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1 DESCRIPTION OF THE PROBLEM  

1.1 BACKGROUND 

Transportation systems ensure mobility of people and goods, and are key for well-
functioning economic activities. As a vital part of the system, adequate infrastructure is 
an essential precondition for complex and dynamic transportation systems. FHWA and 
states collect variety of measures of transportation infrastructure and pavement condition. 
However, there are many different approaches regarding the degree of coverage, method 
and frequency of data collection, and consistency of measures, etc. (1). In fact, fast 
growing technological developments have brought new opportunities for data collection 
and monitoring of transportation infrastructure, however they have increased the 
uncertainty of which existing methods and measures best represents the current state of 
the assets  (2). 

Traditional pavement inspection techniques, e.g., manual distress surveys, semi- or 
automated condition surveys using specially equipped vehicles, offer a method of 
determining pavement condition through observing and recording, which causes this 
pavement survey work to be cumbersome and inefficient. In fact, some of these periodic 
inspection-based monitoring efforts are redundant and some of them cause late-detection 
of the problems. This effort consequently increases the cost of monitoring and 
management of transportation infrastructure systems and cause money and energy loss. 

Aging transportation infrastructures in the U.S. require more attention for cost-effective 
management and treatment for providing continuous mobility of people and goods  (3). 
Therefore, preserving the existing assets and maintaining the transportation system in 
sustainable level is critical. Budget limitations increased the importance of maintaining 
and improving the transportation infrastructure with well-planned, cost-effective 
monitoring and maintenance programs, which answers the questions of “what”, “where” 
and “when” the maintenance and rehabilitation is necessary" (4). 

Recent developments in remote sensing satellite systems and availability of high-
resolution Synthetic Aperture Radar (SAR) products have taken the attention of 
researchers for possibility of using satellite remote sensing technology for pavement and 
infrastructure management. SAR Interferometry (InSAR) and developed advanced 
deformation detection techniques upon InSAR (such as DInSAR, PSInSARTM and 
SqueeSARTM) are able to measure the millimetric surface deformation over an area (5, 6), 
and high-resolution satellite images can significantly increase the number of detected 
points (7, 8). Therefore, satellite based monitoring could be possible for deteriorating 
roadway infrastructure such as bridge settlements and displacements, large-scale 
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deformations in roadway infrastructure and sinkhole detection  (2, 9, 10) or detailed 
analysis of targeted areas that are already known problematic by previous studies (11). 
The promising satellite remote sensing technology is expected to play a crucial role for 
reducing the cost of network-scale pavement and infrastructure monitoring for state and 
federal agencies in near future as the high-resolution satellite imaging become more 
available and less costly, and analysis methods and algorithms become more mature (2, 
8).  

1.2 PROBLEM STATEMENT 

One of the biggest challenges in pavement and infrastructure management is timely 
detection of problems for applying preventive measures and early rehabilitation. Many 
studies and experiences of agencies have shown that early detection of problems treated 
with preventive measures increase the service life and reduce the total maintenance cost. 
Therefore, there is a need for network-scale monitoring tools that facilitate the detection 
of the problems, reduce the unnecessary vehicle-based inspection trips to the sites, enable 
detection of slow-moving settlements on and around the transportation infrastructure, and 
help building more robust infrastructure data systems to increase the effectiveness of the 
monitoring programs. Such tools will benefit state and federal agencies to prioritize their 
investment strategies that will yield economic and other benefits.  

The challenges and opportunities associated with the evaluation of traffic and 
environmental impact on pavements necessitate USDOT adopting new technologies to 
determine the presence of specific types and severities of distresses or defects in the 
pavement surface. For example, the location, size and depth of the pothole acquired from 
SAR data can determine the priority for DOT crews to repair them. Therefore, this study 
directly addresses the US Department of Transportation (US DOT) Strategic Goal of 
“State of Good Repair” and “Economic competitiveness”, and at the same time touches 
upon the goals of “Safety”, “Environmental Sustainability”,  “Livable Communities”, and 
more. 

1.3 PROJECT OBJECTIVES AND SCOPE 

In the light of current infrastructure and pavement monitoring practices, this study aims 
to investigate the capability of remote sensing satellite technologies, specifically SAR 
satellite data for use in advance infrastructure monitoring, which is tangible breakthrough 
in sensing technology allowing to assess deformation with millimetric accuracy.  

Scope of this research is limited to the evaluation of the possibility of using SAR-based 
systems for pavement and infrastructure monitoring in general and does not include the 
effectiveness of such systems for detecting different type and severity of pavement 
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surface distresses and infrastructure problems. However, all recent efforts on SAR-based 
pavement and infrastructure monitoring are briefly included in the literature review 
section. 

The report documented the research steps undertaken for this project. Section 2 includes 
the approach used in this research. Section 3 documents the extensive literature on 
pavement and infrastructure monitoring, satellite remote sensing, specifically SAR and 
InSAR methods as well as applications in transportation field. It is followed by two case 
studies to demonstrate the use of SAR based monitoring. The next section discusses the 
cost-benefit analysis of the satellite remote sensing systems. Then, the report is finalized 
with summary, conclusions and recommendations. 
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2 APPROACH  

In order to evaluate and implement satellite based remote sensing, it is extremely 
important to understand the two main components of this interdisciplinary system. 
Briefly described below and extensively presented in the next section, these two main 
components are:  

SAR image acquisition and processing: The first step includes the understanding the 
available remote sensing data products to select the appropriate data and tools to perform 
the analysis. Previous and currently operating satellites carry different type of sensors in 
different band, polarization, repeat cycle, etc., and used for variety of application from 
monitoring atmospheric particulars to millimetric ground deformations. Therefore, it is 
critically important to select proper satellite remote sensing data to further the analysis. 
After the image acquisition, some necessary data processing steps should be performed 
based on project objectives and needs such as removal of atmospheric and topographic 
effects, classification of detected ground objects, co-registration of images, calculation of 
deformations and their velocities, etc. This step, requires expertise in the field and 
generally falls into the interests of electrical and computer engineers. Based on project 
objectives, customer needs and budget, this step is sometimes conducted by third party 
professionals or contractors.    

SAR integration with current database: The second main step includes the integration 
of SAR data processing outputs, mostly geo-referenced data such as GIS files, with 
current databases in the agency such as roadway and infrastructure network, geological 
features of the area, maintenance operations and operation history, etc. to create layers of 
information for further evaluation. This step will enhance the information database in the 
agency and could be used for variety of applications in many divisions.  

It is important to note two constraints that shaped the approach in this research: 
complexity of SAR image acquisition and processing, and difficulty of finding freely 
available InSAR stacks. 

The first constrain includes a very complex system that requires a high-level expertise in 
the field of satellite SAR image processing that is mostly driven by electrical and 
computer engineering or remote sensing data analysts in different fields. Next section 
presents an extensive literature on the components of this complex system and some used 
methods and algorithms. Although some agencies might prefer outsourcing the image 
acquisition and processing, long-term use of satellite remote sensing technology 
significantly affects the budget spending on this component. This step is thus especially 
important for such agencies. In this regard, possible freely available SAR data sources 
and data analysis software are presented in the next section.  
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The second constraint affected the possibility of conducting a case study analysis in the 
area of interest along with the first constraint. Besides all difficulties in data processing 
and image analysis, all freely available resources are archived medium-resolution SAR 
images covering late 1990s and 2000s. The costs of high-resolution SAR images 
provided by currently operating satellites are high ($2,000+) and InSAR processing 
requires image acquisition from a stack of images (20+). Thus, excessive image 
acquisition cost, over $50,000, limits researchers’ ability to conduct a case study with 
high-resolution and recently acquired SAR images. Therefore, the research team was able 
to use limited available medium- and high resolution SAR imagery to demonstrate the 
possible use of SAR-based monitoring with two free software for InSAR processing. The 
research team aimed at identifying suitable SAR image resources and processing tools 
that might be used to help transportation agencies in their decision making process. 
Furthermore, cost-benefit analysis was conducted for a possible SAR-based pavement 
and infrastructure monitoring to inform researchers and practitioners about the economic 
viability of various image acquisition and processing options. 
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3 METHODOLOGY 

Performance of a transportation system mainly depends on the physical condition of the 
asset it comprises. Therefore, preserving the existing assets and maintaining the 
transportation system in sustainable level is critical. Researches indicate that 65% of the 
roadways are rated as “less than good condition” and 25% of bridges require “significant 
repair” in the U.S. (3). The Federal Highway Administration (FHWA) has estimated the 
necessary annual investment of $77 billion for federal-aid highway system compared to 
federal highway receipts of $34 billion as of 2014  (12). Budget limitations and decreased 
revenues have made extremely difficult for many states to maintain state of good repair 
on our roadways  (12).  

Lately, technological developments such as real time data collection and processing 
capabilities, remote sensing and imaging technologies are also contributing to the 
monitoring and management of transportation infrastructure systems. Many states 
replaced their manual data collection methods with automated and remote sensing 
systems in the last decade  (2) and gradually improving and adapting as the new 
technologies become available. Although these improvements facilitated the data 
collection process, dealing with enormous amount of data and adaptation of fast changing 
technologies require well-planned decision-making process. There are great amount of 
literature on available/potential technologies and methodologies for pavement and 
infrastructure management and assessment for further review  (2, 13).  

In the last two decades, SAR technology and InSAR applications have been widely 
investigated by the research community for large-scale monitoring studies. Ouchi  (14) 
summarized the mature fields for SAR-based applications in his study, presented in Table 
1. Recently, availability of high-resolution SAR images and developed advance 
processing methodologies has taken the attention of transportation and infrastructure 
research community. With the high-resolution SAR images, extracting information about 
the identity and quantity of the targeted scene became possible for relatively small areas, 
such as <100 ft2, which makes the technique useful for pavement and infrastructure 
studies.  



 

7 
 

Table 1: Selected fields of SAR application examples  (14) 

Fields Objects 
Geology Topography, DEM & DSM production, crust movement, faults, GIS, 

soil structure, lithology, underground resources 
Agriculture Crop classification, plantation acreage, growth, harvest & disaster, soil 

moisture 
Forestry Tree biomass, height, species, plantation & deforestation, forest fire 

monitoring 
Hydrology Soil moisture, wetland, drainage pattern, river flow, water equivalent 

snow & ice water cycle, water resources in desert 
Urban Urban structure & density, change detection, subsidence, urbanization, 

skyscraper height estimation, traffic monitoring 
Disaster Prediction, lifeline search, monitoring of damage & recovery, tsunami & 

high tide landslide & subsidence by earthquake, volcano & groundwater 
extraction 

Oceanography Ocean waves, internal waves, wind, ship detection, identification & 
navigation, currents, front, circulation, oil slick, offshore oil field, 
bottom topography 

Cryosphere Classification, distribution & changes of ice & snow on land, sea & 
lake, ice age, equivalent water, glacier flow, iceberg tracking, ship 
navigation in sea ice 

Archeology Exploration of aboveground and underground remains, survey, 
management 

Source: (14) 

3.1 LITERATURE REVIEW 

3.1.1 Pavement Management System 

Pavement management involves all activities related to pavement. The FHWA defines a 
Pavement Management System (PMS) as “set of tools or methods that can assist decision 
makers in finding cost-effective strategies for providing, evaluating, and maintaining 
pavements in a serviceable condition.” This definition clearly highlights two key 
concepts: “cost-effective” and “in a serviceable condition”. Both concepts are rely on an 
effective pavement monitoring system, which answers the questions of “what”, “where” 
and “when” the maintenance and rehabilitation is necessary"  (4). 

Pavement Monitoring System (PMS) has been in place since late 1970s and had a major 
breakthrough with automated pavement condition surveying units in early 1990s (15). 
Then, many different technologies and methods developed such as line and area scanners, 
ground penetrating radars, acoustic sensors, thermal infrared imagery, optical imagery, 
light detection and ranging, etc. Each of these automated techniques has its own strong 
and weak sides in addition to limitations on processing speed, accuracy and 
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implementation cost  (2). Later in 2000s, development of Geographic Information 
Systems (GIS) and Global Positioning Systems (GPS) increased the accuracy and 
efficiency of PMS  (15). 

Pavement condition surveys provide an indication of physical condition of the pavements 
and consist of data collection, pavement condition rating and quality management 
elements  (16). Both manual and automated data collection techniques are widely used 
based on agencies’ priorities, available resources and limitations. The condition ratings 
are then used for managing the rehabilitation and maintenance works, estimating the level 
of repair and rehabilitation, providing uniform rating systems within state, long-term 
economic planning and historical pavement performance records (16, 17).  

Pavement condition data has been collected in variety forms due to states’ consideration 
of different factors for evaluating the pavements. However, most common data types 
could be categorized as distress data, structural capacity data, ride quality data and skid 
resistance data as suggested by Attoh-Okine et al (16). Distress data are used to describe 
the type, severity and extend of the pavement surface distress, and could be collected by 
manual observations or image/video processing techniques. Ride quality data refer to the 
comfort level of roadways and commonly represented by International Roughness Index 
(IRI) or Present Serviceability Rating (PSR) (16-19). These two categories found relevant 
for considering the potential contribution of SAR based monitoring.  

One of the biggest challenges in pavement management is timely detection of pavement 
and infrastructure problems for the application of preventive measures (4). This is very 
critical for the pavement’s performance and its life cycle cost. Many studies and 
experiences of agencies show that early detection of problems treated with preventive 
measures increase the service life of the assets and reduce the total maintenance cost 
while maintaining the safety and quality (20). AASHTO estimates that “every dollar 
spent on road maintenance avoids $6 to $14 needed later to rebuild a road that has 
irreparably deteriorated” (20). As illustrated in Figure 1, the right treatment at the right 
time will have a significant impact on service life and associated life cycle cost of 
pavements. Therefore, efficient and cost-effective methods and approaches that improve 
the pavement and infrastructure monitoring systems are needed. Any contribution 
towards improving the monitoring and management of pavement and infrastructure 
systems is highly valuable for responsible agencies. 
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3.1.2 Pavement/Infrastructure Monitoring Technologies and Methods 

There are many methods and technologies used for pavement and infrastructure 
monitoring. Federal and state requirements, geographical constrains, budget limitations, 
data needs, and many other factors affect the decision of which technologies and methods 
should be used, and if the selected technology should be owned or data collection effort 
could be partially/fully contracted. Here, some well-known and emerging technologies 
and methods for pavement and infrastructure monitoring are highlighted. 

Since the early applications of pavement monitoring, manual surveys based on human 
observations are still applied in small scale. However, this method is highly labor-
intensive, prone to errors and considerable hazard to the field personnel (23). Manual 
pavement condition surveys require the operation of a vehicle with at least two personnel 
(one driver, one data collector) on a regular basis and increase the overall cost of data 
collection. Additionally, inconsistency occurs due to the effect of human judgments in the 
data collection process. Acoustic technology has also been used for detection of surface 
crack by collecting the slapping sound against the crack while a data collection vehicle is 
traveling at high speed. Reliability issues and course texture problems are reported as the 
main limitations of this method  (18). 

Another remote sensing application, LIDAR, illuminates the targeted scene with a laser 
and analyses the reflected light to generate a surface model. The system can be installed 
on either ground-based or airborne vehicles. As shown in Figure 2, the point-cloud 
LIDAR is successfully used for determination of grades and cross-slopes of roadways 
(15), bridge deck surface monitoring, concrete and steel section loss on bridges (13), 
monitoring surrounding roadway assets, etc. LIDAR-based Digital Elevation Models 
(DEM) can also be used to increase the accuracy of data received by optical imagery 
(24). One of the major limitations of LIDAR is that the technology is sensitive to weather 
conditions (24). 
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Figure 2. LIDAR creates a point cloud for all roadway assets  
Source: (25) 

Line and area scanning technologies such as Time Delayed Integration (TDI) cameras, 
are widely used in high-performance line-scan applications with a high speed and low 
lighting conditions. This is basically building an amplified 2D image using a single line 
of sensor pixels. Laser scanning uses laser-sensing technology on a line basis approach 
without requiring separate illumination, and generates a 2D surface of the scene  (23). A 
pavement surface inspection vehicle equipped with TDI line-scan camera is presented in 
Figure 3. 
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As presented in Figure 4, SAR sensor moving on azimuth direction transmits a serious of 
pulse called chirp pulse at an off-nadir angle θoff in the direction of line-of-sight (LOS) 
also called slant-range direction to obtain information about the scene. 

SAR imagery is produced by measuring the transmitted and backscattered radiation of the 
illuminated scene. A radar image contains both amplitude and phase in each pixel. 
Amplitude is the measure of the radiation backscattered by the objects in each pixel and 
helps to differentiate the surface characteristics. The amplitude depends more on 
roughness of the surface and ability to mirror away the radiation (5). Typically, smooth 
flat surfaces present low amplitude characteristics such as roads, airport runways, storm 
channels, etc. (5, 33). On the other hand, phase includes information about the distance 
between radar and scene by measuring the transmitted and received radiation 
proportional to wavelength (λ), which is successfully used for detection of surface 
deformations  (5). Table 2 presents the selected radar bands and respective wavelength 
and frequency measures. Most SAR sensors use X, C or L band radars for monitoring 
surface deformations. Cloud-penetrating capability and day and/or night operating 
flexibility give SAR superiority over other imaging techniques especially on tough 
climate locations (5). 

Table 2: Examples of radar bands, their frequency and wavelength 

Radar Band Frequency 
(GHz) 

Wavelength 
(cm) 

Satellite  

Ka 26 – 40 0.8 – 1.1  
K 18.5 – 26.5 1.1 – 1.7 Military Domain 
Ku 12 – 18 1.67 – 2.5  
X 8 – 12.5 2.4 – 3.8 TerraSAR-X, TanDEM-X,  

COSMO-SkyMed 
C 4 – 8 3.8 – 7.5 ERS-1&2, Radarsat-1&2, RISAT-

1, Envisat ASAR, ALOS 
PALSAR-2 

S 2 – 4 7.5 – 15 Almaz-1 
L 1 – 2 15 – 30 Jers-1 SAR, ALOS PALSAR 
P 0.3 – 1 30 – 300 AIRSAR 

SAR Interferometry (InSAR) uses two or more SAR images acquired at different times to 
derive more information about the scene by aligning (co-registration) them in an 
appropriate order and differentiating magnitude and phase (5, 30-32). The change in the 
signal phase ∆φ is proportional to wavelength and expressed as following equation:  

∆߮ ൌ
ߨ4
ߣ
∆ܴ   ߙ	
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Since R represents the distance between radar and target scene in Figure 4 and Figure 5, 
∆R will be equal to the displacement between two radar acquisitions where λ is the 
wavelength and α is the phase shift due to atmospheric conditions. Following figure 
presents the surface deformation detection with phase change on two or more SAR 
acquisitions. In this figure, T1, T2, and Tn represent SAR image acquisition times, and 
ΔR12 and ΔRn represent surface deformation between respective acquisitions. 

 
Figure 5. A Schematic representation of deformation detection with InSAR 

approach  (34)  

The Interferometric phase comparison of SAR images enables creation of Digital 
Elevation Models (DEM) with meter accuracy and large area surface deformation with 
subcentimetric accuracy (6). Detection of surface displacement relies on the precise co-
registration of images to calculate the phase shift accurately; otherwise, rotation or 
movement in pixel or sub-pixel level can cause decorrelation  (30) 

 Satellites for InSAR Analysis 

New generation of SAR data providing satellites such as Radarsat-2, TerraSAR-X, 
Cosmo-SkyMed, and Sentinel-1 have better orbit control then their previous versions and 
provide pointable high-resolution data, which make them more suitable for InSAR 
analysis.  

Many satellites carry different sensors for performing multiple tasks such as optical 
imagery, SAR, weather sensors, etc. Besides spaceborne satellite remote sensing systems, 
airborne platforms are also used to perform similar tasks. Table 3 provides a list of 
previous and currently operating satellites that produce InSAR applicable data. Table 4 
summarizes three main platforms and their similarities and differences. These three 
platforms are widely used for transportation related studies and applications. 
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Table 3: Details of satellites for InSAR analysis 

Satellite Agency- 
Country 

Year of 
Launch 

Band Resolution 
(m) 

Polarisation Revisit 
Time 
(days) 

ERS-1 ESA/Europe 1991 C 5, 25 VV 35 
ERS-2 ESA/Europe 1995 C 5, 25 VV 35 
JERS-1 SAR NASDA/Japan 1992 L 6, 18 HH 44 

ENVISAT-ASAR ESA 2002 C 10, 30 dual 3 

RADARSAT-1 CSA/Canada 1995 C 8, 8 HH 5 
RARDASAT-2 CSA/Canada 2007 C 3, 3 quad 24 

ALOS-PALSAR JAXA/Japan 2006 L 5, 10 quad 7 
ALOS-PALSAR-2 JAXA/Japan 2013 C 10, 100 quad 14 

Cosmo-SkyMed 
(4) 

ASI/Italy 2007-10 X 1, 1 dual 5 

TerraSAR-X DLR/Germany 2007 X 1, 1 quad 11 

TanDEM-X DLR/Germany 2009 X 1, 1 quad 11 
RISAT-1 ISRO/India 2012 C 3, 3 quad 25 

HJ-1-C China 2012 S 5, 20 VV 31 
Sentinel-1A ESA/Europe 2014 C 9, 50 dual 12 

 

Table 4: SAR versus other earth observation instruments  (35) 

 LIDAR Optical Imagery SAR 
Platform Airborne airborne / spaceborne airborne / spaceborne 
Radiation  own radiation  reflected sunlight own radiation  
Spectrum infrared visible / infrared microwave 
Frequency single frequency multi-frequency multi-frequency 
Polarimetry N. A. N. A. polarimetric phase 
Interferometry N. A. N. A. interferometric phase 
Acquisition Time day / night day time  day / night  
Weather blocked by clouds blocked by clouds see through clouds  
Source:  (32)  

 

 Applications upon SAR (DInSAR, PSInSARTM, SqueeSARTM, etc.) 

Advanced imaging technologies and data processing capabilities increased the further 
research on SAR applications, specifically after the InSAR has made possible for using 
multiple images to retrieve more information about the scene. Increased data availability 
in 1990s led researchers to develop new methods to overcome the limitations of the 
technology, improve the calculation models, and explore new fields for InSAR 
applications.    
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SAR Interferometry (InSAR) uses two or more SAR images acquired at different times to 
derive more information about the scene by aligning (co-registration) them in an 
appropriate order (6, 30, 31). Differential InSAR method (DInSAR), which uses the 
existing digital elevation information combined with InSAR, has long been used for 
detection of surface deformations with a millimetric accuracy on larger scale. Both 
methods have been widely used in many disciplines from ocean studies to hazard 
monitoring. Some of the transportation and infrastructure related application are listed 
here: detection of slow-moving landslides (7), observation of volcanic and tectonic 
activities (36), monitoring of land subsidence due to mining, gas, water, and oil 
extraction, etc. (8, 24, 31), fire risk monitoring  (37, 38), flood monitoring and 
management  (39), urbanization tracking  (40-42), environmental studies  (43, 44), etc.  

Effect of geometrical and temporal decorrelation caused by atmospheric effects and 
changes in backscattered signal intensity  (45, 46) has been an active field for SAR 
related researches (Figure 6). Two of methods developed to overcome this issue are 
PSInSARTM  (6) and a small baseline subset (SBAS) technique  (47). Ferretti et al. (6) 
introduced Permanent Scatterers (PS) method (PSInSARTM) to effectively remove the 
atmospheric interference by using stable neutral reflectors (buildings, electric poles, 
transmission towers and similar man-made objects that are consistent in terms of 
radiation reflectivity) in each SAR image over a series of images taken from same scene 
and calculated the surface deformations with millimetric accuracy (6, 48). Ferretti et al. 
(48) stated that most cities and urban areas could provide about 2,000 PS/ km2, which is 
very desirable  (48) and currently operating high-resolution SAR satellites such as 
TerraSAR-X, COSMO-SkyMed, and Radarsat-2 significantly increased the number of 
detected PSs (8, 49). Additionally, the relative effectiveness of PSInSARTM method also 
highly depends on the number of the images used for analysis, called image stack, which 
consists of 15 or more SAR images significantly contribute to the reliability of the 
results. 

On the other hand, low density of PSs in nonurban and rural areas encouraged researchers 
to use Distributed Scatterers (DS) to extract more information about the scene where 
PSInSARTM is not applicable or not sufficient enough  (45, 46, 49). Although DSs do not 
produce high backscattered radiation as PSs, they are still statistically consistent in a 
homogenous area called DS Effective Area (EA) to reduce the noise. Developed this 
method (such as SqueeSARTM)  (45, 46) successfully used in pastures, scree, and debris 
fields to increase the accuracy of results. 



 

Figu

 
 

3.1.4

Proc
for 
intro
defo
illus

ure 6. Illust

4 SAR an

cessing of S
different c

oduces mos
ormation de
strated in Fig

trations of 

nd InSAR Pr

SAR imager
ases beside
t common S
etection thr
gure 7. 

Permanent
by Squ

rocessing C

ry is highly 
es some ba
SAR image
rough InSA

18 

t Scatterers
eeSARTM a

Source:  (46

Components

dependent o
asic image 
e processing
AR. The ma

s (PS) and D
algorithm 
6) 

s 

on available
processing 

g steps and 
ain steps o

Distributed

e inputs and
steps. Thi

specifically
of SAR dat

d Scatterers

d expected o
is section b

y useful stag
ta processin

 

 

s (DS) 

outputs 
briefly 
ges for 
ng are 



 

19 
 

 

Figure 7. General data processing steps for SAR imagery 

 

 Image Selection 

Variety of satellite imagery in different levels makes selection of suitable images for 
InSAR analysis difficult. As a key first step, image selection process has a high impact on 
the quality of final products. The following criteria should be considered during this 
process to improve the quality of expected results  (5):  

 View angle (Ascending or descending) 

 Geometric and temporal baseline 

 Time of the acquisition 

 Coherence 

 Metrological Condition 

 Interferometric Correlation (Coherence) 

In SAR imagery, the complex correlation coefficient between two SAR images has been 
represented with coherence, and carries useful information about the physical properties 
of the scene. High coherence between two SAR images can be translated as high quality 
of phase difference while low coherence meaning noisy phase difference  (5).  

For instance, urban areas mostly show high coherence even after several years due to 
persistent backscattering signal reflectivity. On the other hand, vegetated areas might 
show low coherence even after weeks, which make the interferometric analysis difficult 
to perform. Coherence is mathematically represented as follows: 
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|ߩ|
ሼܧ| ଵܵܵଶ

∗ሽ|

ඥܧሼ| ଵܵ|ଶሽ ∗ ሼ|ܵଶ|ଶሽܧ	
 

In this equation, S1 and S2 represents SAR images, E{x} represents ensemble average, 
and (*) denotes complex conjugate. It is also important to understand the components 
contributing the coherence of master and slave images as presented in the following 
equation. Coherence of images consists of temporal (time between acquisitions), 
geometrical (orbit errors), volumetric (surface characteristics such as vegetation), and 
processing effects. Among these four elements, processing errors should be avoided to 
minimize the coherence loss between images. 

ߛ ൌ ்ߛ	 ∗ ௧ீߛ	 ∗ ௨௧ߛ	 ∗  ௦௦ߛ	

 Co-registration 

The process of co-registration could simply be explained as superimposing the images 
that have the same orbit and acquisition mode. However, it consists of complicated steps 
for estimating the cross-correlation between pixels of sub-windows in two SAR images. 
Without giving technical and mathematical details, it is logical to represent the co-
registration process as in Figure 8. Individual SAR images are first calibrated, then 
available images co-registered consisting of one master and one or more slave images.  

 

Figure 8. Preparation of Image Stacks in InSAR Process 

 Orbital Correction 

Orbital correction is an essential step for accurately transforming the phase information 
into real height values. In this procedure, some accurate Ground Control Points (GCP) 
are used to remove this anomalies. Orbit files can be obtained from satellite agencies’ 
websites little shorter than the generation of the product. Some of the SAR processing 
software (such as Sentinel-1 toolbox) can automatically download and apply the orbit file 
without requiring much effort. 
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 Radiometric Calibration 

Radiometric calibration is the process of removing the radiometric bias affecting the pixel 
values in SAR images. Most SAR products distributed as level 1 image, which generally 
does not include radiometric correction. Therefore, applying this correction for revealing 
true backscattering value of pixels is necessary, specifically for SAR images acquired 
from different sensors. 

 Interferogram Generation 

Once the single SAR images are individually processed and co-registered, interferograms 
could be generated for determining phase change. Interferogram is produced by 
multiplying two complex SAR images to present the phase difference of acquisitions r2 – 
r1, shown in Figure 5 

Table 5: Generation of SAR product based on single/dual channel mode, 
polarimetry, and interferometry  

SAR Intensity 
Processing 

InSAR Processing PolSAR Processing PolInSAR 
Processing 

Focusing Interferogram 
Generation 

Polarimetric 
Calibration 

Co-registration 

Multi-looking Interferogram 
Flattening 

Pol. Speckle Filtering Interferogram 
Generation  

Co-registration Interferometric 
Correlation 
(Coherence) 

Polarization Synthesis Polarimetric 
Coherence 

Speckle Filtering Phase Unwrapping Pol. Signature Coherence 
Optimization 

Geocoding Orbital Correction Pol. Decomposition  

Radiometric 
Calibration  

Phase to Map 
Conversion 

Pol. Classification  

Radiometric 
Normalization 

Phase to Displacement 
Conversion 

  

Mosaicing    
Segmentation     
Classification    

 Source:   (35)  
  
 SAR Interferometric Phase Components and Phase Unwrapping 

InSAR analysis and deformation detection requires determination of phase difference. 
Therefore, accurately obtaining phase difference and evaluating the components affecting 
the overall phase change is essential. Five components have contribution to the phase 
difference of SAR images as presented below:  
 

∆߮ ൌ 	∆߮ௗ௦௧ 	∆߮௩௧ 	∆߮௧ 	∆߮௧௦  ∆߮௦	 
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Among these five components, Δφdisplacement is expected to be calculated while removing 
or minimizing the other effects. Each one of the effects briefly explained below: 

 Δφdisplacement: contribution of surface deformation to the interferometric phase 
(The change will be measured) 

 Δφelevation: contribution of topographic effects to the interferometric phase 

 Δφflat: effect of earth curvature to the phase. This effect can be estimated and 
subtracted.  

 Δφatmosphere: atmospheric contribution to the interferometric phase due to 
temperature, humidity and atmospheric pressure change between acquisitions 

 Δφnoise: the phase noise due to temporal change of the scatterers, and volume 
scattering, look angles, etc.  

The phase of an interferogram is presented in the unit of 2π, which makes the 
determination of absolute change hard, as presented in Figure 9. The process of 
converting absolute phase from wrapped phase called “phase unwrapping”, simply 
adding appropriate number of cycles to the measured phase. Several phase unwrapping 
algorithms have been developed over time such as minimum least squares, minimum cost 
flow, multi-baseline, residue-cut, etc. (5, 50). 

 

Figure 9. Schematic representation of phase unwrapping 

 
 
 

3.1.5 Data Sources and Software Evaluation for InSAR Analysis  

Variety of data sources for SAR imagery, and broad application field naturally created 
different opportunities for data analysis and software development. Only remote sensing 
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satellite data and possible software options are presented and evaluated in this section to 
stay within the boundaries of scope by giving priority to freely available options. Some 
data sources and software are presented with detail to inform readers about the process of 
obtaining and using the data or software. 

 Data Sources for SAR Imagery 

Remote sensing airborne and satellite data has been available since early 1970s with low-
resolution, which is not very useful for transportation and infrastructure purposes. Many 
studies in this field have begun with the launch of medium-resolution satellites in 1990s 
such as ERS-1&2, Radarsat-1, and Landsat-1. More interestingly, recent studies that use 
high-resolution and spot images highlighted the effectiveness of such technology in 
transportation and civil infrastructure systems. In addition the data sources, there are 
many software packages available from single image processing to time series of SAR 
data analysis that might be used based on research needs and data constraints. Some 
software packages provide detailed analysis for many different satellite inputs to address 
different users, while some of them only aim at specific type of analysis. 

One of the main players in space and earth observations, NASA, provides variety of data 
sets and images for researchers through EOSDIS (NASA’s Earth Observing Systems 
Data and Information Systems). The information is publicly available through NASA’s 
website with a user-friendly search interface. In terms of InSAR stacks for pavement and 
infrastructure monitoring, EOSDIS does not provide very useful datasets. However, 
datasets such as MODIS (Moderate Resolution Imaging Spectroradiometer), ASTER 
(Advanced Spaceborne Thermal Emission and Reflection Radiometer) and AVIRIS 
(Airborne Visible / Infrared Imaging Spectrometer) might be useful complimentary data 
sources for transportation related applications. 

One of the main sources of SAR data is European Space Agency (ESA). Since the 
breakthrough satellites ERS-1 and ERS-2 completed their journey in the space, ESA 
makes most of the datasets from both satellites available to interested researchers upon 
proposal submission and approval. Although the medium-spatial resolution SAR datasets 
are not very suitable for pavement and infrastructure monitoring, combining ESA-1&2 
datasets with recent high-resolution SAR data might provide opportunity for long-term 
historical analysis of the area of interest. Following figure presents the screenshot of 
ESA’s one of the data access portal for viewing, selecting and downloading different type 
of satellite remote sensing data. Access to the portal for catalog browsing requires free 
registration; however, ordering the data is only possible after the proposal submission 
through ESA Earth Online account. 
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remote sensing image-processing software developed by Brazil’s National Institute of 
Space Research (INPE/DPI). SPRING is able to process LANDSAT, SPOT and ERS-1 
images. OFGT (Open Foris Geospatial Toolkit) is another command-line tool aimed at 
simplifying the process of L0 level satellite imagery.  

ROI_PAC (Repeat Orbit Interferometry PACkage) is an open source software package 
that process variety of SAR data and specifically useful for L0 level data and InSAR 
applications. This code-based package developed by Caltech and JPL (Jet Propulsion 
Laboratory) and currently maintained by Cornell University research groups. ISCE is 
another Caltech/JPL & Stanford initiated open source SAR data processing software 
package that has been licensed and managed by UNAVCO on behalf of WINSAR.  

DORIS (Delft Object-oriented Radar Interferometry Software) developed by the Delft 
Institute of Earth Observation and Space Systems  is another useful tool for generating of 
interferometric products such as DEMs and displacement maps. DORIS uses Single Look 
Complex (SLC) data from ERS-1&2, ENVISAT, JERS-1 and RADARSAT-1 satellites 
for the generation of interferograms and other SAR end products.  

GMTSAR is another open source SAR data processing tool that is used by researchers 
who are familiar with Generic Mapping Tools (GMT). The C programming language 
based code could be used for variety of tasks including preprocessing satellite data to 
convert the native format and orbital information into a generic format; aligning image 
stacks and forming complex interferograms for InSAR processing; and determining line-
of sight displacements based on GMT. This code based data analysis package is mainly 
managed by Scripps Institution of Oceanography, University of California San Diego and 
collaborators from other universities. 

Besides mentioned freely available software packages, there are many powerful 
commercial software packages for different level and type of SAR data processing. 
Gamma (Gamma Remote Sensing), ENVI SARScape (Exelis), DIAPASON (Altamira), 
and IMAGINE Radar Mapping Suite (ERDAS) are some of the packages that are suitable 
for SAR image processing. These packages are designed to appeal to a broad range of 
users as in many other commercial software packages. 

3.1.6 Current Transportation Infrastructure Practices of SAR Remote Sensing 

In this section, studies related to pavement monitoring and bridge assessment will be 
presented since SAR remote sensing has been increasingly investigated in these two 
fields. Recent studies highlight the effectiveness of InSAR methods in pavement and 
infrastructure monitoring along with its potential and limitations. Cascini et al. (8) 
compared medium- and high-resolution SAR images for detection of undergoing 
settlements in an urban area in Naples, Italy. They used PSInSARTM method for detection 
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of image processing. Bilko currently does not support recent satellite imagery (Radarsat, 
TerraSAR-X, Cosmo-SkyMed, etc.) for image processing and InSAR analysis, which 
might change in the future. However, ESA supported open source SAR software 
Sentinel-1 Toolbox can process most recent SAR-based images which is demonstrated in 
Case Study 2.  

In this demonstration, freely available datasets from “Learn Earth Observation with 
ESA” website was used. Following section presents step-by-step procedure with visual 
representation for urban monitoring with SAR time series using Bilko software. Dataset 
contains 10 Envisat ASAR images of Rome, Italy. Images were acquired from 2004 to 
2010, and details are provided in Table 6. The spatial resolution of images is 30m.  

Table 6: ASAR images and acquisition dates 

Image Acquisition Data 

ASA_IMP_1PNDPA20040110…_0439.N1 10 Jan 2004, at 20:53 UTC 

ASA_IMP_1PNDPA20040214…_0440.N1 14 Feb 2004, at 20:53 UTC 

ASA_IMP_1PNDPA20040703…_0443.N1 03 July 2004, at 20:53 UTC 

ASA_IMP_1PNDPA20040911…_0444.N1 11 Sep 2004, at 20:53 UTC 

ASA_IMP_1PNDPA20041016…_0445.N1 16 Oct 2004, at 20:53 UTC 

ASA_IMP_1PNDPA20100227…_0462.N1 27 Feb2010, at 20:53 UTC 

ASA_IMP_1PNDPA20100508…_0463.N1 08 May2010, at 20:53 UTC 

ASA_IMP_1PNDPA20100717…_0464.N1 17 July 2010, at 20:53 UTC 

ASA_IMP_1PNDPA20100821…_0465.N1 21 Aug 2010, at 20:53 UTC 

ASA_IMP_1PNDPA20100925…_0466.N1 25 Sep 2010, at 20:53 UTC 

 

  

SAR image processing is performed by using following steps: 

 Opening and displaying SAR data 
o Reading basic information from header files 
o Displaying individual SAR imagery in Bilko 

 Calibration of SAR images 
o Converting Digital Numbers (DN) image values into backscattering 

coefficient values 
o Converting backscattering values into decibel (dB) units 

 Co-registration of images 
o Selection of master and slave images 
o Ground control points 
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# NB: Output options must be set to floating point data 
set output 32f;     #output is 32 bit float 
CONST k=297166.59375; 
CONST a=0.4274; 
# The calculations below will create a new, corrected image on the fly. 
for i=1,_last 

@[i]=sin(a)*(@[i]^2)/k; 

Then, calibrated data should be converted into decibel (dB) by using the formula below. 
Again, using “copy” and “paste” commands in Bilko toolbar automatically perform the 
calibration on image. Un-calibrated and calibrated SAR imagery is presented in Figure 
20. 

# This formula can be indifferently applied to a single image or to a stack 
# NB: Output options must be set to floating point data 
set output 32f; #output is 32 bit float 
for i=1,_last 

if (@[i]>0)  @[i]=10*log(@[i]) else @[i]=0; 

 

Figure 20. Radiometric calibration of SAR imagery: Un-calibrated (left) and 
calibrated (right) 

Now, the individual images are ready for co-registration. This step requires selection of 
master and slave images and using Ground Control Points (GCP) for successfully co-
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Figure 23. Individual Images Constructing SAR Image Stack 

3.2.4 Speckle Reduction 

After successfully co-registering the images, speckle reduction could be performed to 
remove the noise in the images. This could be performed by using Frost or Lee speckle 
filtering methods in Bilko. Speckle filtering is applied by using “image/filter/Frost (or 
Lee)” in the toolbar menu. One important point here is to determine the filter sizes and 
number of looks to perform the process. This decision should be made based on 
characteristics of the scene and expected outcomes as well as filter type. Picchiani and 
Del Frate (52) mentioned that using larger window sizes might be useful for uniform and 
large areas but this might also cause smoothing the small objects and features such as 
narrow roads and small buildings. From this perspective, window size should be defined 
by users. On the other hand, the second input “equivalent number of looks” could be 
found in the metadata of the image under the Specific Product Header (SPH) folder. In 
our case study, azimuth look is 1 and range look is 4, where equivalent number of looks 
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becomes the multiplication of looks, 4. Figure 24 shows the effect of the speckle filtering 
in both methods. The top image presents the scene without any filter while middle and 
bottom images presents the Frost and Lee speckle filtering respectively for 3*3 window 
size and 4 equivalent number of looks. 

 

 

Figure 24. Speckle filtering: no filter (top), Frost filtered (middle), Lee filtered 
(bottom) 
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Figure 35. InSAR Deformation Pre-processing in Graph Builder 

 

3.3.2 Interferometry Analysis with Sentinel-1 Toolbox 

In this section, step-by-step procedure is provided for detecting deformation by using two 
or more Sentinel-1 Stripmap SLC products in Sentinel-1 Toolbox. Same procedure with 
slight differences can be applied to SLC products from other satellites such as 
RADARSAT-2, TerraSAR-X, ENVISAT ASAR, ERS-1&2, Cosmo-SkyMed, and ALOS 
PALSAR-1&2.  

Step-1: Opening and viewing product metadata 

The SAR products can easily be opened in toolbox either using the menu items in toolbar 
or dragging and dropping the products onto the software product view window. Once all 
SAR products are opened, product information of each SAR image should be checked by 
using “Identification” and “Metadata” folders to make sure all products have appropriate 
view angle, orbit, and polarization bands for InSAR analysis.  

Step-2: Co-registration of SAR images (Creating image stack) 

Interferometric process requires co-registration of two or more images into a stack. This 
could be easily done by using “InSAR Optimized Coregistration” command as shown in 
Figure 36. Users should select and add images in “InSAR Coregistration” window. It is 
also possible for selecting optimal master image automatically if multiple images are 
used in InSAR stacking process. Users have an option to change the different settings in 
this window such as number of GCPs, Resampling parameters, and output files. A 
preview of the window is presented in Figure 37. 
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3.4 COST-BENEFIT ANALYSIS 

In many cost-benefit analyses that investigate monetary effects of a possible new 
technology or data collection method, it is common to evaluate the cost in two parts: 
capital costs and maintenance/operating costs. Capital costs include one-time expenses 
such as adaptation of system and associated technical infrastructure, computer and 
software costs, new personnel, etc. On the other hand, maintenance/operating cost 
includes ongoing or scheduled expenses during the time where system is in use such as 
continuous SAR imagery acquisition, data processing cost, etc. In this perspective, cost-
benefit analysis of adopting satellite-based pavement and infrastructure monitoring 
should be approached similarly. In most cases, cost of SAR-based monitoring system is 
dominated by the cost of SAR imagery where operational cost (personnel time, data 
storage and data processing time) would be much lesser compared to image cost  (13). 

Vavrik et al. (53) evaluated manual and automated pavement distress data collection 
methods to help Ohio Department of Transportation (ODOT) for deciding whether the 
transition from manual to semi- or full-automated systems is reasonable. In this study, 
inputs from 6 vendors and 18 state agencies helped providing comprehensive and reliable 
data for a comparative analysis, including a detailed cost analysis. 

In a study conducted by Hong et al. (28), commercial remote sensors are economically 
evaluated in order to quantify and compare the eight widely used technologies for bridge 
health monitoring, including BridgeViewer Remote Camera System (BVRCS), LIDAR 
and SAR etc. First, a basic comparative analysis conducted based on literature and field 
expert interviews. Then, a detailed analysis on cost elements such as cost of data 
collection system, data collection vehicle, data storage, data processing time, contractor’s 
charge, etc. are conducted and 7 currently available technologies are compared cost-wise, 
excluding SAR technology. Although the study excluded the cost analysis of SAR 
technology, they presented the benefits and limitations of method briefly. SAR method 
found useful for detection of bridge settlements and determination of road and bridge 
surface roughness. Limitations of this technology include the necessity of continuous 
acquisition of SAR data to evaluate the before and after situations, and need for high 
quality SAR images for roughness analysis (28).  

In another study, Vaghefi et al. (13) reviewed commercially available bridge monitoring 
technologies in detail and rated based on cost, availability of instruments, data processing 
complexity, traffic disruption, etc. with a score between 0 and 16, where score 16 means 
all criteria are met with high scores. InSAR method found very useful for determining 
global metrics of bridges such as bridge length, bridge settlement, bridge movement, 
surface roughness and vibration with a score of 12 and above for all criteria  (13). 
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In this study, cost-benefit analysis of SAR-based pavement and infrastructure monitoring 
is evaluated. It is assumed that SAR-based monitoring will be complementary rather than 
replacing current monitoring efforts. It is expected that the SAR-based monitoring will be 
reducing unnecessary vehicle-based inspection trips to the sites and prioritizing the 
monitoring effort with a continuous SAR imagery for timely detection of pavement and 
infrastructure problems. It is also important to note that, no previous study has evaluated 
and quantified the possible reduction in routine vehicle-based inspection trips in result of 
SAR-based continuous monitoring. Therefore, some assumptions will be used here to 
give an insight for further studies.  

In our cost-benefit analysis, finding from (53) used to estimate the cost of pavement 
distress monitoring.  

3.4.1 Cost Scenarios  

 Unit Costs of Developing Technical Infrastructure for SAR Data 
Analysis  

Computer and software purchase are the main elements of this capital cost for SAR-based 
monitoring. Considering many DOTs are already equipped with high-processing 
capability computers and common software such as GIS and CAD, these cost items might 
not be included in the CBA. However, unit cost of computer and software purchase are 
assumed $10,000-$15,000. The computer and software cost will be accounted for every 5 
year due to technological advancements and licensing. 

Data storage cost will also be accounted for since the SAR imagery and byproducts will 
require between 5-10 GB per image. If the agency decides obtaining historical data while 
adopting the system, initial data storage will be necessary. Cost of data storage is 
estimated by (28) as $10 per GB per year. Assuming each SAR image reserve 5-10 GB 
including some processing byproducts, $1500 data storage cost per year is considerable 
safe for 20 SAR images with a $3,000 capital cost for the storage of historical data. This 
process might also be excluded based on the data storage availability of agencies. 

Another capital cost at the beginning stage of adopting the SAR-based monitoring will be 
training personnel for data processing. This cost is estimated as $50,000 for one-time 
expense. 

 Unit Costs of SAR Image Acquisition and Processing  

Costs of SAR images and data processing may vary depending on the technical features 
of the image (medium- or high-resolution), size of the Area of Interest (AOI), and data 
processing methods (InSAR, PSInSARTM, SqueeSARTM, TSInSAR, etc.). Some agencies 
prefer outsourcing the image acquisition and processing, and receive end products as GIS 
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and/or CAD files to further the evaluation for a specific project. However, due to possible 
high cost for outsourcing the process, an agency might prefer establishing necessary 
technical infrastructure for image acquisition and processing, which might significantly 
reduce the operational cost in long-term. 

Additionally, if the SAR-based monitoring method will be used for a specific project or 
temporarily for a period, then Power et al. (32) suggests conducting feasibility study for 
testing the coherence of images before proceeding further to reduce the cost of image 
acquisition. It is stated that 4 images could be used for coherence testing in a feasibility 
study. 

High-resolution satellite imagery often preferred to increase the accuracy and provided 
level of detail in the end products, specifically for pavement and infrastructure 
monitoring. Image cost of currently operating Cosmo-SkyMed and TerraSAR-X 
satellites, which provide suitable high-resolution images for InSAR analysis, are acquired 
from companies that might also process the data. 

Agencies might also prefer obtaining historical SAR data to establish a SAR-based 
database while establishing the monitoring system. This might provide obtaining quick 
and reliable results without waiting to increase the number of images over time. Although 
this step will add some capital cost, the archived SAR data will cost much lesser than the 
new acquisition. Each new acquisition will then be added to this dataset to detect new or 
to monitor continuing deformations. 

Airbus Defence & Space (54) provides cost information as of 2014 for high-resolution 
satellite images along with data processing cost. Cost of image acquisition varies 
depending on requested product (SpotLight, StripMap, ScanSAR, etc.), scene size and 
delivery options, where customers might request fast or urgent delivery for a fee. In terms 
of InSAR analysis, SpotLight InSAR and StripMap InSAR data stack are available for 
purchase. Data provider also requires minimum purchase of 5 scenes for the stack 
packages for the following discounted InSAR stack prices:  

(1) SpotLight InSAR:  € 2,500 per scene (minimum of 5 scene) 
(2) StripMap InSAR:  € 1,250 per scene (minimum of 5 scene) 

As similar to most InSAR contractors, (54) also quotes the cost of image acquisition and 
data processing as a package based on customer needs and physical properties of AOI 
due to complexity of the data processing and availability of analysis methods. Cost of 
such package is mostly determined based on the discussions between customer and 
contractor. In some cases, contractors perform preliminary site analysis and evaluation of 
coherence before providing the cost to the customers. It is also possible to see fixed base-
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price by contractors for InSAR analysis independent from the complexity of the project 
(32). Cost of high-resolution Cosmo-SkyMed SAR image and data processing acquired 
as follows including data processing cost, excluding fast processing and delivery fees 
which may vary (55):  

(3) Spotlight-2 (7x7 km, 1m resolution)   € 9,450 (new)  € 4,725 (archive) 
(4) Spotlight-2 (10x10 km, 1m resolution)  € 6,150 (new)  € 3,075 (archive) 
(5) Stripmap (40x40 km, 5m resolution)   € 3,600 (new)  € 1,800 (archive) 

Note:	1	Euro	equals	to	1.11	US$	(2015)	

Medium-resolution SAR images cost less compared to high-resolution images for InSAR 
analysis. However, these types of images are mostly preferred for large-scale deformation 
analysis and historical monitoring. Power et al. (32) stated that historically archived data 
covering average of 3-5 years time frame with minimum of 15 or more images can 
produce high accuracy results for monitoring programs. Some archived medium- and 
low-resolution SAR images could even be acquired free of charge as few agencies open 
their databases to consumers. ESA, JPL, USGS, ASF and some other agencies and 
organizations provide certain types of SAR data products freely (some of them require 
registration and proposal submission) for research, education and other peaceful 
purposes. However, this cost saving attempt requires certain level expertise for finding 
appropriate data stacks among many satellite products. On the other hand, resolution 
level of these products might not provide enough detail for pavement analysis. 

 (32) reported the estimated cost of medium-resolution images as follows:  

 ERS/ENVISAT: $1,000 per image (100 x 100 km (60 x 60 mi)) 

 RADARSAT-1: $2,500 per image (50 x 50 km (30 x 30 mi)) 

Cost of image acquisition highly depends on the total number of images purchased and 
significant discounts such as 50% - 75% might reduce the overall cost with increased 
quantity.  

Power et al. (32) reported the estimated cost of image processing as follows:  

 Feasibility Study: 
o SAR imagery (ERS or ENVISAT):     4 x $1,000 = 

$4,000 
o Generation of coherence images:     2 person-days 

$2,000 
o Generation of Feasibility Study Report:    2 person-days 

$2,000 
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 Ongoing cost per monitoring interval 
 
 Ground movement maps generated using RADARSAT-1 

o SAR imagery:       2 x $2,500 = 
$5,000 

o InSAR deformation map generation: 2-10 person-days  $2,000 to 
$10,000 
 
 Ground movement maps generated using ERS/ENVISAT 

o SAR imagery:        2 x $1,000 = 
$2,000 

o InSAR deformation map generation 2-10 person-days  $2,000 to 
$10,000 

 Costs not included in our model 

Cost of building a technical infrastructure for data processing unit in agency such as 
network connections, printers, scanners, etc. are ignored since most of these items are 
already used in most agencies and/or cost insignificant amount compared to other capital 
costs. 

3.4.2 Benefit Scenarios 

As in all pavement and infrastructure monitoring applications, primary goal of using 
satellite remote sensing technology is early detection of problems that might affect the 
safety and serviceability of the transportation network, and cost much higher later for 
maintenance and rehabilitation. In this perspective, benefits of such technology to the 
community will be crucial in addition to the benefits to the responsible agency. 

 Direct Benefits to Agency  

Utilization of satellite remote sensing technology might reduce the routine pavement and 
bridge inspection trips by regularly monitoring the transportation infrastructure system in 
network-level. This helps the agency prioritize the necessary vehicle-based inspection 
trips and reduce the use of other technologies, specifically if other technologies are 
contracted.  

For instance, (28) estimates the contractor’s charge for bridge health monitoring as 
$1,300 and $1,800 for Mobile-Lidar and Ultra Wide Band Imaging Radar System (a form 
of GPR) respectively. Due to limited data availability, it is assumed that SAR-based 
pavement and infrastructure monitoring might reduce the routine vehicle-based 
inspection trips by 5% - 20%. On the other hand, agencies that are not outsourcing 
pavement and infrastructure data collection might own less number of vehicles or operate 
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already purchased vehicles less than usual due to efficiency of pavement and 
infrastructure monitoring system. This eventually contributes to reducing the operational 
cost in the agency. 

 Indirect Benefits to Society  

One of the main expected benefits of satellite remote sensing technology is to maintain 
the high level of service (LOS) on roadways. This is possible due to early detection of 
problems that might later cause major rehabilitation/maintenance issues, which 
eventually bring time, energy and money loss. Chatti et al. (56) enhanced the initial 
studies on the effect of pavement surface condition to fuel consumption, tire wears, repair 
and maintenance cost, and operating cost of vehicles. Cost adjustment factors are 
presented based on IRI change from 1m/km to 6 m/km with 1 m/km increments for 3 
speed categories (35, 55 and 70 mph) and different vehicle class. It is reported that an 
increase of 1m/km (63.4 in./mi) IRI increase the fuel consumption by 2% for passenger 
vehicles and by 1% - 2% for heavy trucks, repair and maintenance cost by 10% for 
passenger vehicles and heavy trucks after a certain level of roughness (56). 

Some pavement and infrastructure data collection techniques require closure of shoulders 
and/or lanes, which disturbs the traffic and might cause the congestion. Although possible 
cost of the extra congestion caused by the closure might vary depending on the weather, 
time-of-day, and site-specific criteria, etc. Hong et al. (28) used the cost estimation of 
shoulder closure $125 and both shoulder and lane closure $625 per lane. In satellite 
remote sensing technology, this would be considered benefits of not using intrusive data 
collection techniques. 
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Figure 41. Conceptual framework of the cost-benefit analysis 

 Indirect benefits not quantified in our model  

One major problem for evaluating the benefits of satellite remote sensing technology 
might be that the broad use of technology. Many departments and units might benefit 
from end products of satellite-based monitoring program such as transportation planning, 
land development, environmental offices, etc. These indirect benefits are not included in 
this study. Only benefits that might directly be related to evaluating pavement and bridge 
condition are included. 

As an example to the indirect benefits, the State of Idaho started using satellite imagery to 
monitor water use in the irrigation districts. 15 Landsat images were used to monitor 
water right in growing season and cost $30,000 annually including staff time compared to 
half a million dollars for conventional methods used previously  (57). 

3.4.3 Case Study for CBA  

Investment on a new technology or method such as satellite remote sensing requires a 
careful evaluation of costs and benefits associated with it, especially if the technology 
isn’t designed for a specific purpose and could be used in a broad range of disciplines. In 
order to accurately quantify the benefits and costs, it is crucial to evaluate wide range of 
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parameters. It is considered that there are direct and indirect benefits and costs to both 
responsible agency such as DOTs and society. 

In our case study, applicability of satellite remote sensing technology is evaluated for all 
bridges and federal-aid highways in the New Castle County (NCC) in the State of 
Delaware. This will help understand the costs and benefits associated with SAR-based 
pavement and infrastructure monitoring. It is assumed that SAR-based monitoring will 
reduce routine vehicle-based monitoring effort for pavement surface distress and bridge 
health monitoring. Although it is difficult to quantify the reduction percentage in 
conventional methods, it is assumed that even small changes might affect the overall cost 
of monitoring efforts. In the case study, only direct benefits to agency, which is reduction 
in routine vehicle based inspections accounted in calculations as benefits. Costs include 
capital and maintenance/operating costs as previously mentioned. 

New Castle County contains majority of the traffic and road network as well as the 
population in the State of Delaware. Since satellite remote sensing technology will be 
used, box area of the NCC will be used for cost estimation. NCC is approximately 24 mi 
(40 km) wide and 37 mi (60 km) long. Considering Cosmo SkyMed SAR images comes 
in 40x40 km scenes, area of NCC will require minimum of two scenes to cover all 
roadways. 

State of Delaware has 492 state-owned NBI-length bridges in New Castle County (NCC), 
where 21 of them are structurally deficient and 96 of them are functionally obsolete as of 
2014  (58). State also maintains 40.6 miles of interstate, 1,874 miles urban and 579 miles 
rural roadways in NCC  (59).  

Under the Highway Performance Monitoring System (HPMS) program, it is required that 
all state DOTs must submit their state Highway Performance Monitoring Report to the 
Federal Highway Administration (FHWA) each year, which are used by the FHWA in 
the analysis of the highway network system as a basis for supporting FHWA's 
responsibilities to the public, and especially the Biennial Condition and Performance 
Report submitted to the Congress every two years  (60). 

DelDOT performs pavement condition surveys and pavement condition index 
calculations once every two years to identify type of pavement, severity of distress in 
pavement and extent of distress in pavement  (16). Currently, the field survey has been 
outsourced to Data Transfer Solutions (DTS) by utilizing right-of-way cameras on DTS’s 
Mobile Asset Collection (MAC) vehicles to perform a pavement distress survey, assess 
pavement condition data using Earthshaper™ software and deliver pavement data 
through a geodatabase to the DelDOT pavement management system to calculate the 
pavement serviceability index and DelDOT’s annual PCI values  (61).  
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Table 17. Summary of B/C ratio 

Option 1 Option 2 Option 3 

 
Size Resolution 

Purchasing data  
& in-house data 

processing 

Purchasing data 
& outsourcing 

data processing 

Outsourcing data 
collection and 

data processing 

H 7x7 km 1m 0.43 0.39 0.41 
M 10x10 km 1m 1.34 1.24 1.31 
L* 40x40 km 5m 18.53 23.25 25.76 
* Despite the fact that low-resolution (40x40 km, 5m resolution) has highest B/C ratio, it is only useful for 
detection of sinkhole formations.  Low-resolution images cannot be used to clearly identify the distress 
type in pavement surface). 
 

Investigation of B/C ratios presents that SAR-based monitoring systems could be cost-
effective and quickly pays back for 10*10 km and 40*40 km products. Considering the 
spatial resolution and high B/C ratio, purchasing the SAR imagery and in-house 
processing option would be a good option for SAR-based monitoring. This option pays 
back in five years considering 20 year time horizon as presented in Figure 47. 
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4 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

4.1 SUMMARY  

Satellite remote sensing technology, specifically SAR has been widely used in many 
disciplines for decades. Both availability of data and developed methods for data analysis 
have increased over time and attracted researchers from different fields. In the meantime, 
technological developments have increased the potential in satellite systems and led 
much higher resolution capable SAR images. With these advancements, SAR-based 
monitoring has become potentially useful instruments for advance infrastructure 
monitoring. 

Recent studies present the effectiveness of SAR-based monitoring in pavement and 
infrastructure management both in historical analysis and current practices. These studies 
have presented the effective use of SAR-based methods for detecting deformation and 
deformation velocities for highway and railways, sinkhole formations, dangerous rock 
slopes and pavement surface roughness in a series of SAR images. In this project, case 
studies have presented the use of backscattering signal intensity changes for the 
evaluation of surface characteristics. It is presented that this evaluation could be 
performed both in pixel level and large-scale. Specifically, pixel level analysis might 
yield identifying pavement surface deformations due to backscattering signal intensity 
anomalies.  

Aforementioned studies and current researches indicate the effectiveness of SAR-based 
monitoring to determine the location and severity of pavement and infrastructure 
problems at certain level. However, determining the type of problems require additional 
information. This is due to pavement related methods and algorithms are still in its 
development stage and require further research for pavement and infrastructure 
monitoring. Evaluation of applications from other disciplines might help developing 
algorithms to overcome these limitations. 

Since some disciplines are mature in SAR-based analysis, there are many data sources 
and data analysis tools available for research community. Historical data sources (ERS-
1&2, ALOS PALSAR, etc.) might be freely available for educational and research 
purposes, however, recent SAR image acquisitions (Cosmo-SkyMed, TerraSAR-X, etc.) 
are costly. In terms of data analysis tools, there are many varying from code-based small 
programs for a specific analysis to comprehensive and state of the art commercial 
packages.  ESA’s Sentinel-1 Toolbox is one of the comprehensive and easy-to-use tools 
that are freely available for users. 
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Economic effects of SAR-based monitoring system on transportation agencies’ ongoing 
pavement and infrastructure monitoring activities have briefly evaluated with a cost-
benefit analysis to inform readers about the economic side of the technology and its 
components. Case study estimated the cost of establishing a SAR-based monitoring 
system in NCC, DE including necessary technical infrastructure, historical SAR dataset 
acquisition and monthly high-resolution SAR image acquisition. Comparing nine 
scenarios resulted valuable conclusions favoring the cost-effectiveness of SAR-based 
monitoring system with a benefit/cost ratio of 1.34 and five-year payback period. 

4.2 CONCLUSIONS 

This research project has investigated the possible use satellite remote sensing 
technology, specifically SAR, for pavement and infrastructure monitoring. Both 
pavement and infrastructure monitoring, and SAR concepts are presented in detail. 
Availability of SAR data sources and data analysis tools were investigated by giving 
priority to freely available resources. Evaluation of SAR-based monitoring presented 
with two case studies and cost-benefit analysis performed. The following can be 
concluded from the report: 

 SAR-based monitoring, if applied on a regular basis and following a standard 
procedure, can result in valuable benefits for responsible agencies. 

 SAR-based methods are highly effective for detection of surface deformations and 
determining deformation velocities with millimetric accuracy. 

 Recent high-resolution SAR imagery has significant impact on the accuracy of the 
results and number of detected point in relatively small areas (such as less than 
100 ft2). 

 SAR-based monitoring for pavement and infrastructure management found useful 
as a complementary tool rather than a replacement for current technologies and 
practices, specifically in the sense of state of good repair. 

 One of the main advantages of satellite-based monitoring is the ability to cover 
very large areas with frequent revisit times to make it possible even monitoring 
daily and/or weekly changes. 

 Regardless of the challenges, InSAR applications were found useful and 
promising for timely detection of problems and continuous monitoring of these 
problems by providing frequent (monthly or weekly) and continuous network 
level monitoring, specifically for pavement surface distress, infrastructure failures 
and geohazards. It is also expected that vehicle-based routine inspection trips may 
decrease and prioritized based on SAR-based network level monitoring, and 
better allocation of staff hours achieved. 
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 One of the great advantages of using satellite based monitoring is found that it is 
possible to evaluate any specific problem or site with historical data to better 
understand the deformation propagation in time. 

 Results of transportation and infrastructure related studies found InSAR analysis 
useful for sinkhole detection, slow moving deteriorations, landslides, evaluation 
of rock slopes, and pavement surface deformation detections, which may directly 
affect the health and safety of transportation and infrastructure elements.   

 SAR-based methods and InSAR has been widely and successfully used in some 
other disciplines that might indirectly affect the transportation related decision. 
Land development, hazard monitoring, coastal studies and see level rise scenarios, 
monitoring weather changes, etc. might have significant impact on transportation 
network. 

 Although recent studies present SAR-based methods can effectively identify the 
location and sometimes severity of the problems, current practices cannot clearly 
identify the type of problems (for instance, distress type in pavement surface). 

 Extensive implementation of SAR-based monitoring might yield comprehensive 
and more robust management programs leading to cost and energy savings. 

4.3 RECOMMENDATIONS 

Considering the limitations in economic resources, importance of effective and reliable 
decision support tools that support the monitoring and management of transportation 
infrastructure systems cannot be over-emphasized. Therefore, satellite-based network 
level monitoring has the opportunity to increase the efficiency of such monitoring efforts. 
Moreover, this approach will directly contribute to the US DOT strategic goals of “state 
of good repair” and “economic competitiveness”. However, since satellite remote sensing 
has been an emerging field in transportation and infrastructure management, it is 
particularly important to investigate the potential of technology for highest benefits.  

Complexity of SAR image types and features require extra attention for evaluating the 
available and appropriate data sources for pavement and infrastructure monitoring. 
Besides the data selection, image processing should also be carried out carefully for 
accurate calculation of deformation and deformation velocities.  

SAR-based monitoring and data analysis end products might also be very helpful and 
cost saving for many other departments and agencies in the region. Therefore, 
cooperation and collaboration within and between departments/agencies will reduce the 
total cost of monitoring and SAR data analysis efforts.  
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As emphasized previously, although current methods and techniques are very practical 
for determining the location and severity (at certain level) of problems, they do not yet 
differentiate problems among different types. For instance, it is hard to define the type of 
pavement surface distress with InSAR methods without further evaluation. However, this 
does not mean it is not possible, but it needs further research and investigation, 
specifically on pavement and infrastructure elements such as:  

 Investigation of backscattering intensities of different pavement surface distress 
types 

 Investigation of relationship between deterioration speed and deterioration 
types for pavement and infrastructure elements 

 Investigating the contribution of possible other products such as optical satellite 
imagery for improving the detection of location, severity and type of problems 

 Effect of current pavement and infrastructure database to improve the data 
accuracy and determination of type and severity of problems  

 Evaluating these possibilities for different geological, traffic and weather 
conditions 
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