the establishments trucks serve at the OD locations). Of course, spatial 
aggregation comes with its issues such as aggregation over large spatial units causing spurious diversity in 
route choices (due to the trip end locations being too far from each other) and aggregation over observed 
choices of multiple travelers (or trucks) masking individual-level heterogeneity in choice sets. The key lies 
in choosing spatial units that are neither too large to cause spurious diversity nor too small to censor true 
diversity in route choices between an OD pair. Carefully-selected spatial aggregation might help in 
observing routes that are different due to difference in the starting and/or ending network link for trips 
beginning and/or ending from same locations. Although aggregation leads to homogeneous choice sets for 
different travelers between the same OD locations, it is not inconceivable that route alternatives chosen by 
one traveler are relevant to (and potentially considered by) another traveler. In fact, application of route 
choice models for prediction purposes in transport model systems with spatially-aggregated OD pairs 
potentially will benefit from allowing such aggregated choice sets that are inclusive of differences in 
traveler and spatial characteristics (Hoogendoorn-Lanser and Van Nes, 2004).   



19 

 

In summary, evaluation of generated choice sets against observed choice sets from a sufficient number of 
trips between optimally aggregated spatial units potentially can provide insights on the strengths of choice 
set generation algorithms as well as ways to improve the quality of generated choice sets. The question to 
be addressed here is, what is the optimal combination of the spatial aggregation and the minimum number 
of trips to observe for each OD pair?  

To improve choice set generation, a potentially effective approach that has not receive much attention in 
the literature is to aggregate algorithm-generated choice sets over appropriately-defined spatial units or OD 
pairs (similar to aggregating observed routes for evaluation purposes). Doing so can help in gaining the 
diversity needed in generated choice sets without having to generate too many routes for each disaggregate-
level trip in the spatially aggregated OD pairs. A relevant question to be addressed here is, which is a better 
approach—generation of a large choice set at a disaggregate OD pair level or aggregation of small choice 
sets generated at a disaggregate OD pair level to a spatially-aggregated OD pair? Also, how many routes 
should be generated at a disaggregate level, if they are aggregated to a spatially-larger OD pair, and how 
can irrelevant route alternatives be reduced while increasing the capture of relevant alternatives in the 
choice set? Addressing these questions potentially can lead to substantial improvements to and/or effective 
use of existing choice set generation algorithms for route choice analysis. 

3.1.1 Current Research 

The primary goal of this research was to evaluate truck route choice set generation algorithms and derive 
guidance on the use of such algorithms for effective and computationally efficient generation of choice sets 
for modeling truck route choice. Specifically, this study focused on the evaluation (and effective use) of the 
breadth first search link elimination (BFS-LE) algorithm, proposed by Rieser-Schüssler et al. (2013), which 
has been gaining traction in the recent literature for generating route choice sets in high resolution 
transportation networks.  

For evaluating route choice set generation algorithms, the study provides a carefully-designed evaluation 
approach that takes advantage of recently-emerging large data sources that enable analysts to observe a 
large number of trips between a given OD pair. The evaluation design was based on determining the optimal 
combination of (a) the spatial aggregation to represent trip OD locations and (b) the minimum sufficient 
number of trips to observe for each OD pair. Further, the evaluation used metrics to assess the ability of 
route choice set generation algorithms to generate relevant routes (and the diversity therein) as well as the 
extent of generation of irrelevant (or extraneous) routes. 

Based on findings from the evaluation, the study offers guidance on using the BFS-LE approach to 
maximize the generation of relevant routes while eliminating irrelevant routes for the purpose of freight 
truck route choice modeling. Specifically, it was examined whether and to what extent spatial aggregation 
could help in reducing the need to generate large number of routes for each trip within a spatially-aggregated 
OD pair (and thereby reduce the computational burden of generating large number of diverse routes for 
each trip). In addition, the attributes of the BFS-LE generated routes and observed routes were compared 
to understand the systematic differences between relevant routes and extraneous routes. An understanding 
of such differences can assist in reducing the generated choice set by eliminating extraneous routes in a 
post-processing step. 
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Finally, route choice models were estimated and applied (on validation datasets) using different choice sets 
to confirm the hypotheses discussed above on effectively using BFS-LE to generate truck route choice sets 
that maximize the capture of relevant routes.  

All of the above explorations were conducted using truck route choice data derived from large streams of 
truck GPS traces (more than 96 million truck GPS records) from more than 110,000 trucks traveling in the 
Tampa Bay Region of Florida in an FDOT-funded project (Tahlyan et al., 2017). The raw GPS traces were 
map-matched to a high-resolution transportation network to derive more than 225,000 truck trips and their 
routes for use in this analysis. Given that the majority of route choice studies, other than a few exceptions 
(Arentze et al., 2012; Feng et al., 2013; Hess et al., 2015; Knorring et al., 2005), are in the context of 
passenger car or bicycle route choice, this study contributes to a currently small body of literature on 
generating route choice sets for modeling freight truck route choice. 

In the remainder of this chapter, Section 3.2 describes the data used. Section 3.3 discusses the BFS-LE 
algorithm for route choice set generation, its implementation in this research, and the design of the 
evaluation approach, including the different combinations of spatial aggregations and minimum number of 
trips considered to generate and observe choice sets for each OD pair, and the metrics used to evaluate the 
algorithm-generated choice sets. Section 3.4 presents the performance evaluation results and findings and 
guidance on generating high quality route choice sets. Section 3.5 presents results of route choice models 
for different combinations of spatial aggregation and number of trips observed for each OD pair, along with 
the application of such models to validation datasets to validate the findings from Section 3.4. Section 3.6 
summarizes and concludes the chapter.  

3.2 Data 

The primary data for this analysis, provided by the American Transportation Research Institute (ATRI), is 
truck-GPS data of more than 96 million GPS traces from a large fleet of trucks carrying GPS receivers (see 
Tahlyan et al., 2017). Geographically, the data spanned six counties of the Tampa Bay region in Florida— 
Hillsborough, Pinellas, Polk, Pasco, Hernando, and Citrus—and 15 miles beyond the six-county region. 
Temporally, the data were obtained for the first 15 days in October 2015, December 2015, April 2016, and 
June 2016. The raw data were first converted into a database of truck trips using GPS-to-trip conversion 
algorithms developed by Thakur et al. (2015) and refined by Pinjari et al. (2015). Specifically, the algorithm 
identifies trip ends by detecting potential stops (based on travel speed) of a certain minimum duration (five 
minutes) and using detailed land-use information to eliminate traffic stops and stops at rest areas. More 
than 1 million truck trips were generated along with the information on the OD location of each trip and 
other attributes such as trip start and end times and travel time. Subsequently, validation procedures were 
used to eliminate potentially problematic trips (due to GPS error or algorithmic error), highly circuitous 
trips with large detours potentially due to the algorithm missing a stop in between (detected by the ratio 
between direct OD distance and trip length less than 0.7), and trips less than five miles in length (as short 
truck trips would not have many route options). This resulted in more than 650,000 trips.  

For the trips generated above, the traveled routes were not necessarily readily-observable in the form of 
network links and nodes traversed between the OD locations. The raw GPS data of those trips had to be 
map-matched to the roadway network to derive the traveled routes. In this study, we used a high-resolution 
NAVTEQ roadway network available from FDOT comprising more than 1.8 million links and 1.4 million 
nodes in the state. The network was thoroughly checked for missing links, topological and directional 
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consistency, and strong connectivity (i.e., every node is reachable by every other node) and converted into 
a directed weighted graph for later use in choice set generation.  

To derive traveled routes for the truck trips generated from the GPS data, the GPS data were map-matched 
to the roadway network employing the procedures used in Kamali et al. (2016) and refined later by Luong 
et al. 2017. High-frequency (i.e., closely spaced) GPS data are necessary for accurately deriving the traveled 
routes. GPS data for only about 50% of the derived truck trips were sufficient and spaced closely enough 
to avoid missing links in the routes derived from map-matching. For another 10% of the trips, some GPS 
data points could not be map-matched to an accurate network link, because the GPS data was not close to 
any link. After eliminating all such trips, traveled routes were derived for more than 228,000 trips. For all 
these derived routes, an algorithm was developed and implemented to identify loops (or cycles) and routes 
that were too far from the original GPS data. Routes with loops and those that spatially deviated 
considerably from the raw GPS data were not considered for further analysis. Of the remaining 212,800 
trips, 300 randomly-chosen routes were validated for consistency in the direction of travel, feasibility, and 
presence of large detours by evaluating the sequence of links in the route and visualizing the routes on 
Google Earth. The validation exercise indicated high accuracy in the derived traveled routes. Such derived 
traveled routes were considered as observed routes against which route sets generated using choice set 
generation algorithms are evaluated.  

The 212,800 trips were distributed as follows in each of the following trip length categories: 9% in 5–10 
miles, 17% in 10–20 miles, 16% in 20–30 miles, 11% in 30–40 miles, 12% in 40–50 miles, 10% in 50–60 
miles, 7% in 60–70 miles, 6% in 70–80 miles, 5% in 80–90 miles, 4% in 90–100 miles, and 3% in 100–
150 miles. For each of these trips, the derived route included information on the trip OD coordinates, 
corresponding TAZs defined in Florida’s statewide travel demand model (FLSWM), and all the network 
links traversed by the truck between the OD locations. In addition, for each trip, several route attributes 
were computed, including route length, free flow travel times (from link-level speed limit information), 
travel costs (derived using the procedures by Torrey et al., 2014), number of intersections, left turns, right 
turns, and exit/entry ramps (each of these attributes was computed per mile and per minute of travel), 
proportion of toll road length, and proportion of roads of several types (interstate highways, major arterials, 
minor arterials, collectors, local roads). For most of these computations, R codes were written to extract the 
information for each route from the network. In addition, to account for the similarity (or degree of overlap) 
of a route with other routes in the choice set for that same OD pair, a path-size attribute was computed as 

(Ben-Akiva and Bierlaire (1999): 𝑃𝑃𝑃𝑃𝑖𝑖 = ∑ �𝑙𝑙𝑎𝑎
𝐿𝐿𝑖𝑖
� 1
∑ 𝛿𝛿𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝐶𝐶𝑛𝑛

𝑎𝑎𝑎𝑎𝛤𝛤𝑖𝑖 , where 𝛤𝛤𝑖𝑖 is the set of all links in path 𝑖𝑖 between 

the OD pair n, 𝑙𝑙𝑎𝑎 is the length of link 𝑎𝑎, 𝐿𝐿𝑖𝑖 is the length of path 𝑖𝑖, 𝐶𝐶𝑛𝑛 is the choice set of routes between the 
OD pair n, and 𝛿𝛿𝑎𝑎𝑎𝑎 is equal to 1 if a route 𝑗𝑗𝑗𝑗𝐶𝐶𝑛𝑛 uses link 𝑎𝑎, 0 otherwise. The value of path-size for a route 
ranges between 0 and 1 (excluding zero), where a greater path-size value indicates smaller extent of overlap 
(and no overlap if path-size = 1). 

3.3 Choice Set Generation and Evaluation Methodology 

3.3.1 BFS-LE Algorithm and Its Implementation 

The BFS-LE approach for route choice set generation belongs to the class of algorithms based on repeated 
least cost path search and is well-suited for extracting routes from large-scale, high-resolution networks 
represented as strongly connected, weighted, directed graphs. Specifically, it is a link elimination (Azevedo 
et al., 1993) based on a repeated least cost search approach, where links on the current shortest path are 
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eliminated, one by one, to find subsequent least cost paths.1 What distinguishes BFS-LE from other link 
elimination approaches is its use of a tree structure in which each node is a network. Beginning with the 
original network (which is the root node of the tree), any unique network obtained after the elimination of 
a link from a current least cost path is a node of the tree, as long as the network offers at least one feasible 
route for the OD pair under consideration. The nodes are arranged at various depths (d) in the tree based on 
the number of links eliminated. That is, d = 1 for a network obtained after removing any one link from the 
first least cost path between the OD pair in the root node (i.e., the original network), d = 2 for a network 
obtained after removing a link from the current least cost path between the OD pair in any of the nodes (or 
networks) at depth 1, and so on. For each node (network) at each depth, the links on the current shortest 
path between the OD pair under consideration comprise the breadth. The breadth first approach finishes the 
search for the next least cost path within a depth level, by removing links (one by one) on the current 
shortest paths in all nodes at that depth (i.e., across all breadths in that depth), before proceeding to the next 
depth level. The algorithm is aborted when a certain pre-defined number of routes are generated, a pre-
defined time threshold is reached, or there are no more feasible routes to be found. The choice of the cost 
function to use (for least cost path search), the maximum number of routes to generate, and the time 
threshold are at the discretion of the analyst. To improve the computational performance of BFS-LE, Rieser-
Schüssler et al. (2013) employ a topologically-equivalent network reduction in which nodes that are not 
junctions of more than two links or dead-ends are eliminated and the corresponding links are merged to 
form a reduced (yet topologically equivalent) network for use in choice set generation. In addition, they use 
the A-star landmarks routing algorithm (Lefebvre and Balmer, 2007) instead of Dijkstra's algorithm 
(Dijkstra, 1959) for a quicker search of the least cost path.  

In this study, the original network was coded and reduced to a topologically-equivalent network, and the 
BFS-LE algorithm was implemented in the Python programming language.2 For the least cost path search, 
the free flow travel time was used as a cost function. Following Dhakar and Srinivasan (2014), to avoid 
premature termination of the algorithm in situations with fewer than two outgoing links at the origin of a 
trip, the BFS-LE least cost search was started from the next junction or intersection in the route that had at 
least two outgoing links. In addition, the BFS-LE generates routes were different from each other even by 
one small network link. Since travelers may not consider routes with small deviations from each other as 
distinct, we considered a generated route to be a unique route (and, therefore, a part of the choice set) only 
if it is different from previously generated routes by at least 5% (see Dhakar and Srinivasan (2014)). 
Specifically, for a given OD pair, unique routes are determined (on the fly) using the commonality factor 
metric proposed by Cascetta et al. (1996), which determines the degree of similarity between two routes. 
Commonality factor (𝐶𝐶𝑖𝑖𝑖𝑖) between two routes 𝑖𝑖 and 𝑗𝑗 is: 𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑖𝑖𝑖𝑖 �𝐿𝐿𝑖𝑖𝐿𝐿𝑗𝑗⁄ , where 𝑙𝑙𝑖𝑖𝑖𝑖 is the length of shared 
portion between two routes and 𝐿𝐿𝑖𝑖 and 𝐿𝐿𝑗𝑗 are the lengths of the routes 𝑖𝑖 and 𝑗𝑗, respectively. For a given OD 
pair, at every instance a route was generated from the BFS-LE algorithm, we considered it unique (and a 

                                                 

1 Other variants of repeated least cost search algorithms are (1) simulation (Bierlaire and Frejinger, 2005; Prato and 
Bekhor, 2006; Ramming, 2001), where stochasticity in travelers’ perceptions of travel costs and/or their preferences 
is simulated to generate multiple least cost routes, (2) path labeling (Ben-Akiva et al., 1984), where several least cost 
paths are obtained based on different criteria/labels for the cost function, and (3) link penalty (de la Barra et al., 1993), 
where links in the current shortest path are penalized with additional impedance before searching for the next least 
cost path.  
2 The Python code written for implementing BFS-LE in this study is available upon request.  
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part of the choice set) only if the commonality factors between that route and all previously generated 
unique routes were less than or equal to 0.95.  

3.3.2 Evaluation Design 

To evaluate the choice sets generated from the BFS-LE approach, we compared them to the observed route 
choice sets derived from large streams of GPS data. An important aspect of this evaluation was aimed at 
finding the appropriate combination of spatial aggregation and minimum number of trips to be observed 
for each OD pair. These aspects are discussed first, followed by a discussion of the metrics used to evaluate 
how well the generated choice sets capture observed choice sets while not generating irrelevant routes that 
are not in the observed choice sets. 

3.3.2.1 Spatial Aggregation and Minimum Number of Trips to be Observed 

Link-level aggregation: For all observed trips and their routes derived from the GPS data, the OD locations 
were represented in the form of network links at the trip ends; i.e., the first link of the route starting at the 
origin and the last link of the route ending at the destination. Such a link-level aggregation comprises the 
most disaggregate representation of OD locations.  

XY-level aggregation: The GPS locations of trip ends were aggregated by simply rounding off the longitude 
and latitude values from five decimal places to two decimal places. All trips with the OD coordinates 
matching up to the second decimal place were combined into a single XY-level OD pair. Such rounding 
leads to a spatial aggregation of roughly 1 km2 at each of the trip ends. 

TAZ level aggregation: The observed trips were aggregated based on the TAZs defined in the Florida 
Statewide Travel Demand Model (FLSWM), in which the state is divided into 5,403 TAZs. The size of 
these TAZs varies from 0.0067 km2 to 232.45 km2 depending on their population and employment densities. 
Most of the large-size zones covered large waterbodies and/or rural locations. To avoid spurious diversity 
in the generated routes due to large-sized zones, we did not consider TAZ-level OD pairs with O/D TAZ 
sizes beyond 10 km2. Further, we considered TAZ-level OD pairs with the following three levels of 
maximum TAZ size: 2 km2, and 5 km2, and 10 km2.  

Spatial clusters: Since large TAZs potentially  cause spurious diversity in routes, spatial clustering was 
used to aggregate trip ends in larger (than 10 km2) TAZs into smaller spatial clusters. After preliminary 
experimentation with different clustering techniques, the leader clustering technique (Hartigan, 1975) was 
used to divide the trip ends belonging to large TAZs into smaller clusters of radius 2 km while retaining the 
TAZ boundaries. An advantage of the leader clustering technique over the commonly used k-mean 
clustering technique is that the number of clusters need not be defined a priori but an output of the 
algorithm. 

Minimum number of trips to be observed: As discussed earlier, it is necessary to observe a sufficiently 
large number of trips for an uncensored view of route choice sets in the data. Therefore, only OD pairs that 
have at least a minimum number of observed trips should be considered for a fair evaluation of choice set 
generation algorithm. To determine the minimum required number of trips, for each of the above-discussed 
aggregations, we considered OD pairs with the minimum number of trips of 20, 30, 50, and 100.  
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3.3.2.2 Observed and Generated Unique Routes for Each Combination of Spatial Aggregation and 
Minimum No. of Trips 

For each OD pair in each of the above categories, the observed routes of all trips (derived from the GPS 
data) were reduced to a set of unique routes using Cascetta et al.’s (1996) commonality factor formula 
described earlier and applying an overlap threshold of 0.95. In the unique route set for each OD pair, the 
commonality factor of a given route with respect to all other routes was less than 0.95. In addition to 
deriving the set of observed unique routes for each OD pair, the number of trips observed to have taken 
each unique route was also recorded. Specifically, all trips that have a commonality factor greater than or 
equal to 0.95 with respect to a unique route were assumed to have taken that route. 

For each link-level OD pair corresponding to all trips reported in Table 1, the BFS-LE algorithm was run 
to generate unique route choice sets at the link-level. For each link-level OD pair, the BFS-LE algorithm 
was run up to a maximum of 15 unique routes generated or for 1 hour, whichever was earlier, unless the 
algorithm stopped earlier due to completion of the search tree. Such link-level generated choice sets were 
aggregated into other, larger spatial units reported using Cascetta et al.’s (1996) commonality factor formula 
described earlier and applying an overlap threshold of 0.95. For example, unique routes for different link-
level OD pairs in a same TAZ-level OD pair were aggregated to generate a set of unique routes for the 
TAZ-level OD pair. The hypothesis is that such aggregation, if done at a carefully-selected spatial 
aggregation, will help in better capturing the observed routes.  

3.3.2.3 Evaluation Metrics 

Let the set of observed unique routes for an OD pair 𝑛𝑛 be 𝑂𝑂𝑛𝑛 = {𝑜𝑜1,𝑜𝑜2, … , 𝑜𝑜𝑖𝑖, … , 𝑜𝑜𝐼𝐼𝑛𝑛} and the set of 
generated unique routes for that OD pair be 𝐺𝐺𝑛𝑛 = {𝑔𝑔1,𝑔𝑔2, … ,𝑔𝑔𝑗𝑗 , … ,𝑔𝑔𝐽𝐽𝑛𝑛}, where 𝑖𝑖 is the index for an 
observed unique route, 𝑗𝑗 is the index for a generated unique route, 𝐼𝐼𝑛𝑛 is the number of observed unique 
routes in the 𝑛𝑛𝑡𝑡ℎ OD pair and 𝐽𝐽𝑛𝑛 is the number of generated unique routes for that OD pair. Let 𝑘𝑘𝑖𝑖 be the 
number of trips observed to have taken the unique route 𝑖𝑖 (i.e., all observed trips between that OD pair 
whose routes have a commonality factor greater than 0.95 with the unique route 𝑖𝑖). To measure the 
performance of BFS-LE-based choice set generation implemented in this study, we devised three metrics 
to compare the observed and generated unique route sets at an OD pair level—(1) false negative error, (2) 
weighted false negative error, and (3) false positive error—each of which is discussed next. 

False negative error (𝜺𝜺𝒏𝒏−): False negative error for an OD pair n is the proportion of observed unique routes 
that are not generated by the choice set generation algorithm (i.e., not present in the generated unique routes 

set). Mathematically, 𝜀𝜀𝑛𝑛− = 1 −
∑ 𝛿𝛿𝑖𝑖
𝐼𝐼𝑛𝑛
𝑖𝑖=1
𝐼𝐼𝑛𝑛

 , where 𝛿𝛿𝑖𝑖 = 1 if the commonality factor 𝐶𝐶𝑖𝑖𝑖𝑖 between the observed 

unique route 𝑖𝑖 and any of the generated unique routes 𝑗𝑗 ∈ 𝐺𝐺𝑛𝑛 is greater than 0.95, zero otherwise. 𝜀𝜀𝑛𝑛− ranges 
between 0 and 1; the most desirable value is 0 (when all observed routes are generated) and least desirable 
value is 1 (when none of the observed routes is generated). 

Weighted false negative error (𝜺𝜺𝒘𝒘𝒘𝒘− ): Weighted false negative error is the proportion of observed trips (not 
unique routes) whose observed unique routes are not generated by the choice set generation algorithm. It is 
a weighted version of the false negative error, where the capture (by the choice set generation algorithm) 
of each observed unique route is weighted by the proportion of trips taking that route. Specifically, 𝜀𝜀𝑤𝑤𝑤𝑤− =

1 −
∑ 𝑘𝑘𝑖𝑖𝛿𝛿𝑖𝑖
𝐼𝐼𝑛𝑛
𝑖𝑖=1
∑ 𝑘𝑘𝑖𝑖
𝐼𝐼𝑛𝑛
𝑖𝑖=1

 . It is observed in the data that only a few of the observed unique routes are used by majority 
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of the trips. The 𝜀𝜀𝑛𝑛− metric equally penalizes the choice set generation algorithm for not capturing any 
observed unique route, regardless of the usage of that route. The weighted metric overcomes this 
shortcoming by penalizing an uncaptured route based on the extent of its usage. 

False positive error (𝜺𝜺𝒏𝒏+): False positive error for an OD pair n is the proportion of generated unique routes 
that are not presented in the observed unique routes set. This metric provides a measure of the irrelevant 
(or extraneous) routes generated that are not observed to have been chosen by the traveler. Specifically, 

𝜀𝜀𝑛𝑛+ = 1 −
∑ 𝛿𝛿𝑗𝑗
𝐽𝐽𝑛𝑛
𝑗𝑗=1

𝐽𝐽𝑛𝑛
 , where 𝛿𝛿𝑗𝑗 = 1 i if the commonality factor 𝐶𝐶𝑗𝑗𝑗𝑗 between the generated unique route 𝑗𝑗 and 

any of the observed unique routes 𝑖𝑖 ∈ 𝑂𝑂𝑛𝑛 is greater than 0.95, zero otherwise. 𝜀𝜀𝑛𝑛+ ranges between 0 and 1; 
the most desirable value is 0 (when all generated routes are observed) and least desirable value is 1 (when 
none of the generated routes are observed). As discussed earlier, a trip-level evaluation of the choice set 
generation algorithms doesn’t allow one to evaluate false positives (i.e., the generation of extraneous 
routes). 

3.3.2.4 Performance Evaluation 

First, to evaluate the performance of the implemented BFS-LE approach, the above discussed error metrics 
were compared at various levels of spatial aggregation and minimum number of trips per OD pair. The 
same metrics were used to determine the appropriate combination of spatial aggregation and minimum 
number of trips for the performance evaluation. Second, for OD pairs with the determined spatial 
aggregation and minimum number of observed trips, the error metrics were recomputed by reducing the 
threshold value of commonality factor between the observed and generated choice sets from 0.95 to 0.90, 
0.85, and 0.80 to assess how much the error measures would decrease. Third, for various spatial 
aggregations ranging from link-level to TAZ-level, we recomputed the error metrics for generated choice 
sets constructed out of implementing BFS-LE with the following limits on the maximum number of routes 
generated for each link-level OD pair: 5, 10, 15, 20, and no limit. The time limit to abort the algorithm was 
set to 1 hour in all cases. The resulting error metrics were analyzed to determine which is a better approach 
– generation of a large choice set at a disaggregate OD pair level or aggregation of small choice sets 
generated at a disaggregate OD pair level to a spatially aggregated OD pair? To further examine this, choice 
models were estimated and applied (on validation datasets) using choice sets constructed at link-level and 
TAZ-level aggregations; constructed from a maximum of 5 and 15 BFS-LE routes generated at the link-
level. Finally, various attributes of routes that were observed as well as algorithm-generated were compared 
with those of the extraneous routes that were generated but not observed. These comparisons shed light on 
identifying extraneous routes for eliminating them in a post-processing step after choice set generation. For 
routes that were common between the observed and the generated choice sets, there were two values of 
path size, one with respect to observed routes and the other with respect to generated routes.  

3.4 Evaluation Results 

3.4.1 OD Pair-level Evaluation of Choice Set Generation Algorithm at Different Combinations of 
Spatial Aggregation and Minimum Number of Observed Trips 

Table 3.1 presents the evaluation results for each combination of spatial aggregation and minimum number 
of observed trips considered at an OD pair level. Various observations and inferences can be made from 
this table, each of which are discussed next. 
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Table 3.1: Comparison of Number of Observed Unique Routes, Generated Unique Routes, and 
Errors in OD Pairs with at Least 20, 30, 50, and 100 Observed Trips  

at Various Levels of Aggregation 

Aggregation 
Level 

Minimum 
Number 
of Trips 

No. 
of 

OD 
Pairs 

No. of 
Trips 

No. of 
Observed 

Unique 
Routes 

No. of 
Generated 

Unique 
Routes 

False 
Negative 

Error 

Weighted 
False 

Negative 
Error 

False 
Positive 
Error 

Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. 

Link level 

20 615 29,003 2.6 2.3 9.2 4.4 0.34 0.34 0.17 0.32 0.81 0.19 
30 335 22,327 2.8 2.4 8.9 4.5 0.38 0.35 0.19 0.35 0.81 0.19 
50 145 15,315 3.0 2.9 8.3 4.4 0.43 0.35 0.19 0.36 0.81 0.19 

100 48 8,995 3.4 2.8 7.2 4.5 0.53 0.33 0.26 0.41 0.79 0.2 

XY cluster 

20 1071 51,556 4.0 3.3 17.7 10.7 0.39 0.31 0.19 0.29 0.87 0.10 
30 615 40,654 4.6 3.6 18.3 11.2 0.44 0.29 0.18 0.28 0.87 0.10 
50 282 28,266 5.0 4.2 18.9 12.7 0.45 0.30 0.17 0.27 0.86 0.10 

100 80 15,008 6.2 5.4 19.9 14.3 0.55 0.24 0.19 0.29 0.86 0.09 

Spatial 
cluster 

20 966 58,774 5.5 4.3 26.0 20.1 0.41 0.29 0.18 0.25 0.87 0.09 
30 574 49,491 6.4 4.9 26.7 20.3 0.45 0.29 0.18 0.25 0.86 0.09 
50 294 39,001 7.4 5.7 28.0 19.8 0.49 0.27 0.18 0.26 0.86 0.10 

100 111 26,417 9.4 7.4 29.6 22.1 0.52 0.24 0.17 0.25 0.84 0.11 

TAZ level 
(max. 2 km2) 

20 373 16,851 6.0 4.1 32.2 22.1 0.38 0.27 0.15 0.21 0.89 0.07 
30 205 12,989 6.8 4.5 32.6 22.6 0.43 0.26 0.14 0.19 0.88 0.07 
50 84 8,211 7.6 5.2 33.0 28.5 0.47 0.23 0.11 0.15 0.88 0.07 

100 28 4,336 8.3 6.2 33.4 28.4 0.54 0.21 0.11 0.18 0.88 0.08 

TAZ level 
(max. 5 km2) 

20 723 40,229 6.8 4.7 36.9 28.4 0.38 0.26 0.17 0.22 0.88 0.07 
30 423 33,181 7.8 5.1 38.8 29.6 0.41 0.26 0.16 0.20 0.88 0.07 
50 196 24,602 8.9 5.8 39.2 27.1 0.44 0.23 0.14 0.19 0.87 0.07 

100 74 16,307 11.0 6.5 43.3 34.0 0.48 0.21 0.15 0.19 0.86 0.08 

TAZ level 
(max. 10 

km2) 

20 1152 70,494 7.7 5.8 41.4 33.2 0.38 0.25 0.18 0.23 0.88 0.08 
30 697 59,726 9.0 6.6 44.1 36.5 0.41 0.25 0.18 0.24 0.87 0.09 
50 336 46,047 10.7 7.8 47.6 38.0 0.44 0.24 0.17 0.23 0.87 0.09 

100 132 31,986 13.1 9.6 51.1 42.5 0.47 0.22 0.16 0.22 0.85 0.11 

First, the columns titled “No. of OD Pairs” and “No. of Trips” present the observed data available for each 
combination of spatial aggregation and minimum number of observed trips. For example, at least 20 trips 
of data were available for 615 OD pairs at the link-level. In addition, a total of 29,003 trips were observed 
between these OD pairs. As expected, for a given spatial aggregation, the number of OD pairs with available 
data decreased as the minimum number of trips increased from 20 to 100. Likewise, for a given minimum 
number of trips, the number of OD pairs with available data increased from a finer spatial resolution to a 
higher spatial aggregation. From the initial 212,800 trips, there are 82,738 trips available for each spatial 
aggregation that belong to 23,112 link-level OD pairs. 

The column titled “No. of Observed Unique Routes” reports the average number of observed unique routes 
(and the standard deviation) across all OD pairs in each combination of spatial aggregation and minimum 
trips. One can infer from this column that the number of observed unique routes per OD pair increased with 
increase in spatial aggregation and/or with increase in the minimum number of trips observed. Although 
the increase in the minimum number of trips from one spatial resolution to another was considerable, a 
visual inspection of trip ends in different OD pairs suggested that increasing the TAZ size beyond 2 km2 
led to a spurious increase in unique routes due to the trip ends within a TAZ becoming too far from each 
other. For any given spatial aggregation, the average number of unique routes increased with an increase in 
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the minimum number of trips observed. The number did not stabilize even after observing a minimum of 
50 trips per OD pair, suggesting a possibility that one may have to observe many more trips per OD pair to 
get an uncensored view of the actual route choice set. However, it can be noted that the increase occurred 
at a decreasing rate, with the lowest increase in the number of additional observed unique routes per unit 
increase in the minimum number of trips observed occurring between 50 to 100 minimum trips per OD 
pair. There were some outlier OD pairs (which have very high number of observed unique routes) among 
those with a minimum of 100 trips that skewed the reported average values in Table 3.1. Given all this and 
for pragmatic reasons (such as not to lose a lot of data), we determined that observing a minimum of 50 
trips per OD pair was sufficient to derive an observed route choice set for evaluation purposes.  

The column titled “No. of Generated Unique Routes” reports the average number of generated unique routes 
(and standard deviation) across all OD pairs for each combination of spatial aggregation and minimum 
number of trips. It can be observed from comparing this column to the preceding column that the number 
of generated routes was generally greater than the number of observed routes for an OD pair. Further, as 
expected, the number of generated unique routes increased with increase in spatial aggregation, but at a 
higher rate than the increase in the number of observed unique routes. 

The error metrics—false negative error, weighted false negative error, and false positive error—are reported 
in the last three sets of columns in Table 3.1. These columns report the average and standard deviation of 
the OD pair-level error measures across all OD pairs. Several observations can be made from these columns. 
First, the weighted false negative errors, ranging from 11% to 26%, were smaller than their unweighted 
counter parts, which range from 34% to 55%. As discussed earlier, the unweighted metric did not take into 
consideration the extent of usage of a route; whereas the weighted metric computes the errors based on 
usage of routes, with the errors on more (less) used routes carrying a greater (lower) weightage. In fact, the 
average weighted false negative errors were under 20% for most combinations of spatial aggregation and 
minimum number of observed trips. Therefore, one can infer that the BFS-LE performs well in capturing 
the more frequently-used routes than the less frequently used routes.  

Second, for a given minimum number of trips between an OD pair, the weighted false negative errors were 
lowest at a spatial aggregation of TAZs of up to 2 km2. This suggests that choice sets created by aggregating 
the generated routes over a spatial resolution of TAZs of up to 2 km2 can help in improving capture of 
observed routes. Interestingly, the improvement in weighted false negative errors was lost when larger-
sized TAZs were included, perhaps because the observed routes between larger TAZs would have spurious 
diversity due to the trip ends being too far from each other. Also, the error rates for spatial aggregations of 
XY-level and spatial clusters were higher than those of small-sized TAZs. This is likely because TAZs are 
typically created keeping in view the transportation network structure around (as opposed to the other 
aggregations we created) and that small-sized TAZs provided an optimal mix of diversity in trip-starting 
and trip-ending links (which results in diverse routes between the TAZs), while keeping the trip ends within 
a concentrated area to avoid spurious diversity. It is also interesting to note that the standard deviations of 
weighted negative errors were smallest for the spatial aggregation of TAZ-level of up to 2 km2. All these 
results suggest that route choice sets created out of aggregating routes generated between different trip-end 
links of small-sized TAZ pairs can potentially capture a large share of observed routes. 

Third, as can be observed from the column titled “False Positive Error”, the proportion of 
extraneous/irrelevant routes in the generated choice sets increased from the link-level to any other spatial 
aggregation considered in this study. As expected, increasing the capture of relevant routes (i.e., decreasing 
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weighted false negative error rates) through spatial aggregation comes with an increase in extraneous routes 
as well. Interestingly, however, the average false positive error rates were not very different across different 
spatial aggregations other than the link-level. 

Overall, the above-discussed results suggest the potential benefits of OD pair-level evaluation of choice set 
generation algorithms over the traditionally used trip-level evaluation. As importantly, aggregating the 
generated choice sets over carefully-defined spatial units (which happens to be TAZs of up to 2 km2 in this 
empirical analysis) can help improve the capture of relevant routes for subsequent route choice modeling 
and prediction. 

3.4.2 Comparison of OD Pair-level Evaluation Results to Trip-level Evaluation Results 

Note that the errors reported in Table 3.1 are OD pair level errors, as opposed to trip-level errors typically 
reported in the literature, which is simply the proportion of observed routes of all trips not captured in the 
generated routes3. The trip level error computed out of all 82,738 trips used in this study is 0.25—i.e., 
observed routes for 25% the trips were not present in the generated choice sets. When we examined only 
those trips belonging to OD pairs with a minimum of 20 trips at various spatial aggregations, the 
corresponding trip-level errors ranged from 0.18 for all 16,851 trips between TAZs of up to 2 km2 size to 
0.28 for all 58,774 trips between spatial clusters. These errors are not reported in the tables, but their OD-
pair level counterparts are reported as weighted false negative errors in Table 3.1, which range from an 
average value of 0.15 for 373 OD pairs at the TAZ-level (of up to 2 km2 size) to an average value of 0.18 
for 966 OD pairs at the spatial cluster level. It is interesting to note that both the trip-level errors and OD 
pair-level average errors are smallest for a spatial aggregation of TAZs (of up to 2 km2 size).  

The trip-level errors from various studies in the literature that use repeated shortest path choice set 
generation methods, including those from the current study, are reviewed in Table 3.2. Table 3.2 presents 
trip-level false negative errors reported in the literature for different levels of tolerance thresholds for the 
difference between observed and generated routes—0%, 5%, 10%, and 20%—along with salient features 
of the choice set generation algorithms in the literature. Although it is difficult to compare errors reported 
in different studies due to differences in the modes of travel, the choice set generation algorithms, and the 
specifics of implementation, one can observe from the reported errors of the current study and those in 
another truck route choice study by Hess et al. (2015) that the use of BFS-LE approach to generate route 
choice sets for truck travel seems to result in relatively small trip-level errors compared to that for other 
modes of travel. To examine this further, we analyzed (for all 82,738 trips used in Table 3.1) how different 
are the observed routes from their corresponding shortest time routes and shortest distance routes on the 
network, again using the commonality factor metric between each observed route and the corresponding 
shortest route. Interestingly, more than 80% of the observed routes had commonality factors above 0.9 with 
respect to their corresponding shortest time route. On the other hand, only about 70% of the observed routes 
had commonality factors above 0.9 with respect to their corresponding shortest distance route. It appears 
that the BFS-LE approach based on repeated shortest time search performs well for truck route choice set 
generation because the chosen routes are not very different from the shortest time routes. Another plausible 
reason the current study had a small error rate (when compared to that in other studies) is perhaps because 
we generated up to 15 unique route alternatives that were different from each other by at least 5% (using a 

                                                 
3 To be precise, most studies in the literature report trip-level coverage, which is 1 minus trip-level error. 



29 

 

commonality factor threshold of 0.95). Most (if not all) other studies consider generated routes as different 
from each other even if they are different from each other by a small link and generate up to 15 or 20 such 
routes (which are not very different from each other). This limits the diversity of generated routes and, 
therefore, limits the capture of diverse observed routes. 
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Table 3.2: False Negative Errors for Various Choice Set Generation Algorithms 

Algorithm Study Mode 
Max. 

Number of 
Alternatives 

Important Features of Used Generation Algorithm 

False Negative Error 
(%) 

Tolerance (%) 
0 10 20 

 
Breadth-first-
search link 
elimination 

Present study Truck 15** Use of free-flow travel time as cost function to generate routes that are at least 5 percent 
different from each other. 25 (at 5% tolerance) 

Rieser-Schüssler et al. 
(2013) Car 20* Use of free-flow travel time as cost function 37 N.T. N.T. 

100* 27 N.T. N.T. 

Hess et al. (2015) Truck 15* Use of generalized cost function that includes penalties that reflect other sources of 
inconvenience occurring on minor rods 26 N.T. N.T. 

Halldórsdóttir et al. 
(2014) Bicycle 20* Use of generalized cost function taking into account road types, cycle lanes, and land use 34 28 22 

Ton et al. (2017) Bicycle 20* Use of distance as travel cost 99 98 97 
Dhakar and Srinivasan 
(2014) Car 20** Use of commonly factor to generate routes that are at least 5% different from each other N.T. 51 N.T. 

Link elimination 
Bekhor et al. (2006) Car N.R. Elimination of links on shortest path (in sequence) to generate new routes 40 37 29 
Prato and Bekhor 
(2007) Car 10* Elimination from shortest path of links that takes driver farther from destination and closer 

to origin or compels driver to turn from high hierarchical road to low hierarchical road 42 42 30 

`Labeling 

Bekhor et al. (2006) Car 3* Generation of routes to minimize distance, free-flow time. and time 61 56 48 
16* Use of 16 different labels to generate various routes 28 24 15 

Prato and Bekhor 
(2007) Car 4* Generation of routes to minimize distance, free-flow time, travel time, and delay 60 60 60 

Broach et al. (2010) Bicycle 9* Use of 11 different labels to generate various routes but still making sure that no generated 
route deviate from shortest path by more than 100% 80 75 65 

Ton et al. (2017) Bicycle N.R. Use of various labels to generate routes 99 98 96 

Calibrated labeling Broach et al. (2010) Bicycle 20* Generation of routes using multiple labels and cost function parameters, calibrated using 
observed distribution of shortest path deviation 78 71 58 

Link penalty 
Bekhor et al. (2006) Car 40* Shortest route generation after gradual increase of impedance of all links on shortest path 43 33 20 

15* 44 34 22 
Prato and Bekhor 
(2007) Car 15* Iterative shortest route generation after increasing impedance of shortest path by factor of 

1.05 46 46 38 

Simulation (low 
variance) 

Prato and Bekhor 
(2007) Car N.R 

Generation of shortest path by drawing link impedances from truncated normal 
distribution with mean travel to travel time, variance equal to 20% of mean, left truncation 
limit equal to free-flow travel time, right truncation limit equal to time for speed of 
10km/h 

51 51 46 

Simulation (high 
variance) 

Prato and Bekhor 
(2007) Car N.R 

Generation of shortest path by drawing link impedances from truncated normal 
distribution with mean travel to travel time, variance equal to 100% of mean, left 
truncation limit equal to free-flow travel time, right truncation limit equal to time for 
speed of 10km/h 

39 38 29 

Doubly stochastic 
generation 
function 

Fiorenzo-Catalano et 
al. (2004) 

Multi-
modal 1600* Repeated shortest path generation by considering stochasticity in travelers’ perception of 

network attributes and preferences for different trip components 22 N.T. N.T. 

N.R: Maximum number of generated alternatives not reported in study. 
N.T: Particular tolerance level not tested in study. 
* Generated route alternatives were elemental alternatives (i.e. two route alternatives considered separate alternatives even if they differ from each other by one link.) 
** Generated alternatives were unique alternatives (i.e. two route alternatives considered separate alternatives if they differ from each other by a certain minimum non-overlap. 
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3.4.3 Evaluation of Generated Choice Sets at Different Thresholds of Overlap between Observed and 
Generated Choice Sets 

In all the analysis above, the generated unique choice sets were compared to the observed unique choice 
sets using a threshold value of 0.95 for the commonality factor. That is, an observed unique route was 
considered to be captured in the set of generated unique routes if the commonality factor between the 
observed route and any of the generated routes was at least 0.95. Table 3.3 provides false negative and 
weighted false negative errors computed for OD pairs with a minimum of 50 trips at the spatial aggregation 
of TAZ-level (of up to 2 km2) for different thresholds values of commonality factors—0.95, 0.90. 0.85, and 
0.80. It can be observed that the weighted false negative error values decreased substantially as the threshold 
value decreased. For example, an average of only 4% observed routes were not captured in the generated 
choice sets for a commonality threshold value of 0.90. This value decreased to 1% for a threshold value of 
0.80. The false positive error values also decreased substantially with a decrease in the threshold value. 
Although threshold values of 0.90 or more might be a bit too high for trips of mid-rage to long distance, the 
error measures in Table 3.3 suggest that most of the uncaptured observed routes (with a 0.95 threshold 
value) were not substantially different from the generated routes. This again highlights the performance of 
the BFS-LE algorithm implemented in this study. 

Table 3.3: Comparison of Errors at Various Overlapping Thresholds  
in OD Pairs with at Least 50 Trips at TAZ Level (Max. Area = 2 km2) Aggregation 

Overlapping 
Threshold 

 False 
Negative 

Weighted 
False 

Negative 

False 
Positive 

0.95 Mean 0.47 0.11 0.88 
S.D. 0.23 0.15 0.07 

0.9 Mean 0.16 0.04 0.79 
S.D. 0.19 0.08 0.14 

0.85 Mean 0.09 0.02 0.76 
S.D. 0.16 0.07 0.17 

0.8 Mean 0.06 0.01 0.74 
S.D. 0.12 0.03 0.20 

3.4.4 Which is Better: Spatial Aggregation of a Limited Number of Generated Routes or Increasing the 
Number of Routes Generated from BFS-LE? 

Findings from Table 3.1 suggested that spatial aggregation of generated routes can potentially help in 
increasing the capture of observed routes. We examined if one can achieve a high capture of observed 
routes by generating a small number of routes at the link-level OD pairs and then spatially aggregating them 
to TAZ-level (instead of generating large number of routes at the link level and then aggregating them). 
The hypothesis was that generating a smaller number of unique routes at the link-level and aggregating 
them spatially (to a TAZ-level, in this case) will lead to sufficient diversity in the generated choice sets. In 
doing so, we can reduce the computational burden of generating a large number of unique routes at the 
disaggregate level.  

To test the above hypothesis, Table 3.4 presents error measures for choice sets generated from different 
limits on the maximum number of generated unique routes at the link-level—5, 10, 15, 20, and no limit—
for two different spatial aggregations—TAZ-level (of up to 2 km2 size) and link-level. Recall that the error 
measures presented in Table 3.1 were generated when the BFS-LE was run for up to a maximum of 15 
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unique routes at the link-level and then aggregated to various spatial aggregations. It is remarkable to note 
that the average weighted false negative values (and the corresponding standard deviations) for the TAZ-
level aggregation did not vary from choice sets constructed out of a maximum of 5 unique BFS-LE routes 
to those generated out of 20 or more (see the column titled “Weighted False Negative” under the TAZ Level 
columns). The same can be observed for the link-level aggregation as well (see the column titled “Weighted 
False Negative” under the link-level columns). 

Table 3.4: Comparison of Errors at Various Limits on Maximum Number of Routes to Generate in 
OD Pairs with at least 50 Trips at TAZ Level (Max. Area = 2 Km2) and Link Level Aggregation 

No. of 
Unique 
Routes 
Limit 

Value 

TAZ Level (max. 2 km2) Link Level 
No. of 

Generated 
Unique 
Routes 

False 
Negative 

Weighted 
False 

Negative 

False 
Positive 

No. of 
Generated 

Unique 
Routes 

False 
Negative 

Weighted 
False 

Negative 

False 
Positive 

5 Mean 21.10 0.49 0.11 0.83 4.50 0.45 0.20 0.75 
S.D. 10.23 0.23 0.16 0.09 0.97 0.35 0.37 0.20 

10 Mean 27.90 0.47 0.11 0.86 7.04 0.43 0.19 0.80 
S.D. 16.75 0.23 0.15 0.07 2.91 0.35 0.36 0.19 

15 
Mean 32.16 0.47 0.11 0.88 8.28 0.43 0.19 0.81 
S.D. 22.11 0.23 0.15 0.07 4.44 0.35 0.36 0.19 

20 Mean 36.19 0.46 0.11 0.88 8.59 0.42 0.19 0.81 
S.D. 25.19 0.23 0.15 0.07 4.98 0.35 0.36 0.19 

No 
limit 

Mean 37.56 0.46 0.11 0.89 8.68 0.42 0.19 0.81 
S.D. 26.69 0.23 0.15 0.07 5.24 0.35 0.36 0.19 

Overall, these results suggest that route choice sets constructed out of aggregating (to a TAZ level) unique 
routes from running BFS-LE (at the link level) for a maximum of 5 unique routes provide a better capture 
of observed routes than those generated from running BFS-LE (at the link-level) for a maximum of 20 or 
more unique routes. This is probably because the BFS-LE algorithm may not consistently generate up to 
20 unique routes within a time span of one hour (recall that we had set a time limit of one hour per link-
level OD pair); see column titled “No. of Generated Unique Routes” under the “Link Level” column, where 
the average number of generated routes does not increase beyond 8.68. Since our search was for unique 
routes that are different from each other by at least 5%, the BFS-LE would not generate as many routes as 
needed within one hour. Also notice that while the average number of generated unique routes at the link 
level increased from 4.50 to 8.68 when the maximum limit increased from 5 routes to no limit, the average 
weighted false negative error did not decrease discernably (it decreased from 0.20 to only 0.19), but the 
false positive errors increased from 0.75 to 0.81. Therefore, an effective and computationally-efficient 
alternative to increase the diversity of generated choice sets (and thereby increase the coverage of observed 
routes) was to aggregate a limited number of link-level choice sets generated from close by locations. In 
the current case, it was sufficient to generate up to only 5 unique routes at the link level and then aggregate 
all such choice sets from trips starting and ending in a same TAZ pair (of up to 2 km2 size). Of course, the 
false positive errors increased with spatial aggregation. 

3.4.5 Estimation and Validation of Route Choice Models with Different Choice Sets  

To further test the above hypothesis that aggregating a limited number of BFS-LE routes leads to better 
choice sets than generating a large number of routes from the BFS-LE without aggregation, we estimated 
different route choice models from choice sets at link-level and TAZ-level aggregations constructed from 
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up to a maximum of 5 or 15 BFS-LE alternatives. The empirical specification in all models was based on 
the path-size logit structure. The path-size model structure was used for all the models. Further, all models 
were estimated on the same sample of 2,888 trips and applied on a validation sample of 722 trips to evaluate 
the impact of choice set composition on the model’s prediction ability. The choice sets used for all model 
estimations were augmented with the chosen routes (if the chosen routes were not already generated). On 
the other hand, the choice sets used for validation would include the chosen route only if it was generated. 
The metric used for validation was based on the expected overlap of each route in the choice set with the 
chosen route. Specifically, for a trip with a chosen route 𝑟𝑟, the expected overlap was 𝐸𝐸(𝑂𝑂) = ∑ 𝑝𝑝𝑖𝑖𝐶𝐶𝑖𝑖𝑖𝑖𝐼𝐼

𝑖𝑖=1 , 
where 𝑝𝑝𝑖𝑖 is the probability of choosing route 𝑖𝑖 from the choice set (computed using the path-size logit model 
estimates) and 𝐶𝐶𝑖𝑖𝑖𝑖 is the proportion of route 𝑖𝑖 common with the chosen route 𝑟𝑟.  

The model estimation results in Table 3.5 suggest that routes with a lower travel time, smaller proportion 
(in length) of tolled routes, smaller number of intersections and turns and ramps per minute, and those with 
a higher proportion of road length on major highways were preferred over other routes. The last row of 
Table 3.5 reports average value (and standard deviation) of the expected overlap with the chosen route over 
all trips in the validation data. It can be observed from this row that the average expected overlap with the 
chosen route was higher for models with TAZ-level choice sets than those with link-level choice sets. For 
example, the model with TAZ-level choice sets built out of up to 5 BFS-LE generated routes at the link 
level yields a better expected value (hence, better predictive ability) than the model with link-level choice 
sets of up to 15 BFS-LE generated routes at the link-level. These results suggest the benefit of spatial 
aggregation in generating route choice sets.  
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Table 3.5: Path Size Logit (PSL) Model Estimation Results for Four Different Choice Sets 

Variable Description 

Choice Set at Link 
Level with up to 5 

BFS-LE Alternatives 

Choice Set at Link 
Level with up to 15 

BFS-LE Alternatives 

Choice Set at TAZ 
Level (max. area = 2 

km2) Aggregated from 
up to 5 BFS-LE 

Alternatives at Link 
Level 

Choice Set at TAZ 
Level (max. area = 2 

km2) Aggregated from 
up to 15 BFS-LE 

Alternatives at Link 
Level 

Parameter 
Estimate t-stat Parameter 

Estimate t-stat Parameter 
Estimate t-stat Parameter 

Estimate t-stat 

Travel time (min) -0.032 -1.951 -0.123 -7.313 -0.168 -13.722 -0.228 -18.795 
Proportion of tolled portion of a route -15.678 -14.276 -17.375 -16.512 -13.479 -15.425 -13.126 -16.598 
No. of left turns per minute I.S. N/A I.S. N/A -0.742 -3.605 -0.667 -3.341 
No. of right turns per minute -4.364 -5.006 -2.950 -3.612 I.S. N/A C.I. N/A 
No. of intersections per minute -3.241 -22.146 -3.371 -24.163 -2.185 -22.135 -2.225 -23.380 
No. of ramps per minute -3.435 -16.030 -3.296 -16.491 -2.195 -13.108 -1.745 -13.685 
Proportion of interstate portion of a route1 17.118 10.837 27.284 13.637 18.766 15.377 24.494 19.794 
Proportion of major arterial portion of a route 16.464 9.859 22.573 11.001 14.442 10.763 18.596 14.210 
Proportion of minor arterial portion of a route 21.367 12.992 29.983 14.535 18.525 15.169 23.623 19.062 
Proportion of collector portion of a route 14.105 8.534 20.314 9.786 11.121 8.547 13.955 10.486 
Natural log of path size -2.509 -13.585 -1.9110 -19.848 -1.9174 -20.436 -1.487 -20.770 
No. of cases 2888 2888 2888 2888 
Log-likelihood at convergence -2156.98 -2779.109 -4045.61 -4528.52 
Log-likelihood for equal shares model -4734.48 -7140.021 -8234.46 -9343.65 
Rho-square 0.544 0.611 0.508 0.515 
Adjusted rho-square 0.542 0.609 0.507 0.514 
Average of expected overlap with chosen route 
over validation dataset of 722 trips (standard 
deviation in parentheses) 

0.765 
(0.383) 

0.785 
(0.365) 

0.774 
(0.351) 

0.792 
(0.330) 

I.S. – Estimated parameter insignificant at 95% confidence interval. Hence, model re-estimated without corresponding variable.  
C.I. – Estimated parameter removed as it had counter intuitive sign. Hence, model re-estimated without corresponding variable.  
N/A – t-stat not available, as corresponding parameter not estimated.  
1 Any given link in network can be classified into one of five categories: Interstate, Major Arterial, Minor Arterial, Collector, and Local Road.  

  



35 

 

3.4.6 Comparison of the Characteristics of Observed and Generated Choice Sets 

Table 3.6 presents a comparison of routes that were observed as well as generated (i.e., relevant routes 
captured in generated choice sets) to routes that were generated but not observed (i.e., extraneous routes). 
This comparison suggests that extraneous routes were generally longer, have a greater proportion of tolled 
roads and involve a greater proportion of the route through smaller roads (such as minor arterials, collectors, 
and local roads), more network links per mile, and more intersections and turns than relevant routes captured 
by the choice set generation algorithm. This is reasonable because trucks typically do not consider routes 
that involve going through many smaller roads and turns. A visual examination of the extraneous routes 
suggested that many such routes involve getting off an interstate highway to smaller roads and then getting 
back on to the interstate highway.  

 Table 3.6: Comparison of Route Characteristics of Observed and Generated Routes in  
OD Pairs with at least 50 Trips at TAZ Level (Max. Area = 2 Km2) Aggregation 

 
Route Characteristics 

Relevant Routes Captured 
in Generated Choice Sets 

(i.e., Observed and 
Generated) 

Irrelevant/Extraneous 
Routes (i.e., Generated 

but not Observed) 

Mean S.D. Mean S.D. 
Length (mi) 43.35 22.36 45.05 22.64 
Proportion of ramps 0.037 0.039 0.049 0.034 
Proportion of tolled roads 0.00 0.062 0.028 0.063 
Proportion of interstate highways and major arterials 0.784 0.284 0.667 0.255 
Proportion of minor arterials 0.137 0.222 0.173 0.19 
Proportion of collectors 0.061 0.105 0.131 0.101 
Proportion of local roads 0.018 0.04 0.029 0.047 
No. of links 214.9 123.92 253.2 119.1 
No. of links per mile 5.75 3.07 6.46 2.82 
No. of intersections 89.77 77.01 119.30 72.51 
No. of intersections per mile 2.58 2.07 3.22 1.96 
No. of right turns 1.95 1.52 4.75 2.26 
No. of left turns 1.92 1.29 4.85 2.48 
Average path size 0.294 (0.09)5 0.19 (0.06) 0.14 0.06 

A potential use of such comparison is in devising strategies to remove extraneous routes in a post-
processing step. For example, further analysis may be conducted to identify deterministic thresholds on 
selected route attributes such as maximum route length, maximum travel time, or maximum number of 
turns per mile. Once such thresholds are identified, generated routes that do not meet the threshold criteria 
may be removed from the choice set. Another approach is to devise a probabilistic sampling approach that 
assigns sampling probabilities to routes based on how likely a route is to be extraneous. Exploration of such 
strategies is an avenue for future research. 

                                                 
4 Pathsize of observed relevant routes with respect to observed routes.  
5 Pathsize of generated relevant routes with respect to generated routes.  
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3.5 Summary and Conclusions 

This study evaluated truck route choice set generation algorithms and derived guidance on using the 
algorithms for effective generation of choice sets for modeling truck route choice. Specifically, route choice 
sets generated from the breadth first search link elimination (BFS-LE) algorithm were evaluated against 
observed truck routes derived from large streams of GPS traces of a sizeable truck fleet in the Tampa Bay 
region of Florida. A carefully-designed evaluation approach is presented to arrive at an appropriate 
combination of spatial aggregation and minimum number of trips to be observed between each OD location 
for evaluating algorithm-generated route choice sets. The evaluation was based on both the ability to 
generate relevant routes that are considered by travelers and the generation of irrelevant (or extraneous) 
routes that are seldom chosen. Based on the evaluation, the study offers guidance on effectively using the 
BFS-LE approach to maximize the generation of relevant truck routes while eliminating irrelevant routes 
in a post-processing step. Finally, route choice models were estimated and applied on validation datasets to 
confirm findings from the above evaluation. 

The results demonstrate the benefit of evaluating algorithm-generated choice sets against observed choice 
sets from large datasets at a spatially-aggregated OD-pair level (instead of performing trip-level 
evaluations). Doing so helps in evaluating the ability to generate relevant routes as well as the generation 
of irrelevant routes. Based on the evaluation results, it was found that a carefully-chosen spatial aggregation 
(of generated routes) can reduce the need to generate substantial number of routes for each trip. In the 
current empirical context of truck route choice, it was found that generating up to a maximum of 5 routes 
at the trip-level and then aggregating such routes to a TAZ-level spatial aggregation (or up to 2 km2) 
provided a similar coverage of observed routes as that from generating more than 20 routes for each trip 
without spatial aggregation. The implication is that an effective and computationally-effective use of the 
BFS-LE algorithm for generating truck route choice sets is to generate a small number of routes at the 
disaggregate-level and then aggregate such routes from nearby OD locations.  

The findings of this study also suggest that extraneous routes generated by the BFS-LE are generally longer, 
have a greater proportion of tolled roads, and involve a greater proportion of the route through smaller roads 
(such as minor arterials, collectors, and local roads), more network links per mile, and more intersections 
and turns than observed routes. Using such results, future research can focus on the development of 
approaches to eliminate extraneous routes from generated choice sets prior to embarking on route choice 
modeling. 
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CHAPTER 4: SUMMARY AND CONCLUSIONS 

4.1 Summary 

The primary goal of this research was to use large streams of truck-GPS data to analyze the travel routes 
(or paths) freight trucks choose to travel between different origins and destinations in metropolitan regions 
of Florida. To this end, the project used large streams of truck-GPS data acquired for two projects funded 
by the Florida Department of Transportation (FDOT)—one by the FDOT Central Office and another by 
FDOT District 7. The first project obtained more than 100 million raw GPS data points of several thousand 
trucks traveling in Florida to derive a variety of data products, including data on truck travel paths for more 
than 70,000 trips in Florida. Such raw GPS data was obtained from the American Transportation Research 
Institute (ATRI) for four months (April–July 2010). The details of this FDOT project and the outcomes of 
the project can be obtained from the project report published by FDOT (Pinjari et al., 2014). The second 
project obtained more than 96 million raw GPS records from ATRI for the first 15 days in October 2015, 
December 2015, April 2016, and June 2016 for the Tampa Bay region of Florida. The truck-GPS data were 
used to develop route choice data for the Tampa Bay region and resulted in a database of more than 230,000 
truck trips and corresponding routes (Tahlyan et al., 2017).  

This is perhaps the largest amount of data used to date in the truck modeling literature to analyze truck 
route choice patterns. This offered an unprecedented opportunity to observe and analyze truck travel paths 
of a large number of trips between different origin and destination locations in Florida. Using such rich 
data, the following specific objectives were pursued in the project: 

1. Measure and analyze diversity in truck route choice patterns in Florida.  
2. Evaluate the performance of truck route choice set generation algorithms for developing truck 

route choice models in Florida.  

Each of these objectives is briefly discussed next. 

4.1.1 Measurement and Analysis of Truck Route Choice Diversity in Florida 

This task involved the measurement and analysis of diversity of travel paths chosen by trucks between 
selected OD locations in Florida. To measure the diversity in truck routes between a given OD pair, the 
research team developed the following six metrics: (1) number of unique routes, (2) average commonality 
factor, (3) average path size, (4) non-overlapping index, (5) standardized variance of route usage, and (6) 
standardized Shannon entropy of route usage. Each of these metrics helped in measuring one of the 
following three dimensions of diversity: (1) number of distinct routes used to travel between the OD pair, 
(2) extent of overlap (or lack thereof) among the routes, and (3) evenness (or the dominance) of the usage 
of different unique routes. The diversity metrics were used to examine truck route choice diversity from 
more than 73,000 truck trips that were derived from more than 200 million GPS records of a large truck 
fleet. Descriptive analysis and statistical models of the diversity metrics offered insights on the determinants 
of various dimensions of truck route choice diversity between an OD pair. The research team compiled an 
extensive set of variables characterizing the truck travel characteristics, OD location characteristics, and 
network structure characteristics between these OD pairs that potentially could influence the extent of route 
choice diversity. Negative binomial regression models were estimated to explore the influence of these 
variables on the number of unique routes traveled between an OD pair, and fractional response models were 
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estimated to explore the determinants of average path size (overlap among routes) and standardized 
Shannon entropy (evenness) of route usage. 

The analysis suggests that short-haul trucks travel exhibit greater diversity in route choice than long-haul 
trucks in terms of number of unique routes observed, extent of non-overlap between unique routes, and 
evenness of usage of different unique routes. 

4.1.2 Performance Evaluation of Truck Route Choice Set Generation Algorithms 

This task evaluated truck route choice set generation algorithms and derived guidance on using the 
algorithms for effective generation of choice sets for modeling truck route choice. Specifically, route choice 
sets generated from the breadth first search link elimination (BFS-LE) algorithm were evaluated against 
observed truck routes derived from large streams of GPS traces of a sizeable truck fleet in the Tampa Bay 
region. A carefully-designed evaluation approach was used to determine an appropriate combination of 
spatial aggregation and minimum number of trips to be observed between each OD location for evaluating 
algorithm-generated route choice sets. The evaluation was based on both the ability to generate relevant 
routes that are considered by travelers and the generation of irrelevant (or extraneous) routes that are seldom 
chosen. Based on the evaluation, the research offers guidance on effectively using the BFS-LE approach to 
maximize the generation of relevant truck routes while eliminating irrelevant routes in a post-processing 
step. Finally, route choice models were estimated and applied on validation datasets to confirm findings 
from the above evaluation. 

The results demonstrate the benefit of evaluating algorithm-generated choice sets against observed choice 
sets from large datasets at a spatially aggregated OD-pair level (instead of performing trip-level 
evaluations). Doing so helped in evaluating the ability to generate relevant and irrelevant routes. Based on 
the evaluation results, it was found that a carefully-chosen spatial aggregation (of generated routes) can 
reduce the need to generate a substantial number of routes for each trip. In the current empirical context of 
truck route choice, it was found that generating up to a maximum of five routes at the trip level and then 
aggregating such routes to a TAZ-level spatial aggregation (of up to 2 km2) provided a similar coverage of 
observed routes as that from generating more than 20 routes for each trip without spatial aggregation. The 
implication is that an effective and computationally-efficient use of the BFS-LE algorithm for generating 
truck route choice sets is to generate a small number of routes at the disaggregate-level and then aggregate 
such routes from nearby OD locations. 

4.2 Opportunities for Future Research  

Findings from the diversity analysis described in Chapter 2 can be used for improving the algorithms used 
in the literature for generating choice sets for truck route choice modeling. Route choice set generation 
algorithms can be customized based on the truck travel demand, OD location, and network structure 
characteristics found to be influential in this analysis. An enhanced understanding of truck route choice 
diversity can also help improve truck routing policies and inform routing decisions during emergency 
situations. Findings from the evaluation of route choice set generation algorithms suggest that extraneous 
routes generated by the BFS-LE are generally longer, have a greater proportion of tolled roads and involve 
a greater proportion of the route through smaller roads (such as minor arterials, collectors, and local roads), 
more network links per mile, and more intersections and turns than observed routes. Using such results, 
future research can focus on the development of approaches to eliminate extraneous routes from generated 
choice sets prior to embarking on route choice modeling. 
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