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INTRODUCTION

There are thousands of miles of paved roads in the United States that are traveled daily by
millions of cars and trucks transporting people and goods. For this reason, the condition of
the Nation's roadways plays a very important role in everyday life. The importance of the
quality of roadways is also clear to the federal government. Billions of dollars are spent to
build, maintain, and improve roadways. The cost of building a new roadway or rehabilitating
an existing pavement can be considerable. If these roads are not repaired, poor pavement
conditions can be just as costly to the driving public. Rough pavements can decrease
speeds of traffic flow, cause damage to vehicles, and increase the number of traffic
accidents. These costs, defined as social costs, are difficult to quantify and unfortunately,
are born by the public at large.

To address these concerns, the Federal Highway Administration has developed guidelines
for developing a Pavement System."” Many State Departments of Transportation (DOT)
have developed to manage their highways. Being able to know when a pavement needs to
be repaired before the pavement actually fails is an important element of management.

Development of reliable pavement deterioration prediction models is a challenge to
developers. Accurate pavement deterioration prediction models can be a valuable tool to the
DOTs to achieve a more efficient highway management. Due to the challenges of modeling
the behavior of pavements, current pavement management’s strength depends upon the
measurement of existing pavement conditions rather than predicting future conditions of
pavements. Projected roughness trends are a big factor used for evaluation, since
pavement roughness is a good indicator of its future performance.

There is also the need for modeling different types of pavements. Portland cement concrete
pavements are solid structures (i.e. rigid pavements). Most deterioration models for these
structures are fairly accurate because their failure follows a more typical structural pattern.
On the other hand, the deterioration of asphalt pavements is more difficult to predict due to
the visco-elastic characteristic of the asphalt. Even though modeling the behavior of asphalt
material can be easily done in a pavement laboratory, there are various external conditions
that can be impossible to mimic. By including the many variables a roadway pavement
endures, such as construction techniques, weathering or aging, the modeling effort becomes
even more difficult.



OBJECTIVE AND SCOPE

The objective of this report is to explain the research done at Rutgers University in the area
of developing models that can predict pavement deterioration more accurately. Neural
networks and linear regression are the tools selected for developing these models. Neural
networks are capable of distinguishing trends in data that are not easily recognized by
standard statistical techniques. Careful consideration was given to the data used in
developing the models, since the information needed to be accurate. The Long Term
Pavement Project Database developed by the Federal Highway Administration had the
potentials of representing the type of data sought. This program has been collecting data
since 1989 at hundreds of sites across North America. The LTTP database gathers data
covering a wide-range of variables and employs precise techniques for the collection of the
information. These factors make this database an excellent choice for use in developing
pavement models.

The scope of research focuses on modeling one particular type of pavement from this
database, specifically an asphalt pavement that consists only of its original structure (i.e. the
pavement was never rehabilitated). The reason for choosing this type of pavement is that it
represents the most basic type of asphalt pavement. All other types of asphalt pavement
use this pavement as a foundation. Thus, any model developed in this research could be
used as the basis for developing other pavement models.

METHODOLOGY

Figure 1 represents the flow chart of the research methodology followed in this project.
Multiple processes, shown in this Figure, are at times accomplished simultaneously. The
first area of investigation is surveying the existing information on pavement deterioration
models, pavement theory, regression analysis, and neural networks.

In addition to the information on pavements, the LTPP database is investigated thoroughly.
As a first step, a search of the database is performed for the sites that should be included for
developing the models. After acquiring the requested data for these sites, further inspection
of the available data is done. Statistical analysis of the data played an important role in the
selection of the variables for the development of models. Once the variables are chosen for
developing the models, they are compiled into a database. The neural network and linear
regression models are then developed using the compiled database. A comparison of these
models with some of the existing models is carried out afterwards.
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LITERATURE REVIEW

This section presents a summary of the literature review that was done for the purpose of
pavement model development. Pavement theory in general was studied, specifically
pavement properties and mechanics. Emphasis was placed on pavement roughness, its
measurement, existing indices and their correlation. Prospect tools for model development
were also reviewed, mainly Neural Networks and Linear Regression. Their application,
precision indicators and their statistical significance were studied thoroughly. LTTP
background, data collection, database structure and its accessibility was also examined.
Finally, extensive research for existing pavement models was performed by focusing on their
input variables, validity and outcome reliability.

REVIEW OF PAVEMENT ROUGHNESS

One of the main objectives of our transportation system is to provide a comfortable ride for
users. Roadway roughness is a good indicator of whether this criteria will be fulfilled. A brief
look at the historical development of this indicator can be useful. In the 1940’s the roadway
longitudinal profiles were measured using an in/mile scale, which was the popular basic unit
of measurement.®) The in/mile scale represents the change in elevation over a given
interval. In the 40’s, the devices used were simple and not as sophisticated and efficient as
those used in recent years.

There are many reasons why these devices did not measure the true profile of the roadway.
One main reason was that the technology was not available to give a continuous reading of
the roadway profiles. Another reason is that a vertical drop caused by a crack or a joint in
the pavement gave an infinite change in the slope and made calculations difficult, if not
impossible. To overcome this problem, data was collected in intervals of a fixed length. The
early devices were one foot long sticks that were moved end over end. The difference in
height of the ends of the sticks was recorded and converted into the in/mile units. Later
devices that could measure the response of springs in a vehicle’s suspension were used to
measure the roadway roughness by recording the response of those springs as it traveled
along a road.

There are many different devices that have been developed to measure roughness or ride
quality. The main problem with these devices is that they do not employ a common
standard. The different devices did not give results that could be compared to one another
even for the same pavement. In the 1970’s, the NCHRP studied these different systems to
better understand these problems by developing and testing mathematical models to
demonstrate the response of vehicles to the roadway.

The most famous model that came out of that NCHRP study was the quarter car model. In
this algorithm, the behavior of one wheel of a car is modeled, including the effects of the
suspension spring and damper. Including these effects was important because most road
roughness was measured based on a response-type measuring system. This model
demonstrates how a vehicle or a passenger is affected by the roughness of the road. One



major factor in why roughness measurements were not compatible or comparable was that
the suspension of vehicles was not calibrated or standardized. Using accelerometers,
computers, and the quarter car algorithms, a “virtual response-type system” can be
developed.® This system can then be used to model the response of a vehicle to a
pavement, or use a vehicle to measure the roughness of a pavement.

Inaccurate and incompatible road roughness measurements were not experienced just in
the United States. The findings of many World Bank sponsored research programs
concluded that poor roads are costly to many developing countries. The cost of repair or
reconstruction of pavements is high but the user costs as a result of rough roadways is even
higher when calculated over the service life of the pavement. Road roughness indices were
a primary factor for investigating the trade-off between the costs. This problem was the
same as the one faced earlier in the United States because many countries used different
roughness indices and standards. The roughness indices in reports submitted to the World
Bank were suspect because they were measured by different standards and methods.®

To provide a common quantitative basis on which the different measurement of roughness
can be compared, the International Roughness Index (IRI) was developed at the
International Road Roughness Experiment held in Brazil in 1982 under the sponsorship of
the World Bank. The IRI summarizes the longitudinal surface profile in the wheelpath and is
computed from the surface elevation data collected by either a topographic survey or a
mechanical profilometer. It is defined by the average rectified slope (ARS), which is the ratio
of the accumulated suspension motion to the distance traveled obtained from the
mathematical model of a standard quarter car transversing a measured profile at a speed of
50 mph (80 km/h). It is expressed in units of inches per mile (m/km).

One drawback to the IRl is that there exist an infinite number of profiles for a given
roadway. A profile is a line along the path of a pavement with no width. Thus, theoretically,
an infinite number of profiles exist for each roadway width. The vehicle used in the recording
of the IRI will not travel in a perfectly straight line, and could produce a variance in the
roughness measured. Procedures exist to compensate for this variability. Each time a
profile was recorded, five profile runs were performed so that during each run, the profiles
were within a given deviation of the normal (2% deviation) for all the runs. In the next section
on building a neural network database, table 6-7 shows a minimum of five runs for each
profile date. If one of these runs is not within the 2% deviation then additional runs are
preformed. Those that are not within the 2% deviation are removed, and are not included in
the database. In the LTPP database each profile run is recorded in the table
MON_PROFILE_MASTER. The runs are in numerical sequence and so a profile run is not
to be included if a break in the numerical sequence (i.e. 1, 2, 3, 5, 6) would occur.

Several models in the reports reviewed used different types of measurements for roughness
and deterioration. Although there is a considerable push for all State agencies to use the
same indicators, this has not yet happened, thus reports that study the correlation between
different pavement performance indices were investigated. IR! is the roughness indicator
used in the LTPP database. For this reason, papers regarding the relationship of IRl and
other roughness indicators were closely reviewed. A Transportation Road Research paper
showing the relationship between PSR and IRI was used extensively for this project.“e) The
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document from ITX Stanley was more involved'® as it includes relationships between
several different types of roughness indices. Many of these relationships also involved IRI
and RQlI.

LONG TERM PAVEMENT PROJECT (LTPP)

In the 1987 Highway Act, congress authorized the Strategic Highway Research Program
(SHRP) which was a 5-year, $150 million research program. SHRP concentrated on
asphalt, concrete, highway operations and structures, and pavement performance research
results. The Long Term Pavement Project (LTPP) was originally designed as a twenty-year
project to monitor and gather data on various types of pavements. After the first 5 years of
data collection, SHRP had concluded its requirements as set by Congress. The remaining
15 years of the LTPP program was to be managed by the Federal Highway Administration
(FHWA). The FHWA is the current coordinator of the LTPP project and database.

The objectives of the LTPP program were the following ;%
¢ Evaluate existing design methods.

o Develop improved design methodologies and strategies for rehabilitation of existing
pavements

e Develop improved design equations for new and reconstructed pavements.

¢ Determine the effects of (a) loading, (b) environment, (c) material properties and
variability, (d) construction quality, and (e) maintenance level on pavement distress
and performance.

¢ Establish a national long-term pavement database to support SHRP objectives and
future needs.

The LTPP program was originally designed to include three types of studies: General
Pavement Studies (GPS), Specific Pavement Studies (SPS), and Accelerated Pavement
Testing (APT). The largest of these studies is the GPS, and includes 742 in-service sections
throughout the United States and Canada. The SPS have specific goals, and are performed
by experimental approaches to achieve these goals. The APT has not yet been
incorporated into the LTPP database. The GPS experiments within the LTPP program
include the types described in table 1. It also includes the number of sites used in each GPS
study.

The LTPP project has been in existence for ten years with 7 to 8 years of the data processed
and available for use. With more data from future years, any model developed with the first
half of the data can be tested, refined and calibrated with the second half of the data.



Table 1. Description of the General Pavement Studies

Number of

General Pavement Studies (GPS) Descriptions GPS Study
Sites
GPS 1 Asphalt Concrete (AC) on Granular Base 191
GPS 2 AC on Bound Base 115
GPS 3 Jointed Plain Concrete 128
GPS 4 Jointed Reinforced Concrete 52
GPS 5 Continuously Reinforced Concrete 75
GPS 6A Existing AC Overlay on AC Pavement 51
GPS 6B New AC Overlay on AC Pavement 57
Existing AC Overlay on Portland Cement Concrete (PCC)

GPS7A Pavements 22
GPS 7B New AC overlay on PCC Pavements 24
GPS 9 Unbonded PCC Overlays on PCC Pavements 27

The data collected for the LTPP project is stored in the LTPP Information Management
System (IMS). There are two components that control the data entry in the IMS database,
the four regional offices and the central IMS office. The four regional offices focus on the
data collection and the submitting of that data to the central office. Another requirement is to
exercise quality control of regional personnel and control data collected and submitted by
State Highway Agencies (SHA'’s). The central office is responsible for the climatic data,
quality assurance (QA) of all LTPP data, and providing data to the public. The LTPP IMS
has seven data modules, which contain the data collected from each GPS site. The
modules as shown in table 2 categorize the data. The background information for each site
is the most important information contained within these modules.

The Inventory Module contains the historical information for each site in the database. The
state departments of transportation generally provide this information. This data includes the
location of the section, pavement type, layer thickness, layer type, material properties,
composition, construction improvements, and other background information.?” These
records might not be always complete.




Table 2. Summary of IMS Database Modules

Module Sub-module Number of Tables within
Module
Inventory None 26
Material Testing None 76
Climate None 5
Maintenance None
Rehabilitation None 49
Traffic None 6
Monitoring
Automated and manual
distress 8
Friction 1
Longitudinal Profile 2
Cross Profile 4
Deflection (FWD) 8

Even though some material properties are given in the inventory record, material testing was
also separately performed for this study. The information gathered from field sampling and
laboratory material testing is contained in the Material Testing Module. This data verifies and
documents the existing pavement structure for each site in the LTPP study. It also gives an
evaluation of existing layers of the pavement. The laboratory testing involves over 40
different types of procedures, many of them are employed currently in designing
pavement.'®

The climate data for a site is available in the Climate Module. This module shows the
conditions recorded from at least one nearby weather station. Statistical estimates based on
as many as five weather stations are also included. A summary of daily measurements,
monthly statistics, and yearly average can be found for some of the sites. ¢

Maintenance and rehabilitation is contained in their respective modules: Maintenance
Module and Rehabilitation Module. The primary purpose of the Maintenance Module is to
record all the activities relating to maintenance that was performed at the GPS site. This
could include seal coating, patching, joint resealing, milling, or grooving. The Rehabilitation
Module on the other hand includes any major improvement at a GPS site. Rehabilitation
includes resurfacing, reconstruction, or addition of lanes. Anything that would have altered



the structure of a pavement is considered rehabilitation and its data is recorded in this
module. ®

The Traffic Module contains data regarding the annual traffic statistics for all the GPS sites.
Counts by vehicle classification, and distributions of axle weights are some of the traffic
factors in this module. The annual average daily traffic (AADT) statistic in the database
applies only to one lane at each site. Traffic statistics in this section are based on monitored
data, for approximately two-thirds of the sites. The remaining is based on historical records
oris not included at all. ¥

The last module contains information on all the data gathered on the current conditions of the
pavement at a site. The Monitoring Module contains several sub-modules; automated and
manual distress, longitudinal profile, cross profile, and falling weight deflectometer. The
Automated and Manual Distress section contains information regarding the pavement
conditions. This concentrates primarily on the severity of surface defects. The Friction
section of monitoring stores the friction number, surface type, test methods and other fields
relating to the surface friction of the GPS sites. The Longitudinal Profile section contains the
information on the longitudinal profile which is predominately measured in IRl. The Cross
Profile section contains information regarding the transverse profile, commonly referred to as
rut data. The last section of the Monitoring Module is called Falling-Weight Deflectometer. A
falling-weight deflectometer measures the response of dynamic loads applied to a pavement
structure. This loading and the data recorded from this test can determine the strength of the
pavement along with the structure of the pavement. @

This is an overview of the data contained in the LTPP database. There are many tables of
varying length and width. It is difficult to image the full size of the overall database. Table 2
includes the number of table that are within each module. Chapter 3 of this report includes
some examples of the table included in the LTPP database, which will give a better
understanding of its large size.

Background on Neural Networks

Man has been interested in the workings of the human brain since the beginning of
civilization. Many have tried to model its functions. Ancient Greek philosophers tried to
conceptualize the thought process into mathematical formulae. This type of thinking has
evolved with the aid of more powerful tools, like computers, which can now model the simple
leaming patterns of the brain.

In the past few decades better understanding of the human process of intelligence has lead
to its modeling on a computer. This is how neural networks, or rather artificial neural
networks (ANN) come into play. An ANN attempts to model how the brain transmits
information to the body.

Major projects, which involved ANN, were performed in the 1960’s. One such project was

called The Percep!lion, which was a mixture of neural networks and pre-processing
algorithms. The Perception was based on the first stages of primitive vision based on

9



pattem recognition. This program could determine the gender of a person by ‘seeing’ his/her
face. Research continued in the 70’s but it was not until the mid-80’s that wide spread
interest in ANN grew with the proliferation of the computer itself. Now ANNs are used in a
wide variety of research fields.

An ANN acts as a biological neural network, that is, it acts as a network of neurons
processing information. A single neuron is a single nerve cell and a chain of neurons
transfers information to or from the brain. Neurons upon receiving information must interpret
the information and determine what to do with it. A neuron could either pass information on
to the next cell or it could cause a muscle to contract. The type of information passed on to
other cells is dependent on past experiences. That is an infant does not know what pain
feels like until it experiences it for the first time. An ANN works in the same way.

Information put into an ANN is just like a signal from the brain or nerve ending in a biological
neural network. The individual signals in an ANN are called vectors, pin figure 2 or X in figure
3. What happens is that a set of inputs are applied to a network, which are labeled X1, Xa,....
, Xn in figure 3 . Each signal is then multiplied by an associated weight, W11, W21...Wpn, and
then they are passed to the summation block in which they are summed. Each neuron
outputs a weighted sum of the inputs. In this case it is a simple matrix multiplication. The
example shown in figure 3 is used as an educational tool to understand the basic network
structure. One example of this is called an activation function. Example:

ouT =1 if Yn>2
ouT=20 if Yn<Z

10
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This is commonly used in visual recognition, in which the network will tell you if it is or is not
the target sought. This is a linear activation function, but there can be non-linear activation
functions too.

Figure 2 represents a single neuron within a network. The variables in the diagram are as
follows:

P = all inputs vectors

W= weight applied to the inputs

b = bias applied to the inputs

n = net input vector

a = the final values once all the weights and biases are applied.

A neural network consists of many neurons combined together. The diagram in Figure 3
represents a multiple layer network consisting of nine neurons in three different layers. This
network has architecture similar to the one in the program shown in Figure 4. Multilayer
networks are more complex than single layer networks, and offer a greater ability for the
computational capabilities than a single layer network. This layering mimics portions of the
brain by using different algorithms. In the past decade algorithms were perfected and
refined in order to train ANN with multiple layers.

Figure 4 is a simple example of a NN training program written in Matlab. This program
trains the NN to predict the simple equation:

Y=2X+5 (1]

P={12345%6789 10};

T = {7 9 11 13 15 17 19 21 23 25};

net = newff ([0 10],[4 1 1],{'logsig' 'tansig' 'purelin'});
net.trainParam.goal = 1e-100;

net.trainParam.epochs = 500;

net.trainParam.mu = .01;

net.trainParam.mu_inc = 10;

net.trainParam.mu _dec = .
net.trainParam.mu_max = 1e90;
net = train(net,P,T);

|
w
~.

Figure 4. Example of NN Training Program Written in Matlab Using Matlab NN Toolbox ©
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1.5 2.5 3.5 4.5 5.56.57.5 8.5 9.5};
sim(net,D);
)

Figure 5. Example of NN Program To Test The Trained Neural Networks

in figure 4, P represents the training input vectors for the NN, to predict equation [1]. Values
within the brackets represents one set of input vectors. These values would correspond to
the {X} values in equation [1].

The T represents the target vectors that the trained NN produces. In this case these values
represent the {2X + 5} portion of equation [1]. NEWFF is a function that performs a
backpropagation NN training algorithm as part of the Matlab program. The brackets
following it represent the input ranges and the NN architecture. A value representing the
input range must be given in the training program. Since this is only a test this value will
range from zero to ten, {P = 1,2...10}. The [4 1 1] is the architecture of the NN program in
figure 4. According to this NN architecture first layer has four nodes, the second layer has
one nodes and the last (output layer) has one node.

TANSIG represents the transfer function between the layers. This means that the output
between the first layer and the second is transformed by a hyperbolic tangent sigmoid
function. This function maps a neuron input from an interval of (-0, +00 ) into an interval of
(-1, +1). There are three different types of transfer functions in the Matiab NN toolbox:
TANSIG, LOGSIG, and PURELIN. LOGSIG is a Log-Sigmoid transfer function, which fits
the inputs into an interval of (0, +1). The PURLIN is the simplest of the transfer functions
because it is simply a linear transformation of the input.

The rest of the lines of the program are different training parameters. These parameters can
be changed and adjusted. For example ...GOAL = 1E-100 means that the NN will train until

the mean square error (MSE) is under 1E —100. This is only one criteria that the program
uses to termincte training. The MSE was chosen to be this low so that other limitations like

the numbers of training epochs (net.trainParam.epochs = 500) could be reached. 500
epochs mean that the NN will use the input data 500 times before terminating the training,
unless another criteria for ending the training has been met. ®

To test how we | the NN predicts equation [1], the program in figure 5 is run. This program
contains nine t: st points. These test points are, {1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5},

and are shown as the D values. These are nine different points that were not used to train
the NN. Table 3 shows the results of using these test points compared to the actual data.
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Table 3. Results of example NN training

Y | 2X+5 | NN prediction | % Difference
1.5 8 7.65 -4.38
25 10 10.16 1.64
3.5 12 11.89 -0.88
4.5 14 14.05 0.36
5.5 16 15.99 -0.06
6.5 18 17.98 -0.12
7.5 20 20.00 <-0.01
8.5 22 22.02 0.09
9.5 24 24,01 0.04

A multilayer network has a matrix (figure 2) of neurons (figure 3). There could be different
transfer functions for each layer, thus the variable s" is used to distinguish between the
different types of layers. The functions shown in figures 2 and 3 represent transfer functions.
A transfer function is used to calculate the output from separate layers given the weights,
biases and inputs. If the desired output is not achieved the weights and biases would then
be adjusted and again fed to the transfer function. This is repeated until the desired output
is achieved. Figure 6 represents the algorithms for this process.

The object of training is to make the weights converge to some values that will produce
target output values. There are two types of training for ANNs: supervised and
unsupervised. Supervised training requires an input and output vector, and these two
vectors are called a training pair. The weights are adjusted until the desired output vector is
obtained within a certain percentage of error. Unsupervised training requires no output
vector. The network modifies weight until subsequent output vectors are consistent.

Another factor of NN is the type of training algorithm used to train it. There are several types
of training algorithms. The training algorithm acts on a principle similar to that used by the
brain, the more you use your knowledge the better it becomes. Synaptic strength will
increase if both the source and destination neurons are activated. In the NN the specific
weights will increase if both the input and output to each NN neuron is used often.
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REVIEW OF REGRESSION ANALYSIS

Regression analysis is a statistical technique used to express the relationship of a set of
variables by an equation. Linear regression is the simplest form of regression analysis.
Linear regression consists of two types of variables, a dependant variable (y) and an

independent variable (x).
The linear regression model is called simple linear regression model when it involves only
one independent variable.
A more complicated from of regression is called "multiple linear regression”. This model

consists of multiple independent variables and corresponding coefficients. It takes the
following form:

y=pF+ X+ X, +..+ B X, (2]
There are more advanced forms of regression but multiple linear regression is the most
advanced form used for this type of research.
In simple linear regression the parameters fp and Sy must be estimated. For the purpose of

explanation, assume that there are n pairs of (x, y) pairs. Were X is the average x value
and ¥ is the average y value:

By = j;_lél'i: (3]

and

(4]

The fitted simple linear regression model then takes the form of a line:



Y= /éo + /é X {51
There are ways to test how well the regression model estimates the dependant variable.

The coefficient of determination, R?, estimates how well the data points (x, y) fit the line
representing the model. R? is calculated as follows:

,31 ;yixi' »

R* = (6]

n

zyi_'nyz

i=1

The range of R? is between zero and one. A coefficient of determination of 1.0 corresponds
to a perfect model, while values close to zero indicates little correlation between the model
and the data.

The test for significance of regression may also be performed using the t-test and null

hypothesis. To test the hypothesis that the slope is equal to zero, the hypotheses are then
stated as:

H,:f3 =0 (7]
H :p#0 (8]
This implies that if the hypothesis is proven correct, then the linear regression model is a
horizontal line. This means the slope cannot be statistically distinguished from zero, and
that y may not have a relationship with x. ¢"
The t-test is used to test the null hypothesis. The t-test equation is:
, = ﬂl _ﬂlo [9]

MS,
SXX

Where,

. \2
MSy = Z(yi_yi)
n-2
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Sox = fo - (in )2

n

By comparing the calculated value of ¢, to the 24 percentage point of the ¢,_, distribution

(; ofmt ). The null hypothesis can be rejected if:

n-2

| = lof s [10]

The values of t distributions are usually found in table format in most statistical texts.

This procedure can be used to test the significance of each independent variable in multiple
linear regression. If the null hypothesis tests for g, =0 and is proven correct, then the x,
may not be statistically viable. The x variable may not have a relationship with the

dependant variable, y. These are the basic basis techniques used to statistically validate
linear regression models.

EXISTING PAVEMENT MODELS

This section summarizes the most important available pavement models.

FHWA Model

FHWA publication No. FHWA-RD-97-147, employs the first four data entries in the LTPP
database to develop a model for each GPS type.'"® The only reason for using so few data
points is due to the fact that at the time of the publication they were the only data points
available in the LTPP database. There are also no statistics in this report on how well these
models perform. This along with the few data points can be considered a drawback to these
models and the report.

The GPS 2 sites are broken down, in the FHWA report, into four groups for modcling the
pavement based on the type of base used in the construction of GPS-2 pavement namely,
AC treated, Hot Mix Asphalt Concrete (HMAC), cement-agg., and soil cement. Below is the
HMAC mode!l. This model is the model used primarily in this report.
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Asphalt, Hot Mix AC Base Model "'?

S
5

IRIt) = IRlge

(1]

(a) IRl, = A(ACThick)® + C(BaseThick)® + E(P#4)" + G(SN)" [12]
J
(b) 1o =[MLYL)- + M(ACThick) N + O(days32-)F + Q(AnnPercip)R:| x [13]
K(SN) 1000
Where,
t = Age (years)
ACthick  =Thickness of the AC surface course (inches)
BaseThick =Thickness of the HMAC base (inches)
P#4 = Percentage passing the number 4 sieve
SN = Structural Number
KESAL/yr = Thousands of ESALs/yr
Days32- = Days that were below freezing

AnnPercip = Annual precipitation (inches of rain)

Table 4. Summary of FHWA Model Parameter for GPS-2 Pavements with

HMAC Bases 12

A=5.375 F=-0.8682 K=20.7016 P=2.3060
B=-0.5110 G=40.0891 L=12.00 Q=9.70E-05
C=1953.287 H=-0.75037 | M=2.00E-04 R=0.1813
D=-2.95004 | 1=101.57589 N=-0.2060 S=1.2379
E=349.64172 | J=0.6117952 | O=3.12E-09 T=0.0226

20



Lee Model

A recent Transportation Research Record, TRR, by Ying-Haur Lee describes the need for
simplified models that can predict future trends of the pavements with a minimal amount of
data. ™ Unlike the other model that predicts IRI, the Lee model calculates present
serviceability rating, PSR. There are models in this report for five basic types of pavements
namely, flexible, composite, jointed plain cement pavements (JPCP), jointed reinforced
concrete pavements (JRCP), and continuous reinforced concrete pavement (CRCP). Since
flexible pavements are the focus of this report that model is shown below: 4

PSR = PSR,—a* STR® * AGE® * CESAL‘ [14]
PSR, = Initial value of PSR at construction (4.5 used in analysis)
STR = Existing pavement: structural number for flexible pavements
AGE = Age of pavement since construction (years)
CESAL = Cumulative 18-kip equivalent single-axle load (ESALs) applied to

pavement in the heaviest traffic lane. (Millions)
a, b, ¢, & d are coefficients

This is the original model developed in the TRB report, but there is also a later modification
of this model. The modified model uses an adjustment factor that is based on the climate in
which the pavement is located. Since both of the test sites are in a wet thaw-freeze zone
the adjustment factor that is used is, AF = 0.40. The original model :

PSR = PSR~ AF *(a* STR®* AGE °* CESAL ¢) [15]

I nis model was accompanied by two other equations that were used to estimate the original
age and the CESAL for pavements. The reason that was used is that many sites in their
database did not include the age and traffic data that was required for their original model.
Thus, these values had to be predicted.

AGE:{ PSR,b—PSRl : ] (6]
AF*(a*STR’ * ESPALYR®)
CESAL = AGE * ESPALYR [17]

Since Lee used only roughness indicators in the form of PSR, it has to be converted to IRI
using equ(ation (18], which correlates IRI and PSR. The correlation between IRl and PSR is
given by: "
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This above formula gives an IRI value in terms of m/km.

The performance of the Lee models for asphalt is given in the report. In the paper, Lee et.
al. shows the R? value to be 0.52, only explaining about half the variation in the data. This
model uscd all AC pavements and did not separate them into categories, GPS-1, GPS-2,
GPS-6.

Default Pavement Management System Models

The New Jersey Department of Transportation (NJDOT) uses a ride quality index (RQI)
model for determining life expectancy of its roadways. The performance prediction model
used in th~ir HPMS is as follows:

p=p,_ oot [19]

Where, P = performance index

Py = Patage0(t=0)

t = Loge (1/age)

abrc = model coefficients

a = 33.26

b = 34.65

¢ = 1.02

Above are the values of the coefficients for the default model. This model also assumes that
the Py is at the value of 4.5 (RQ).

The trigger va!ue for determining the useful life of a pavement is an RQI value of 2.5. 1
This would imican that the default model would give all pavements a useful life of about 20
years. Ficure 7 shows the trend of the default pavement model. Note that this is the same
for all pavements and pavement types.
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Figure 7. Plot of the Default Pavement Deterioration Model in the NJDOT Pavement
Management System

Since this model uses RQI and the others use IRI, RQI had to be converted so that a
comparison could be made. A correlation study preformed by ITX Stanley for the NJDOT
was used to make this conversion.'® Equation [20] is the conversion of IRI RT3000 to RQI.
(RTIRI refers to IRI recorded by the RT3000 device).

. 0872
RQI = 5.Oe(—0.00511 RTIRI ) [20]

Even though RT3000 measures IRl it is a different type of sensor so a correlation between
the two was used to convert RT3000 IRI to K.J. Law T6600 (device used in the LTPP) IRI
given by the following equation:

RTIRI = 0.9512 IRI(LTPP) + 23.884 [21]

These two equations, [20] & [21], give the IRI value in the units of inches/mile and would
have to be converted to the units of m/km for comparison to the other models.
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BUILDING A NEURAL NETWORK TRAINING DATABASE

This section explains the preliminary work done before the actual development of the
models. Preparing the data and presenting it in the proper form required extensive
efforts. Exploring the LTTP, selecting the candidate sites, choosing the input
independent variables, testing their statistical significance, were all tasks that involved
thorough inspection in order to avoid any kind of unreliable or biased outcome.

Selecting Sites from LTTP Database

DataPave 97 is the software that FHWA distributes for the purpose of browsing and
studying LTPP sitesDataPave97 provide the option of selecting sites according to a
certain perceived criteria. In this project, sites in a “wet-freeze” climate are chosen. Our
screening process returned only sites from the GPS category.

After receiving the requested data of GPS 2 sites, two concerns became apparent. The
first concern was the flaws in the initial assignment. The second was the reclassification
of sites.

ITX Stanley is the regional contractor collecting the data for the New Jersey LTPP sites.
They revezaled at a meeting in Trenton, that the New Jersey GPS 1 sites can also be
considered GPS 2 sites. The reasoning behind this is that the original classifications
are not assigned properly. The original criteria the State Highway Agencies or SHA
used for classifying sites for the LTPP program was not concise enough, the matter that
led to the classification problem. Moreover, when data was investigated closely, it was
discovered that some of these sites have been reclassified. Most reclassifications are
due to rehabilitation done to a section of highway (i.e. a new surface coarse layer). This
changes the classification from a GPS 2 to a GPS 6B.

Figure 8 shows both the GPS 1 and the GPS 2 sites in New Jersey. Table 5 shows all
the sites requzsted from the LTPP IMS database.
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Table 5. GPS sites in wet freeze zones requested

GPS 2 SITES GPS 1 SITES
State State ID | SHRP ID State State _ID SHRP_ID
Arkansas 5 3071 Connecticut 9 1001
Delaware 10 1450 lilinois 17 1004
Indiana 18 2008 17 9035
18 2009 Indiana 18 7780
lowa 19 6150 18 1803
Maryland 24 1632 Kansas 20 1400
24 1634 20 1001
24 2401 20 9032
24 2805 Kentucky 21 9034
Minnesota 27 2023 21 1002
Missouri 29 5403 21 1003
29 5413 Maine 23 1028
New Jersey 34 1033 23 1037
34 1034 23 1005
34 1638 23 1009
New York 36 1008 23 1010
36 1643 Massachusetts 25 1010
36 1644 25 1014
Oklahoma 40 4165 25 1034
40 4164 Michigan 26 1001
40 4164 26 1009
40 4163 26 1012
40 4154 Minnesota 27 1026
40 4088 27 1028
40 4087 27 1002
40 4086 27 1003
40 4086 27 1004
40 1017 27 1001
40 1015 27 1004
Tennessee 47 1023 | 27 1010
47 1028 | 27 1016
47 1029 | Missouri 29 1018
47 2001 \ 29 1019
a7 2008 ‘ Nebraska 31 1023
47 3101 ] 31 1028
47 3108 : New Hampshire 33 1029
47 3109 | New Jersey 34 1085
47 3110 | 34 1087
47 9024 | 34 6251
47 9025 | 34 1002
Vermont 50 1681 1 New York 36 1011
50 1683 | Pennsylvania 42 1597
West Virginia 54 1640 42 1599
New Brunswick 84 1802 42 1605
Ontario 87 1680 | 42 1618
::1::: Edward 88 1642 } South Dakota 46 9197
88 1647 | Tennessee 47 3075
Quebec 89 2011 | 47 3104




DATA MANIPULATION

All data received from the LTPP IMS database is in the Microsoft's (MS) Access 97
format. The data needed from each table is copied and inserted into an excel
spreadsheet, for an easier manipulation. The description of the fields in each table is
given in an accompanying text file. This text file presents a brief description of each
data field and its units of measurement. Appendix A gives the description of the data
fields that are used in the tables in this section. The first step investigated the
appropriateness of the pavement classification. . The classifications of the sites can
change after the data is entered in the DataPave software. Classification information is
found in the table, EXPERIMENT_SECTION. An example of this LTTP table is shown in
table 6. The column labeled EXPERIMENT_NO gives the current GPS site classification
and the column labeled STATUS gives the current status of each site. For instance, if a
GPS 2 site is resurfaced with an asphalt layer, then the section should become a GPS
6B site, or it is deassigned. Another column in this table gives the date at which a
reclassification took place. Any data before the change can be used for this project.
Only in a few cases, the sites requested did change classification.

The next table investigated gives the construction date of the pavement at each site.
The table that provides this data is INV_AGE. An example of this is shown in table 7.
Since aging of asphalt starts immediately after it is laid, the construction date is used to
determine the age of a pavement during which a roughness measurement or other
variables are recorded. The factor that measures the roadway roughness in the LTPP
database is t.1e International Roughness Index (IRl). IRl measures the height variation
of the pavement over a given length in meters/ kilometer.

IRl is entered for both wheel paths and an average IRl value is calculated. This
average IR value is the value used for analysis in this project. The table where the IRI
data is loca:=d in is MON_PROFILE_MMASTER. Table 8 shows an example of this data.
The columis where the values are located are in IRI_LEFT_WHEEL_PATH,
IRI_RIGHT_WHEEL_PATH, and IRI_AVERAGE. There are multiple profile runs for each date
and a corres ~onding IRI value is entered in the database for each run. Due to the
quality contr | guidelines for IR!I profiling, some of these runs are omitted. . The
guidelines re quest providing the [R! profile for each run that is within a maximum preset
deviation from the other runs on the same date. Accordingly, the averaging of the IRI
runs can be Zisputed if it was not for the profiler's specification to use only data within a
2% deviati. ..

Table 8 sh- 's a minimum of five runs for each profile date. If one of these runs is not
within the 2 * deviation then additiona! runs are preformed. Those that are not within
the 2% cevic..ion are removed, and not included in the database. In the LTPP database
each prcfiic inis recorded in the =ble MON_PROFILE_MASTER. The runs are in
numerical < _gquence and so a prof..c run is not to be included if a break in the numerical
sequence (i.c. 1, 2, 3, 5, 6) would occur.
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Table 6. Example of the LTPP table EXPERIMENT_SECTION

SHKP_ID | STATE|[CONSTRUC I ION| CN_ASSIGN_ | GPS |EXFERIMEN | |>TATUS|ASSIGN_DATE | DEASSIGN|SEAS|RECORD |

_CODE _NO DATE _NO _DATE | _ID |_STATUS
2011 89 1 31-May-78 | G 2 31-May-78 E
1647 88 1 31-Jul-86 | G 2 31-Jul-86 E
1646 | 98 1 31-May-80 | G 2 31-May-80 E
1680 87 1 31-May-84 | G 2 31-May-84 E
1802 84 1 30-Sep-80 | G 2 30-Sep-80 E
1640 54 1 31-May-83 | G 2 O 31-May-83 |10-Aug-91 E
1683 50 1 31-Aug-63 | G 2 6B 31-Aug-63 [24-Sep-91 E
1683 50 2 24-Sep-91 | G 6B 24-Sep-91 E
1681 50 1 31-Aug-63 | G 2 6B 31-Aug-63 | 9-Sep-91 E
9025 47 1 31-Dec-79 | G 2 31-Dec-79 | 1-Sep-95 E
9025 47 2 1-Sep-95 | G 6B 1-Sep-95 E
5 Note: This table is an abbreviated version. The actual table used has 48 rows. E E E E E

| | | I |
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Table 7.

Example of the LTPP table INV_AGE

SHRP_ID | STATE_CODE CONSThI‘?gCTION CONSJ:TI:IECTION TRAFSIA(?T_IEOPEN
2011 89 1 1-Jun-78 1-Oct-79
1647 88 1 1-Aug-86 1-Oct-86
1646 88 1 1-Jun-80 1-Jun-80
1680 87 1 1-Jun-84 1-Jun-85
1802 84 1 1-Oct-80 1-Oct-80
1640 54 1 1-Jun-83 1-Jun-83
1683 50 1 1-Sep-63 1-Sep-63

Note: This table is an abbreviated version. The actual table used has 36 rows and 11 columns
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Table 8. Example of LTPP the table MON_PROFILE_MASTER

STATE | SHRP |CONSTRUCTION| PROFILE | PROFILE RUN IRI_LEFT iRI
CODE ID NO DATE TIME NUMBER WHEEL_PATH AVERAGE
47 2008 1 24-May-90 7:39:35 1 1.16 1.19 1.18
<7 e 1 R 25-May-92 7:39:35 2 1.16 1.21 1.19
47 2008 1 26-May-90 7:39:35 3 1.18 1.19 1.19
47 2008 1 27-May-90 7:39:35 4 1.17 1.18 1.18
47 2008 1 28-May-90 7:39:35 5 1.16 1.19 1.17
47 2008 1 29-May-90 7:39:35 6 1.17 1.19 1.18
47 2008 1 30-May-90 7:39:35 7 1.17 1.21 1.19
47 2008 1 31-May-90 7:39:35 8 1.18 1.2 1.19
47 2008 1 31-May-90 7:39:35 9 1.17 1.2 1.18
47 2008 1 16-Apr-92 16:02:38 1 1.14 1.3 1.22
47 2008 1 17-Apr-92 16:02:38 2 1.1 1.31 1.21
47 2008 1 18-Apr-92 16:02:38 3 1.13 1.3 1.22
47 2008 1 19-Apr-92 16:02:38 4 1.12 1.34 1.21
47 2008 1 20-Apr-92 16:02:38 5 1.1 1.33 1.13
47 2008 1 23-Feb-94 8:52:13 1 1.1 1.16 1.13
47 2008 1 24-Feb-94 §:52:13 2 1.1 1.15 1.12
47 2008 1 25-Feb-94 8:52:13 3 1.12 1.19 1.16
47 2008 1 26-Feb-94 8:52:13 4 1.12 1.12 1.12
47 2008 1 27-Feb-94 8:52:13 5 1.13 113 1.13
47 2008 1 26-Apr-96 9:23:46 1 1.12 1.27 1.19
47 2008 1 27-Apr-96 9:23:46 2 1.1 1.26 1.18
47 2008 1 28-Apr-96 9:23:46 3 11 1.27 1.18
47 2008 1 29-Apr-96 9:23:46 4 1.13 1.25 1.19
47 2008 1 30-Apr-96 9:23:46 5 1.11 1.28 1.19

Note: This table is an abbreviated version. The actual table used has 1211 rows and 49 columns.




16 T [T AT T L e (LI A e S S B S

: dueto
+4— rehabilitation

IRI (m/km)

T B B

0‘ 9 1 1 1 1 ; L L 1 i L 1 1 i t 1 1 1 : i L 1 i i L i 1 1 i 1 1 | )
1000 1500 2000 2500 3000 3500 4000 4500

Age (days)

Figure 9. GPS 2 site with irregular trend

IRI should steadily increase with time unless there were some external interferences.
This rationale was used to check any abnormal breaks in the time-sequence of the IRI
data at each site.

After anomalies similar to that shown in figure 9 are found, the IRI trends are further
investigated to ensure the reliability of the data at other sites and to explain such
anomalies.

Since rehabilitation or maintenance activities can affect pavement roughness they are
assumed to be the major reason for these anomalies. This could be easily checked
from the records in the rehabilitation and maintenance module. The following tables
were investigated: ?%

31



MNT_ASPHALT_CRACK_SEAL: Contains information about any crack
sealing that took place at a GPS site.

MNT_ASPHALT_PATCH: Contains information about any potholes
repaired or any other patchwork that
was performed at a GPS site.

MNT_ASPHALT_SEAL: Contains information about any seal
coats that were performed at a GPS
site.

MNT_HIST: Contains the information on all the

maintenacne activities for each site.

RHB_LAYER: Contains information on the layers that
were added to a rehabilitated GPS site.

RHB_RESTORE_AC_SHOLDER: Contains information for any data if the
site received sholder rehabilitation.

Rehabiiiation and maintenance activities justifies, as expected, many of the anomalies
in the age vs. IRl relationship. For example, the odd trend in figure 9 was the result of
rehabilitation.

The IRI of individual wheel paths versus time is compared for each site and some of the
exterior whzel paths can be seen to be more erratic than the interior wheel paths. This
could be . e to the effects of crack close to the edge of the pavement'? figure 10
shows a spike in the trend. Upon investigation, it is found that the profile run on that
date is in the incorrect lane, thus creating the spike. Another important observation
regardi:.; the available IRl values that it is not always recorded during the same time
each yc~r. This variation can lead to seasonal and environmental effects, which

influenc : the IRI values. Moisture can cause the subgrade to swell or shrink and durina
the winter the frost can cause the subgrade to heave. %

After ali <~ s are thoroughly investigated to determine the variation of IRI with the age
of the pu.  nent, the sites that received maintenance or rehabilitation are eliminated
due to the Irop in IRl values. Those sites that have erratic IRI values are not included
in the N training database. The criteria used to determine if a site has erratic data is
the R? .- ‘.2 for the linear relationship between IRl and age. Sites with an R? value less
than 0.7 :r negative slopes are not included for future use because it is clear that IRI
cannot 1~ rove with time without roadway maintenance or rehabilitation. The summary
of the R values for individual sites are as follows: over 75% the sites were above R? =
0.8, and uvar 80% above R? = 0.7. Approximately 10% of the sites were not above this
thresho!c < R?=0.5.

Itis im; .. nt to note at this stage, that when including all data points, the R? value of
the relc: > between age and [RlI is calculate 0.11. Data for individual sites seem to
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contrac :* 'his by having a high correlation between age and IRI. This results shows that
the det. .0.ation behavior of different sites, within a geographical region, is less
conside. :t'e than that of one site. Additional research should be conducted to explain
this var:. ©.~n.
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Figure 10. Plot of left and right wheel paths

It is a we I-known fact that roads with high levels of traffic, especially truck traffic, need
to be repaired more often than roads with lower levels of traffic. Heavy vehicles will do
far more 1amage to pavements than lighter vehicles. The relationship between the
weight cf the vehicle and the damage it causes to the road is exponential. ?® An
equiva! 1t standard axle load (ESAL) equates the weight of a vehicle’s axle to a

standai = load, or 18 kip axle. The concept of vehicles causing damage to the pavement,

33



lead us 1o the investigation of the relationship between IRl and ESALs. The LTPP
datab: < : keeps track of the ESAL in table TRF_EST_ANL_TOT_LTPP_LN. Table 9 shows
an example of this data. In this table the column labeled KESAL_18K_TOTAL has the total
ESALs for each year, and is entered as units of thousands of ESALs, or KESALs (Kilo
ESALs). The IMS records that were received first contained only the traffic data before
1993. The remaining data used is also received along with the IMS data, but is from a
contrac'or. This data is unprocessed and is contained in ASCII file format. Macros are
written in Microsoft Excel to process these large data files so that the required data can
be extr:. :ted.

Using ‘.. » processed data, the ESALs can be determined to the exact day that the IRI
was rec -Zzd, while the IMS data is only on a yearly basis. The KESALs in the original
databac : are entered on a yearly basis and cannot be used to find the correct
relatiorshi;> with IRl. For example, if the IRl is measured in the spring, the

corresp "nding ESAL entry in the LTPP database is for the whole year, thus these
ESALs nclude those which caused damage to the pavement after the IRl is recorded.
Traffic « ata before 1993 is located in the LTPP database and entered as KESALs/yr. It
is unlik ‘he processed data, which can provide ESAL values for each day. A weighted
value i¢ 1sed to correct this problem, and is shown in equation [22]. For example the
data fr 1site 47-2008, shown in both tables 8 and 9, has no roughness profile for the
year 1. s!. All the ESALs from the previous profile run should be taken into account so
as to fc 1 ~n appropriate NN datalase. Refer to both tables 8 and 9 to validate some
of the f. .. /ing numbers:

1*IRI P -rrad KESALS (1990)
24-ma © = 221 days remaining in the year = 171 KESAL/yr (221/365) = 103.5 KESALs [22]

KESALs (1991)

1991 = 365 days in the year = 182 KESAL/yr (365/365) = 182 KESALs
2™ |RIR  -ed KESALs(1992)
16-Apr-¢. = 106 days into the year = 193 KESAL/yr (106/365) = 56.1 KESALs

103.5 KESALs + 182 KESALs + 56.1 KESALs = 341.6 KESALs

The to:- ' =“SALs incurred between the 1990 and 1992 profile recording is calculated as
3416t ¢ ALs. There are other problems associated with the traffic data. There are
sitesw  oles’ in the data. Some sites have no KESAL data available for a particular
year. |- hese few cases, the KESALs were estimated using Federal guidelines as
show i.. ‘hapter 4 of Investigation of Development of Pavement Roughness. ('?

Traffic ~d age are external variables that affect the deterioration of a pavement, but
there ¢ : characteristics of the pavement itself that affect the rate of deterioration.
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Layer tri.ckness and the material properties of those layers have a known effect on
pavement life. The structural number (SN) is an appropriate indicator of these

charate .<*ics because it combines the layer thickness and materials into one number
for eac- "avement. The SN is supposed to exist in the LTPP database within the table
TRF_ES . NL_TOT_LTPP_LN, column ESAL_FACTOR_SN, but there is no data in this
columr or the sites requested. The SN is instead found in the traffic database files that
are se..* along with the IMS data. This SN is recently calculated so it has not yet been
placed 7 the IMS database. From a phone conversation with the contractor, it is
determ <d that a backcalculation process using falling weight deflectometer readings is
used tc .a!culate the SN. This is a common procedure and there are Federal guidelines
for this - rccoss, @324
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Table 9. Example of table TRF_EST_ANL_TOT_LTPP_LN

SHRP_ID | STATE [CONSTRUCTION MODIFICATION | BEGIN_DATE| END_DATE KESAL 18 k
CODE _NO NO TOTAL

2008 47 1 1 1-Jan-88 | 31-Dec-88 148
2008 47 1 1 1-Jan-89 | 31-Dec-89 163
2008 47 1 1 1-Jan-90 | 31-Dec-90 171

7 2008 47 1 1 ! —'I—Jan-91 31-Dec-91 182
2008 47 1 1 1-Jan-92 | 31-Dec-92 193
2001 47 1 1 1-Jan-93 | 31-Dec-93 203
2001 47 1 1 1-Jan-94 | 31-Dec-94 214

Note: This table is an abbreviated version. The actual table used has 538 rows and 27 columns.




Choosing the Variables

The development of the models in this project employed the LTTP data either in its
original form or in a manipulated form.Example of data manipulation is that of a time
variable, which is calculated by taking the difference in time between one IRI profile and
another. This section explains these concepts along with the process of choosing which
variables to use in this project.

Determination of Statistical Significance

Roughness is an appropriate way to determine the conditions of a pavement. The
roughness measurement in the LTPP database is IRl and it is the variable to be
predicted in this research project. Figure 11 shows a good relationship between IRI and
age for a site in New Jersey. The R in that figure is the R? value. Noticeably, it shows a
high correlation between age and IR for that site. Multiple linear regression and the
coefficient of determination, R?, is used for determining the significance of the variables
that are used for the models

The measure of the improvement in the coefficient of determination, R?, is used as an
lndlcator of the ability of the variable to predict IRI. As mentioned in the previous section
the R? for the age vs. IRl is equal to 0.11 when all the sites are combined. With the
addition of ESALs to Age and IRI, the multiple regression model for all the sites
combined, has an R? value of 0.35. This does not explain the variance in the IRI data,
but does improve the R? value.
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Figure 11. Typical IRI Vs. age plot for a typical GPS 2 site

As for the pavement structural characteristic, SN is chosen as the independent variable.
In the determination of the IRI of an individual site there is no correlation between SN
and IRl because SN is constant. It does not vary over time, however, when all the sites
are pulled together it becomes a distinguishing variable among different sites. The R?
value for the multiple linear regression involving IRI, age, ESALs and SN improved
greatly. The new R? becomes 0.49 when SN was added to IRI, age and ESALs in a
multiple linear regression model. This means the new regression model can determine
about half the variance in the data. A large portion of the remaining variations is
thought to be due to the inconsistencies introduced during the initial construction of
each pavement. The section on initial IRl and delta variables attempts to explain the
use of an initial IRI to incorporate this variance.

A statistical measure is used to compare different models. In the following sections
statistical notations of sum squared errors (SSE) or root mean squared error (RMSE)
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are used for comparison of different models. SSE and RMSE are computed as the
following:

" 2
SSE = D (x, - X,)

[23]
i=1
Where,
Xi = observation "'
% = estimated value of "X/
n = sample size

Initial IRIs and Delta Variables

The construction of an asphalt pavement has several variables that can introduce
inconsistencies in the initial pavement’s roughness. Even though, there already exists
many models for estimating the initial IRl of pavements at the time that the pavement is
constructed (72), the predicted values are theoretical and could predict quite different
values from the actual initial IR! values. Moreover, these models involve the use of
numerous variables to predict the initial IRl value (equation [12]), which could be quite in
practice due to the availability limitations of data and costly sometimes. Using these
calculated IRI values in the development of pavement performance models might
question their reliability. Moreover, these models also involve the use of numerous
variables to predict the initial IRI value (equation [12]).

Using an initial measured IRI values to alleviate the difficulties of estimating an initial
IRI could represent a more practical and yet dependable approach. There are two forms
of logic that are used in attempting to adopt an initial IRI value in conjunction with neural
networks and multiple regression.

The first approach is to let the neural network take the initial IRI into account by giving it
known IRls as an input vector and the age at which the IRl is measured. The A values
are the chanje in time (¢, —¢,) and change in ESALs (ESAL, — ESAL,) from the date of
the known IRI to that of the IRI that is to be predicted.

During training of NN, each data point is considered separately and not associated with
any group of points for an individual site, so in the first case of training, each set of data
uses the previous IRl value as a basis of predicting the future IRI. To clarify this logic, a
small example is shown. The table 10 gives the date at which the IRI is measured. As
observed, there is no data reccrded before 1990. The pavement is built in 1974, and
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there is no data on which to base an initial IRI value. Because of this the IRI value
(2.787) measured on September 6, 1991 is used as the target value and the IRI (2.743)
from Nov. 30, 1990 is employed as an initial IRl indicator. This is for the first data set
developed from this site. The next data set uses the IRI (2.787) from Sept. 6, 1991, as

its initial IR! indicator. Below are the first three values developed from the site in table
10.

Input Values Target Value
Initial IR! indicator At AESAL IRI
1. 2.743 260 33068.5 2.787
2. 2.787 206 28627 2.918
3. 2.918 356 46658 2.874

The second logic that could be used in the model is similar to the first, but all data points
use Nov. 30, 1990 as a reference point for the initial IRl indicator (2.743). Below is the
same three data points develcped from table 10, using the second model development
logic.

Input Values Target Value
Initial IR! indicator Jay, AESAL IRI
1. 2.743 280 33068.5 2.787
2. 2.743 ECB 61695.9 2.918
3. 2.743 622 108354.2 2.874

Notice that the same value Is being predicted, and the only difference between the two
type of models is the way time between IRI values is measured. Notice also that if the
actual initial IR1 is known it can be used as the initial IRI variable value, At = Age, and
AESALs = Lifetime ESALs. This, naturally, is correct because a deterioration model

should take into account all the damage that has occurred during the pavement's
lifetime.
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Table 10. Compiled data for a typical GPS-2 site ¢

STATE | SHRPID |IRI_RUN DATE | CONSTRUCTION AGE IRI ESALS |SUMESALS| SN
CODE (days)
(Measured)
34 1033 707000
34 1033 30-Nov-90 5-Jan-74 6173 2.743 47583.5 | 754583.6 | 4.9
34 1033 6-Sep-91 5-Jan-74 6453 2.7874 33068.4 | 787652.1 | 4.9
34 1033 18-Jun-92 5-Jan-74 6739 29176 | 28627.4 | 816279.5 | 4.9
34 1033 9-Jun-93 5-Jan-74 7095 2.8738 | 46658.4 | 862937.8 | 4.9
3; o 1633 8-Jun-94 5-Jan-74 7459 2.9016 39753.9 | 902691.8 | 4.9
34 1033 22-Jun-95 5-Jan-74 7838 3.1426 | 26645.6 | 929337.5 | 4.9




DEVELOPMENT OF TRAINING DATABASE FOR THE NEURAL NETWORK MODEL

There are 16 GPS-2 sites used for the development of this database. Three GPS-1
sites are also incorporated into a portion of the database for the later experiments.

Each site had from three to eight IRI values available. Consequently, there are 101
data points in the database and 118 with the additional GPS-1 sites. There is one
target IRI vector for each data point and three different input vectors for each data point.
Thus, there are 118 target vectors and 354 input vectors. These are the dimensions for
the models developed at the first stage. Later models use more input vectors. These
additional input vectors are the A's and initial IRI values discussed in the previous
section and are the only variants of the original 354-vector database (i.e. change in
time, change in ESAL, etc.). This database is located in Appendix B .
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MODEL DEVELOPMENT AND RESULTS

MODEL DEVELOPMENT

We employ two types of approaches for developing pavement deterioration models,
namely neural networks and multiple linear regression. This project developed four
different basic models and these models differ by the type of variables used in
developing them. A portion of the available data is not included in developing the models
so that it can be used later to test the developed models. The portion of data that is
removed for testing purposes is described under each experiment’s description.

Our main goal is to develop a model of the following form:

Where, Y = The dependant variable to be estimated
X, = The independent variables employed for estimating Y

Table 11 describes all the dependant and independent variables used in the
development of the models. The following section illustrates each of these four models.
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Table 11. Description of variables

VARIABLE DESCRIPTION RANGE

AGE Measured in thousands of days from the date of 1.2~16.5
construction to the day of the IRI reading.

Cumulative | The number of ESALs the pavement experienced 0.2~20
ESALs from construction to the day of the IRI reading.
(Millions of ESALSs)

Structural | The structural number recorded closest to the day |2.85~6.6
Number of the IRI reading. Most values are from back-
calculations of falling weight deflection readings.

Delta Time | The difference in time between the initial IRI reading | 0.4 ~ 3.0
and the target IRl. Measured in years.

Delta ESALs | The ESALs experienced by the pavement between | 0.1~ 8.0
the initial IRl and the target IRI. (Measured in
hundreds of thousands ESALS)

Initial IRI(1) | Uses the IRI of the previous reading and the next 07~29
IRI.

Initial IRI(2) | Uses only the first recorded IRI as the initial IRI. 0.7~27

BASIC MODEL #1 This model's dependant variable is IRI, in units of m/km. The
independent variables used in this model are as follows:

IRl = f[age, cumulative ESALs and Structural Numbers]

BASIC MODEL #2 This model's dependant variable is IRI, in units of m/km. This model
uses an initial IRl value to estimate the target IRI value. The
independent variables used in this model! are as follows:

IRI = f[initial IRI, age, delta time, structural number and delta ESALSs]

BASIC MODEL #3 This model is a simplified version of basic model #2. It is the same
model in all ways except ESALs that is not considered. The
independent variables used in this model are as follows:

IRl = f[initial IRI, age, delta time, and structural number]
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BASIC MODEL #4 This model is the same as Basic Model #2 but with a different initial
IRI value and different delta values. The input vectors used in this
model are as follows:

IRI = f[initial IRI, age, delta time, structural number and delta ESALs]

Sub-Model 1a Basic model #1 is used for this sub-model. Six individual data points
are randomly removed from the data set for the purpose of testing.
These test points are consisted of only GPS 2 sites data.

Sub-Model 2a Basic model #2 is used for this sub-model. Six individual data points
are randomly removed from the data set for the purpose of testing.
These test points are consisted of only GPS 2 sites data.

Sub-Model 3a Basic model #3 is used for this sub-model. Six individual data points
are randomly removed from the data set for the purpose of testing.
These test points are consisted of only GPS 2 sites data.

Sub-Model 4a This is exactly the same as Sub-Model 2a except that basic model #4
is used instead of basic model #2.

Sub-Model 1b This is exactly the same as Sub-Model 1a but instead of six points
being removed for the creation of an evaluation data set, all the points
from two sites are removed. Eleven points in all are removed for
testing.

Sub-Model 2b This is exactly the same as sub-model 2a but instead of six points
being removed for the creation of an evaluation data set, all the points
from two sites are removed. Eleven points in all are removed for
testing.

Sub-Model 3b This is exactly the same as sub-mode! 3a but instead of six points
being removed for the creation of an evaluation data set, all the points
from two sites are removed. Eleven points in all are removed for
testing.

Sub-Model 4b This is exactly the same as sub-model 4a but instead of six points
being removed for the creation of an evaluation data set, all the points
from two sites are removed. Eleven points in all are removed for
testing.

It should be mentioned that the points removed from the data set are not used in
planning the NN or developing the linear regression equations. They are used only to
test the models after they are trained. Table 12 gives a brief summary of the models
developed in terms of variables employed.
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Table 12. Summary of Sub-Models variables

Aok | MODELS | AGE | SN CUM. | DELTA [)E'%'j;f\ IRI(1) | IRI(2)
1 1a8 | YES | YES | YEs
2 2a8b | YES | YES YES | YES |YES
3 3a8b | YES | YES YES YES
4 438 | YES | YES YES | YES YES

LINEAR REGRESSION MODELS

Linear regression models are developed to test the efficiency of the NN models and to
use as a guide for developing them. After using the same variables for both types of
models, the results are compared. Testing of the linear regression models is performed
by using the same points employed to test the NN models. Tables 13 and 14 show the
results of regression models. Developed multiple linear regression models are in the
following form:

Y=B,+BX, +B,X,++BX, [24]

Where, = Dependant variable
Independent variables
Estimated Parameters

Y
Xn
B,

We employed two different techniques for developing multiple linear regression models;
Step-wise regression and Standard linear regression.

Table 13 shows the results of a stepwise regression procedure.

Table 14 shows the same results as that of table 13 but this time standard linear
regression is used. As indicated by the coefficient of correlation, R?, the difference
between the two types of regression models shows very similar results based on the
modeler's understanding of the process that's being modeled.

The significance of the variables and coefficients of the model is not apparent by looking
at table 13. In table 14, sub-models 2, 3 and 4 have negative intercepts for both "a” and
"b" series. A negative intercept at first seems to be impossible because this means that
at time zero the IRl is negative. This is due to the use of the initial IR| variables. Thus,
the IRI intercept at time zero should be either (By + B1X1) for Sub-models 2 and 3 or (Bo
+ B.X>) for sub-model 4.
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Table 13. Stepwise Regression

Bo B, B, B; B Bs | Bs | B | R
Sub-Model 1a 0.9956 * * 0.0638 | .0516 * * * 103192
Sub-Model2a | -0.1782 | 1.0642 * 0.0113 * ** 100833 | .0117 | 0.9639
Sub-Model 3a | -0.1543 | 1.0662 * 0.0083 * ** 100967 * |0.9608
Sub-Model4a | -0.1574 * 1.0339 | 0.0304 * ** ** 10.2131]0.9124
Sub-Model 1b | 0.9605 * * 0.0690 | 0.0558 [ ** * *  10.3465
Sub-Model2b | -0.1887 | 1.0594 * 0.0109 * ** 10.0041 | 0.0131 | 0.9685
Sub-Model 3b | -0.1695 | 1.0702 * 0.0071 * ** 101101 | * 9632
Sub-Model 4b | -0.0228 * 1.0515 | 0.0266 * -0.0298 | ** |0.2265]0.9223
* vVariable is not used in the model
** Negligible
Table 14. Standard Linear Regression
Bo B, B, Bs B Bs | Bs | B | R?
Sub-Model 1a | 0.7289 * * 0.0687 | 0.0488 | 0.0513 | * * lo.3277
Sub-Model2a | -0.1877 | 1.0638 * 0.0115 * 0.0049 | 0.0838 | 0.0115 | 0.9639
Sub-Model 3a | -0.1845 | 1.0636 * 0.0089 * 0.0060 | 0.0978| * |0.9609
Sub-Model 4a | -0.0779 * 1.0504 | 0.0267 * -0.0210 | 0.0066 | 0.2110 | 0.9142
Sub-Model 1b | 06773 * * 0.0745 | 0.0533 | 0.0530 | * * |0.3553
Sub-Model 2b | -0.1648 | 1.0611 * 0.0104 * -0.0047 | 0.0931 { 0.0134 | 0.9685
Sub-Model 3b | -0.1886 | 1.0687 * 0.0076 * 0.0037 |0.1106| * 9632
Sub-Model 4b | -0.0698 * 1.0653 | 0.0239 * -0.0289 | 0.0138 | 0.2152 | 0.9237

* variable is not used in the modei

Table 15. T values for the Standard Linear Regression presented in table 13

t-

Bo B, | B | B | B | Bs | Bs | By |Table

(0.90)
Sub-Model 1a 2.7282 * * 4.0097 | 4.8267 | 1.0696 * * 1.658
Sub-Model 2a -2.2534 | 39.6824 * 2.3417 * 0.1440 | 2.9551 | 2.9428 | 1.671
Sub-Model 3a -2.1929 | 39.1095 * 1.7533 * 0.4592 | 3.3465 * 1.671
Sub-Model 4a -0.6490 * 21.6151| 3.3973 * -1.0584 | 0.5475 | 8.8786 | 1. 671
Sub-Model 1b 2.1695 * * 3.7090 | 4.6999 | 0.9808 * * 1. 658
Sub-Modetl 2b -2.0371 | 41.3676 * 2.0978 * -0.3812 | 3.0858 | 3.3848 ] 1. 671
Sub-Model 3b -2.1807 | 38.9688 * 1.4386 * 0.2846 | 3.4682 * 1. 671
Sub-Model 4b -0.5887 * 22.1653 | 1.1281 * -1.5057 | 9.1880 | 3.0148 | 1. 671

* Variable is not used in the

model

47




LINEAR MODELS

Model 1 Y(IRl) = Bg+ BaXs + BsX4 + BsXs Sub-Models 1a & 1b [1]
Model 2 Y(RIl)= Bg+ B:X4 + BaXz + BsXs + BeXs + B7 X7 Sub-Models 2a & 2b [2]
Model 3 Y(Rl) = Bo+ B1Xq + BaXs + BsX5 + BeXe Sub-Models 3a & 3b [3]
Modal 4 Y(IRI) =  Bp+ BoXz + BaXs + BsXs + BeXg + B7X7 Sub-Models 4a & 4b [4]
Where,

Bo = Intercept

X1 = IRI(1) (m/km)

X2 = [RI(2) (m/km)

X3 = Age (Thousands of days)

X4 = Millions of ESALs

Xs = Structural number

Xs = Delta time (years)

X; = Delta ESALs (100,000)

The coefficients ( B,) are displayed in tables 13 and 14. The t-values for each
parameter are shown in table 15.

In table 16 testing results are shown for sub-models 1b-4b. Table 17 shows the SSE
and RMSE of the results for each model. Tables 16 and 17 only include the results for
the “b” series. The main reason for this elimination, to prevent any biased outcome from
the series “a” in the neural network, since the test data points originated from the same
set that used to train the neural network, whereas the “b” series test data points come
from the two sets. Another reason is to simplify the already exorbitant amount of data
and results. The D values in table 16 and subsequent tables represent which data point
is tested. For example D1 through D11 represent the eleven test data points in the 'b’
series. This is just the nomenclature used to distinguish among the individual test data
points. This same system is applied later in the paper to other test data points, in which
case the numbering is just increased sequentially (D12, D13, etc.).

48



6v

Table 16. Linear Regression Sub-Model Testing Results

Test Data D1 D2 D3 D4 D5 D6 D7 D8 D9 | D10 D11

Sub-Model 1b | 1.0959 [1.1266| 1.1573 | 1.2027 | 1.2562| 1.3043 | 1.4163 | 1.2434 | 1.278 | 1.3292 | 1.3568
Sub-Model 2b | 1.3745 |1.3649| 1.4129 | 1.4503 | 1.4943| 1.5309 | 1.7652 | 1.0932 |1.1956| 1.2018 | 1.245
Sub-Model 3b | 1.387 [{1.3751| 1.4209 | 1.4364 | 1.4612| 1.514 | 1.7079 [ 1.1159 | 1.22 | 1.2326 | 1.2537
Sub-Model 4b | 1.6667 |1.6642| 1.7045 | 2.1143 |2.4365| 2.2004 | 3.268 | 1.1404 {1.1613| 1.2277 | 1.336
Actual 1.3486 (1.3914| 1.3838 | 1.4022 |1.4446| 1.4722 | 1.486 | 1.1462 |1.0924: 1.2086 | 1.268
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Table 17. Sum Squared Errors and standard error for the test results of table 4-6

Overall | RMSE
Test Data D1 D2 D3 D4 D5 D6 D7 Dg8 D9 D10 D11

S.S.E.
Sub-Model 1b | 0.0639 | 0.0701 | 0.0513 | 0.0398 | 0.0355 | 0.0282 | 0.0049 | 0.0094 | 0.0344 | 0.0145 | 0.0079 | 0.3599 | 0.1900
Sub-Model 2b | 0.0007 | 0.0007 | 0.0008 | 0.0023 | 0.0025 | 0.0034 | 0.0780 | 0.0028 | 0.0107 | 0.0000 | 0.0005 | 0.1024 | 0.1010
Sub-Model 3b | 0.0015 | 0.0003 | 0.0014 | 0.0012 | 0.0003 | 0.0017 | 0.0492 | 0.0009 | 0.0163 | 0.0006 | 0.0002 | 0.0735 | 0.0860
Sub-Model 4b | 0.1012 | 0.0744 | 0.1028 | 0.5071 | 0.9839 | 0.5303 | 3.1755 ; 0.0000 | 0.0047 | 0.0004 | 0.0046 | 54850 | 0.7410




NEURAL NETWORK (NN)

The NN used in the experiments employs feed-forward backpropagation training. Each
experiment used at least a three-layered network with the first layer having a number of
nodes equal to the number of input variables used in each individual experiment. The
second or hidden layer consists of a varying number of nodes and the last layer has one
output node. The first two transfer functions vary between tan-sigmoid functions and
log-sigmoid functions. The output, unlike the other two layers, is determined by a linear
transfer function. Matlab NN Toolbox is used to train and to test the NN developed in
this project "

Determination Of The Optimal Number Of Layers And Nodes In The NN

A NN should have both an optimal number of layers and an optimal number of nodes in
each layer. This section discusses the determination of the optimal number of hidden
layers and number of nodes in each layer. First, the optimal number of nodes is
investigated and then the optimal number of layers. The optimization of the nhumber of
nodes starts with using only one hidden layer.

The optimal number of nodes is determined by simply running the Matlab NN training
program with varied number of nodes in the hidden layer. This means that a single
hidden layer is used and the number of nodes starts at one. It is then increased by one
node for each consecutive run until the NN is trained for ‘n’ nodes. ‘n’ is the number of
nodes in the hidden layer. The NN reaches a point where the number of nodes
becomes too high. This phenomena is called diverging of the NN. Divergence is
apparent when all the test points return the same value. To test the results of this
section the same eleven test data points are used from sub-models 1b, 2b, 3b and 4b.
The optimal number of nodes is determined by comparing the sum-squared error (SSE)
for the eleven test points.

net = newff ([0 5;0 18;2 7;0 3;0.1 20],[5 n 1],{'tansig' 'tansig' 'purelin'});

The line above represents the Matlab command that creates the desired NN
architecture. The vector (5 n 1] describes the architecture of the NN. The first
variable, 5, represents the number of nodes in the input layer. ‘n’ represents the
number of nodes in the hidden layer that will be determined in this section. It is the
number of nodes in the first hidden layer. The last number represents the nodes in the
output layer, namely one.

Figure 12 is a flowchart demonstrating the process used to find the optimal number of
nodes and hidden layers for the NNs used in this section. This process is preformed for
all the sub-models in the b series only (see previous for explanation). On an average,
seventeen different NN programs are created for determining the optimal number of
nodes and layers for each sub-model. Sub-model 2b results are used in this section for
the purpose of demonstrating this research process. Figure 13 shows the SSE for sub-
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model 2b as the number of nodes in the hidden layer increase. Thus, for this sub-
model, three nodes in the hidden layer are found to be the optimal number.

Table 18 shows the actual values of the S.S.E. for the number of nodes in the first
hidden layer. Figure 14 shows the plot of the measured IRI versus the IRI predicted by
the NN. Series 1 on the chart shows the linear interpretation of the data, if the NN were
to predict the data perfectly (45-degree line). Equation [29] shows the equation of the fit

y =1.2417x-0.3261 R®=0.8559 [29]

for the predicted IRI vs. measured IR of figure 14. The correlation coefficient (R?) is
shown for equation [29], this illustrates how well sub-model 2b estimates IRI. The
predicted IRI has a fairly good correlation value and is close to the 45-degree line. The
equation would have an intercept of zero along with a slope of one, if it were to predict
the data perfectly.

After the optimal number of nodes is determined for one hidden layer, the next thing that
must be optimized is the number of layers. The number of nodes first remains constant
at the optimal number of three for each hidden layer. Then the number of nodes will
vary for each additional hidden layer. Table 19 shows the results of introducing
additional hidden layers. After three hidden layers, the NN started diverging. In other
words, it is not training properly at this point.
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Figure 12. Flowchart for determining the optimal NN architecture
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Figure 13. Sum squared error of NN with respect to the number of nodes in the hidden
layer in sub-model 2b.

Table 18. Sum Squared Error for different number of nodes in sub-model 2b

Number of nodes 1 2 3 4 5

S.S.E. 0.2435|0.0916 | 0.0570 | 0.1495 | 3.1046
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Figure 14. Correlation of the Predicted IRI Vs. the Actual IRI

Different NN architectures are identified as a result of the optimization process
described in Figure 12. The NN architecture in this report is represented as follows; ‘H’
followed by a number represents the number of hidden layers and the numbers that
follow after that (_3_) is the number of nodes in each layer. Example H4_3_3_3 3 has
four hidden layers (H4) and each layer contains 3 nodes (_3_3_3_3). The Matlab
command would be changed in to the following:

net = newff ([0 5;0 18;2 7;0 3;0.1 20],(5 3 3 3 3 1],
{'tansig''logsig’'logsig''logsig’''logsig' 'purelin'});

The “3's” represent hidden layers which can be seen between the “5” node input layer
and the “1” node output layer, (5 3 3 3 3 1). Figures 15 and 16 show the graphic
representation of the summed squared error as the number of layers increases.

Next, the number of nodes is varied within each of the layers to determine the optimal
configuration of nodes and layers. Table 20 shows the results for the optimal
configuration for each hidden layer that is determined by trial and error. The way to read
the architecture is the same as in table 19 and it shows that the number of nodes in the
hidden layers is different for each trial.
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The conclusion is that one hidden layer with three nodes is the optimal configuration for
sub-model 2b. This process is used to determine the optimal configuration for each
model. Table 21 shows the optimal configuration determined by this procedure for each
NN sub-model in the b series.

Table 19. Sum Squared Error as Number of Hidden Layers Increase for Sub-model 2b

Architecture ‘ H1_3 l H2 3 3 ‘ H3_3_3_3 I H4 3 3.3 3

SSE. | 0057 | 17477 | 14462 | 04243

Figure 15. S.S.E. of NN with respect to the number of nodes in the first hidden layers for
Sub-model 2b

Summed Squared Error Vs. Number of Nodes

Number of Nodes

0 2 4 6 8 10 12 14

Figure 16. Figure 15 magnified

Summed Squared Error Vs. Number of Nodes

1 Note: The
bar extends
beyond this
graph.

Number of Nodes

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
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Table 20. Optimized Sum Squared Error as Hidden Layers Increase for Sub-model 2b

| Architecture H1 3 H2_3_1 H3 322 | H4 4.3 21
L S.S.E. 0.057 0.0641 0.1678 0.1311

Table 21 Optimal configurations of the NN sub-models shown in chapter 4

Numbers of layers Numtl‘)_ers of nodes in
idden layer
Sub-model 1b 3 1
Sub-model 2b 3 3
Sub-model 3b 3 1
Sub-model 4b 3 1

SUMMARY OF NN TESTING RESULTS

The optimal NN architecture, determined in the previous section, is used for each sub-
model as described earlier in this chapter . Tables 22 and 23 summarize the testing
results of the NN models. All the models in a series use the same six test data points
and those in the b series all use the same eleven data points to test each sub-model.
Table 23 gives the SSE and RMSE for each sub-model’s output compared to actual IRI.
Note that D71 through D11 each represents a test data point as indicated by the sub-
model's description in the first section of this chapter.
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Table 22. NN model predictions for their respective test points

Test Data D1 D2 D3 D4 D35 D6 D7 D8 D9 D10 D11
Sub-model 1a 1.6253 | 1.56393 | 1.118 | 1.0051 1.491 | 0.9124 - ) !
Sub-model 2a 1.5454 | 1.6201 | 0.8658 | 1.0478 | 1.4813 | 0.8972

Sub-model 3a 16165 | 1.664 1.151 1.0872 | 1.4318 | 0.7973

Sub-model 4a 1.56782 | 1.5143 | 1.0814 | 1.0403 | 1.4025 | 1.0444

Actual 1.5484 | 1.5944 | 1.0782 | 1.0178 | 1.4446 | 0.9058 -

Sub-model 1b 1.0234 | 1.0512 | 1.0826 | 1.1504 | 1.2586 | 1.3526 | 1.5966 | 1.0656 | 1.0745 | 1.0884 | 1.104
Sub-model 2b 1.2956 | 1.2913 | 1.3515 | 1.4235 | 1.4829 | 1.5615 | 1.6161 | 1.0629 | 1.1469 | 1.1459 | 1.2179
Sub-model 3b 1.4326 | 1.4305 | 1.4686 | 1.4704 | 1.4894 | 1.5325 | 1.4613 | 1.1092 | 1.2147 | 1.1644 | 1.2746
Sub-model 4b 1.3972 | 1.4765 | 1.6353 | 1.56301 | 1.4264 | 1.4785 | 1.9294 | 1.0195 | 1.0705 | 1.1506 | 1.2028
Actual 1.3486 | 1.3914 | 1.3838 | 1.4022 | 1.4446 | 1.4722 1.486 | 1.1462 | 1.0924 | 1.2086 | 1.268
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Table 23.

Sum Squared Errors for results presented in table 22

Test Data D1 D2 D3 D4 D5 D6 D7 D8 DS_LD1 0 | D11 | S.S.E. | RMSE
Sub-model 1a | 0.0059 | 0.003 | 0.0016 | 0.0002 | 0.0022 | 0.0000 - 0.0129 | 0.051
Sub-model2a | 0.0000 | 0.0007 | 0.0451 | 0.0009 | 0.0013 | 0.0001 0.0481 0.098
Sub-model 3a | 0.0046 | 0.0048 | 0.0053 | 0.0048 | 0.0002 | 0.0118 0.0315 | 0.079
Sub-model 4a | 0.0009 | 0.0064 | 0.0000 | 0.0005 | 0.0018 | 0.0192 0.0288 | 0.076
Sub-model 1b | 0.1058 | 0.1157 | 0.0907 | 0.0634 | 0.0346 | 0.0143 | 0.0122 | 0.0065 | 0.0003 | 0.0144 | 0.0269 | 0.4849 0.22
Sub-model2b | 0.0028 | 0.0100 | 0.0010 | 0.0005 | 0.0015 | 0.008 | 0.0169 | 0.0069 | 0.003 | 0.0039 | 0.0025 | 0.057 0.075
Sub-model 3b | 0.0071 | 0.0015 | 0.0072 | 0.0047 | 0.002 | 0.0036 | 0.0006 | 0.0014 | 0.015 | 0.002 | 0.0000 | 0.045 0.067
Sub-model 4b | 0.0024 | 0.0072 | 0.023 | 0.0164 | 0.0003 | 0.0000 | 0.1966 | 0.0161 | 0.0005 | 0.0034 | 0.0043 | 0.27 0.164




RESULTS OF SUB-MODELS

Sub-Models in the ‘a’ series show that NN trained with data from any site can produce
excellent results for the same site. Unfortunately this is not applicable to a real situation,
because a model should be able to be used without having three or four years worth of
data available. For that reason the rest of this report will focus on the later sub-models
which contain less bias (i.e. the ‘b’ series). This bias is explained earlier in this chapter.

In sub-models 2b, 3b and 4b, a lower SSE is produced by the NN models compared to
the linear regression models (compare results in table 23 to those in 16), while in sub-
model 1b, the linear regression produced lower SSE than the NN model. Both the linear
regression and the NN models have SSE's that are relatively close in value, except for
sub-model 4b, which produced poor results when linear regression is used. This may
be possible because in sub-model 4b the initial IRI used is not a linear function, but is
constant for the whole site over a length of time. The NN experiment, which has more
input vectors, performed better than sub-model 1b, which only has three input vectors.
NN models should improve in accuracy if trained with additional data.

ADDITIONAL DATA

With more data, it is expected that the NN models can perform better than they do in the
previous sub-models. Thus, three more sub-models are created using the same
parameters as the previous models but include additional data. The new series is called
the ‘c’ series. The data included was from three new GPS 1 sites.

To test how these models performed with additional data three new sub-models are
developed. These sub-models used the additional data from three GPS 1 sites.

Sub-Model 1¢ This is the same as Sub-Model 1b with the exception of the three
GPS 1 sites added to the training set.

Sub-Model 2¢ This is the same as Sub-Model 2b with the exception of the three
GPS 1 sites added to the training set.

Sub-Model 3¢ This is the same as Sub-Model 3b with the exception of the three
GPS 1 sites added to the training set.

Table 24 shows the test results of the NN models and table 25 gives the sum-squared
errors of estimated values in table 24 compared to the actual values.
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Table 24. Neural Network Models Predicted Results Using Additional Data

Test Data D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 | D11
Sub-Model 1¢ 0.9006 | 0.9307 | 0.9816 1.1 1.2949 | 1.4815 | 1.6281 | 1.1014 | 1.1798 | 1.2787 | 1.3985
Sub-model 2¢ 1.3888 | 1.3912 | 1.4254 | 1.4339 | 1.4564 | 1.4775 | 1.6587 | 1.0832 | 1.1631 | 1.109 1.24
Sub-Model 3¢ 1.3737 | 1.3931 | 1.427 145 | 1.4846 | 1.4862 | 1.4743 | 1.23 1.385 | 1.213 | 1.2563
Actual 1.3486 | 1.3914 | 1.3838 | 1.4022 | 1.4446 | 1.4722 | 1.486 | 1.1462 | 1.0924 | 1.2086 | 1.268
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The linear regression models are also developed using the same additional data that is
used to train the NNs sub-models in the ‘c’ series. Because the stepwise and standard
multiple linear regression are very similar, only the standard multiple linear regression is
used in this section with the additional data. Table 24 shows the test results of the
regression models and table 25 gives the sum-squared error of table 24.
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Table 26. Linear Regression Sub-model Results with Additional Data

Test Data D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11

Sub-Model 1c 1.1040 | 1.1340 | 1.1650 | 1.2100 | 1.2630 | 1.3110 | 1.4230 | 1.2560 | 1.2910 | 1.3430 | 1.3700
Sub-model 2¢ 1.3810 | 1.3760 | 1.4250 | 1.4570 | 1.5010 | 1.5360 | 1.7270 | 1.0980 | 1.1970 | 1.1850 | 1.2580
Sub-Model 3¢ 1.6320 | 1.5270 | 1.5730 | 1.5830 | 1.6070 | 1.6590 | 1.8020 | 1.2610 | 1.3620 | 1.3540 | 1.4100
Actual 1.3486 | 1.3914 | 1.3838 | 1.4022 | 1.4446 | 1.4722 | 1.4860 | 1.1462 | 1.0924 | 1.2086 | 1.2680
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Sub-Model 1¢, which has only three types of input vectors, performed worse for the NN,
and gives relatively unchanged results for linear regression when compared to sub-
model 1b. Sub-Model 2¢ gives the best results for both NN and linear regression. The
sum-squared errors for both are lower than those for the sub-models in the ‘b’ series.
This improvement in the model is due to having more input vectors than sub-model 1c.
Generally the more input vectors, the more data is needed to train a NN. With this
additional data, better results were obtained.

On the other hand, sub-model 3¢ produced larger errors for both linear regression and
NN than the ‘b’ series. An explanation of this could be that Model #3 does not use
ESAL data. Therefore it may not be able to explain the variations the ESALs component
in the IRI data.

GENERAL REGRESSION NEURAL NETWORKS

In some of the models, linear regression performed as well as the backpropagation NN
models; so, general regression neural networks (GRNN) are also tested to see if GRNN
produced better results than backpropagation NN. Specht states that GRNN could be a
better alternative to backpropagation for certain cases.” GRNN trains faster because it
uses a one-pass training algorithm while backpropagation uses many passes or training
epochs. Regression uses a dependant variable, Y, and independent variables, X
There are also unknown parameters, a. The GRNN training algorithm uses a
probabilistic density function to determine the a; values from the input vectors. This form
of training can be used to determine linear and non-linear functions.

The ‘b’ series and the ‘c’ series are both tested using a GRNN. The results of training
are given in table 28. The results indicate that GRNN did not perform as well as the
standard linear regression or the backpropagation NN. There are a few drawbacks to
GRNN networks, which help to explain these results. The estimate is controlled by the
bounds of the minimum and maximum observations. An accurate estimate cannot be
produced for cases that has not been seen.

Unfortunately, the test data is all within the bounds of what is being used for training.
This does not account for the difference in error. Since this is a function approximation,
it tends to smooth functions and thus will not converge to local max and minimum. This
is probably not the case for pavements because they do not behave erratic enough to
cause these local peaks. Another reason for the GRNN’s poor performance compared
to the backpropagation NN may be due to the type of training adopted by GRNN. The
small data sets and multiple epoch training adopted by backpropagation algorithm may
be more suitable for our database which has a limited number of data points.
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Table 28. Testing Results of GRNN estimation using the test data

SSE RMSE

Sub-Model 1b | 0.807969 | 0.284248

Sub-Model 2b | 0.581686 | 0.241182

Sub-Model 3b | 0.896429 | 0.299404

Sub-Model 1¢ | 0.838612 | 0.289588

Sub-Model 2¢ | 0.534082 | 0.231102

Sub-Model 3c | 0.691628 | 0.262988
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RUTGERS’ PAVEMENT DETERIORATION ESTIMATION MODELS

RUTGERS’ MODELS

This section selects the best pavement deterioration prediction models from all the
models developed and presents them in detail. The goal of this section is to allow the
reader to observe and understand more closely the best models developed using both
multiple linear regression and backpropagation NN's.

For the purpose of comparing models and identifying the best NN and linear regression
models, each was given a name. The best NN model is selected to be Basic Model 2.
It exhibits the second best resulits in sub-model b, as well as the best results with the
additional data in Sub-model 2c. The NN Basic Model 2 tested in the ‘b’ and ‘c’ series is
called the RITS NN Model.

In order to be able to reproduce this model and to understand the NN model better, a
longhand calculation is performed. You can refer figure 3 for the visual representation
of the NN architecture. Tables 29 through 30 contain the weights and biases for the
RITS NN model.

Table 29. WEIGHTS FOR THE INPUT LAYER OF THE RITS NN MODEL

Weight's

Target WEIGHT’S ORIGIN

Node

1 2 3 4 5

1 1.2111 0.02 -0.0161 0.0822 0.0282
2 -5.9494 0.099 1.7012 -0.0747 0.1173
3 2.8307 0.0522 -0.7862 -0.2387 -0.1166
4 1.1258 -2.3302 1.0154 -5.3858 -2.1901
5 4.8948 -0.5412 1.2339 -2.4529 -0.9398

Note: In the notation in figure 1-1 the origin comes before the target.
Example: W', ;=1.2111, W'; = -0.2387
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Table 30. BIASES FOR ALL THE LAYERS OF THE RITS NN MODEL

rLayer Node 1 Node 2 Node 3 Node 4 Nodeb
1 2.262 1.472 -1.33 -2.26 -0.521
2 5.9256 0.7037 3.5716 - -
3 1.5698 - - - -
Table 31. WEIGHTS FOR THE HIDDEN LAYER CF THE RITS NN MODEL

Weight's

Target WEIGHT’S ORIGIN

Node

1 2 3 4 5

1 -3.1957 2.3895 7.7277 5.6957 0.9123
2 -3.6448 -0.5572 2.5455 0.9412 -0.0447
3 5.1541 -4.3272 0.2448 0.307 0.8164

Table 32. WEIGHTS FOR THE OUTPUT LAYER OF THE RITS NN MODEL

Weight's
Target WEIGHT’S ORIGIN
Node
1 2 3
1 1.2285 22312 1.0732

Below is the matrix form of the NN model using the above weights and biases and the

first data point that is used to test all the models. Table 33 has the actual values of the
matrix products and sums.
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/12111

-5.9494
2.8307

1.1258

<8948

Tansig

-3.1957
-3.6448

5.1541

Weights in input layer

0.0200 -0.0161 0.0822 0.028A
0.0990 1.7012-0.0747 0.1173
0.0522 -0.7862 -0.2387 -0.1166
-2.3302 1.0154 -5.3858 -2.1901

-0.5412 1.2339 -2.4529 -0.9398J

-0.539
1.444
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-9.616
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Weights in first hidden layer
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-0.0447

Biases in

Input first layer
N -~ N 7 N
1.345 -2.262 -0.539
1.903 1.472 1.444
4.5 -1.330 -1.394
0.964 R
+| 2260 |_— 9.616
1.704 -0.521 6.585
JooN J o\ J
Transfer Function:
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e N
0.492
0.895
-0.895

-1.000

70

5.9256 -1.980
0.7037 1238
3.5716 2542



Transfer Function:

-1.980 0.1213
Logsig* -1.238 _ 0.2248 Logsia(n) = (y )
-2.542 0.0729 1+exp(—n)
n = a numeric output of a node
Input from
hidden layer
Weights in output layer 0.1213 Bias in the

output layer
0.2248

+ -
12285 -2.2312 0.0732 ]* 00129 | 4 (1-5698J _ {1.2955}

The output of the NN model using the same architecture gives the IRI value of 1.2956.
The hand calculations give a value of 1.2955. The 0.0001 difference is the result of the
rounding error by the Matlab Code. The above hand calculations show the procedure
using the NN weight and biases that can be used to calculate the IR!I of a site without
using the Matlab NN training program. The best linear regression model is also
determined by the results of the additional data experiments. Even though Model 3
gives better results than Model 2 in the ‘a’ and ‘b’ series, Model 2 is chosen as the basis
of RITS model. This is because of better performance of Sub-model 2¢c with the
additional data. The linear regression model 2 used in sub-model 2b and 2¢ is called
the RITS LR Model.

RITS LR MODEL
Y(IRI)= By + ByX; + BgXs + BsXs + BeXs + B7X; [26]
Y(IRI)= -0.056 + 1.066 X + 0.0018 X; - 0.008 X5 + 0.027 Xs + 0.014 X, [30]
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Table 33. EXCEL IMPLEMENTATION OF NN

CALCULATIONS

Input Layer

Hidden Layer

Input Weights |Product |[Sum Bias Sum Tran. Func. |Input Weights |Product |Sum Bias Sum  Tran. Func.
NODE 1 NODE 1
1.0154 1.211] 1.2297 -0.731] -3.196] 2.33611
0.8 0.02] 0.016 1 2.3895 2.3895
7.85| -0.016| -0.1264 -0.9999 7.7277| -7.72727
2.1918| 0.082| 0.1802 -1] 5.6957] -5.6957
1.1232] 0.028] 0.0317] 1.331 -2.26 -0.93 -0.731 1 0.9123 0.9123] -7.785 5.9256 -1.859 0.1348
NODE 2 NODE 2
1.0154] -5.949| -6.041 -0.731] -3.645| 2.66441
0.8] 0.099] 0.0792 1] -0.557] -0.5572
7.85] 1.701] 13.354 -0.9999| 2.5455| -2.54536
2.1918| -0.075| -0.1637 -1 0.9412] -0.9412
1.1232] 0.117] 0.1317{ 7.361 1.473 8.834 1 11 -0.045] -0.0447| -1.424 0.7037 -0.72 0.3273
NODE 3 NODE 3
1.0154] 2.831] 2.8743 -0.731] 5.1541) -3.76773
0.8] 0.052] 0.0418 1 -4.327] -4.3272
7.85] -0.786] -6.1717 -0.9999] 0.2448| -0.24479
2.1918] -0.239] -0.5232 -1 0.307 -0.307
1.1232] -0.117] -0.131] -3.91 -1.33 -5.24 -0.999 1 0.8164 0.8164] -7.83 3.5716 -4.259 0.0139
NODE 4
1.0154] 1.126] 1.1431
0.8] -2.33] -1.8642
7.85] 1.015] 7.9709
2.1918] -5.386| -11.804 Output Layer
1.1232] -2.19| -2.4599] -7.01 -2.26 -9.28 -1.00 Input Weigts Product Sum Bias Sum
NODE 5 NODE 1 |
1.0154] 4.895| 4.9701 0.1348 1.2285 0.16556
0.8] -0.541] -0.433 0.3273 -2.231 -0.73031
7.85] 1.234] 9.6861 0.0139 1.0732 0.01496 -0.55 1.5698}
2.1918] -2.453| -5.3762
1.1232 -0.94| -1.0556] 7.791 -0.62 7.27 1.000 |NN CALCULATED IR! 1.0200]




PAVEMENT DETERIORATION MODELS

There are a few existing models as discussed in the literature review that can be used
for comparison with the RITS Models selected in the previous section. To conduct a fair
comparison, these existing models are tested using the same eleven test points that are
used in testing the models developed in this project. In some cases the feasibility of the
models for use in a Highway Pavement Management Systems, HPMS, is further
discussed.

FHWA MODEL 2

The FWHA model is investigated using the data received from the LTPP IMS database,
more specifically using the eleven test points previously used to test the RITS models.
The data obtained from the FHWA database had to be complimented with additional
data of the model’s input variables to be able to apply this model. The first drawback is
that only one of the eleven test points could be estimated due the unavailability of data
in the original FHWA database. A large amount of environmental data is not currently
available for the most recent years. Only data up to 1990 is currently recorded in their
relative environmental fields of the database. Since the test data entries start in the
year 1990 the data points available for the test are immediately reduced to two points.
The second site's data entries in the database are missing the gradations for its layers,
thus only one point remains for comparing the results. Table 35 shows this missing
information.

The second drawback is that this model requires many variables that are difficult to
obtain for many sites. Because of the amount of data required, this model is
complicated and costly to implement into a Pavement Management System. The
environmental data in this model takes time to obtain and process. For this reason, the
model could not be fully tested in this case. Even after approximately eight years of
data collection the data has not been completely processed and entered into the LTPP
database. Because of the length of time to enter data into a federal database, it is
assumed that it will also take an equal amount of time for a state agency to process the
same data. More practical models should be derived without using environmental data.

Another problem is that a few of these variables are difficult to predict. This makes this
model only applicable for present validation of values. For example, trying to predict the
annual precipitation in the next five to ten years and the days below 32 degrees in each
year is quite difficult. Weather forecasters have a difficult time predicting what will
happen in the next week. The next several years would be even more difficult to
forecast. Traffic is another factor that is difficult to prefigure, however, it can be
predicted easier and more accurate than the weather.

Conversations with the developers of the Federal models, addressed the concerns

about the missing climatic data. The annual precipitation and the days under 32
degrees could be taken as an average of the historical data. ?® These values are taken
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from the DataPave97 data that has already calculated those values. The traffic data,
KESALs/!r, which is used in the model, are estimated using an exponential growth type
model. ¥ Table 35 gives the total variables used to validate the FHWA report's model
and the missing gradation values.

Table 36 shows the data obtained from the developers. This data is used to develop
the FHWA model for these two sites. This data is directly taken from the developers of
that model, and is not directly obtained from the LTPP database. The reason for using
data obtained from the developers is the unavailability of data when the model was
originally developed. It would be unfair to compare this model to other models without
first knowing the differences in the data.

There are two factors that can cause differences between the two sets of data. First,
there is only four years of data available for the FHWA model when it was first
developed, so any data after that time might have been collected using a different data
collection procedure. This is the case where the allowable standard deviation of profile
runs is changed from 3% to 2% at the beginning of the LTPP program. This can
definitely affect the models. Second, much of the data has not yet undergone the
statistical processing. Therefore, some values could have been changed or deleted
from the database after further statistical processing. Information in the database can
be different or missing from the data that the developers have used to develop those
models.

Finally the results of the FHWA model are compared to the RITS Models. Tables 37 and
38 compare the results of those models. The results shown in this table indicate the
FHWA model that produces higher Squared Error. The FHWA model has more input
parameters, and is more complicated. The simpler models (RITS Model), in terms of
input variables, provide better resuits and would be easier to implement into a pavement
management system.

74



Table 34. Data retrieved from the ITPP database for validation of FHWA model %

SHRP | STATE RUN NO_4 Annual | Day AC Base | KESAL | SN | AGE
ID CODE DATE PASSING | Percip. | -32 Thick Thick 18K
TOTAL
1034 34 17-Nov-90 97 169 57.78 2 10 187 4.5 | 5.2137
1034 34 07-Sep-91 99 N/A N/A 2 10 215 4.5 | 6.0192
1034 34 20-Jun-92 N/A N/A 2 10 243 4.5 | 6.8055
1034 34 11-Jun-93 N/A N/A 2 10 N/A 4.5 | 7.7808
1034 34 10-Jun-94 N/A N/A 2 10 N/A 4.5 | 8.7781
1034 34 24-Jun-95 N/A N/A 2 10 N/A 4.5 | 9.8164
1034 34 09-Dec-97 N/A N/A 2 10 N/A 4.5 | 12.279
3101 47 17-Jun-91 N/A N/A N/A 38 4.8 39 4.36 | 11.466
3101 47 27-Aug-92 N/A N/A N/A 3.8 4.8 38 4.36 | 12.663
3101 47 10-Jun-94 N/A N/A 38 4.8 N/A 4.36 | 14.449
3101 47 10-Apr-85 N/A N/A 3.8 4.8 N/A 4.36 | 15.282

Note: This data is what was available at the time the data was requested, summer 1998

Table 35. Partial data used for validation of FHWA model %> 27

SHRP | STATE RUN NO_4 Annual | Day AC Base | KESAL | SN | AGE
D CODE DATE PASSING | Percip. | -32 Thick | Thick 18K
TOTAL
1034 34 17-Nov-90 97 169 57.78 2 10 187 4.5 | 52137
1034 34 07-Sep-91 99 44.23 | 86.17 2 10 215 4.5 | 6.0192
1034 34 20-Jun-92 4423 | 86.17 2 10 243 45 | 6.8055
1034 34 11-Jun-93 4423 | 86.17 2 10 279.372 | 45 | 7.7808
1034 34 10-Jun-94 44.23 | 86.17 2 10 317.0872 | 45 | 8.7781
1034 34 24-Jun-95 44.23 | 86.17 2 10 3590.894 | 45 | 9.8164
1034 34 09-Dec-97 4423 | 86.17 2 10 463.6244 | 45 | 12.279
3101 47 17-Jun-91 N/A 52.52 | 86.27 3.8 4.8 39 4.36 | 11.466
3101 47 27-Aug-92 N/A 52.52 | 86.27 3.8 4.8 38 4.36 | 12.663
3101 47 10-Jun-94 52.52 | 86.27 3.8 48 48 4.36 | 14.449
3101 47 10-Apr-95 52.52 | 86.27 3.8 4.8 52 4.36 | 15.282
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Table 36. Data used for validation of FHWA model %

SHRP | STATE RUN NO_4 Annual | Day AC Base | KESAL | SN | AGE
ID CODE DATE PASSING | Percip. | -32 Thick | Thick 18K
TOTAL
1034 34 17-Nov-90 98 44 86 2 10 187 45 | 5.2137
1034 34 07-Sep-91 44 86 2 10 218 45 | 6.0192
1034 34 20-Jun-92 44 86 2 10 243 4.5 | 6.8055
1034 34 11-Jun-93 44 86 2 10 279372 | 45 | 7.7808
1034 34 10-Jun-94 44 86 2 10 317.0872 | 45 | 8.7781
1034 34 24-Jun-95 44 86 2 10 359.804 | 45 | 9.8164
1034 34 09-Dec-97 44 86 2 10 463.6244 | 45 | 12.279
3101 47 17-Jun-91 96 53 86 9.5 55 39 4.36 | 11.466
3101 47 27-Aug-92 53 86 9.5 5.5 38 436 | 12.663
3101 47 10-Jun-94 53 86 9.5 55 48 436 | 14.449
3101 47 10-Apr-95 53 86 9.5 55 52 436 | 15.282
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PAVEMENT DETERIORATION MODEL BY LEE ("4

A recent Transportation Research Record (TRR) by Lee describes the need for
simplified models that can predict future trends of the pavements with a minimal amount
of data'® Unlike the other model that predicted IRI, the model by Lee is developed to
calculate Present Serviceability Rating, PSR. In this report there are models using five
basic types of pavements namely, flexible, composite, jointed plain cement pavements
(JPCP), jointed reinforced concrete pavements (JRCP), and continuous reinforced
concrete pavement (CRCP). The data used to develop these models come from the
Highway Performance Monitoring System SHPMS) and is supplemented with data from
the lllinois Department of Transportation Y. The flexible model is used to predict the
PSR for the types of pavements that the RITS models developed to predict.

These models by Lee are also tested with the eleven test data points used to test the
RITS models. The model [15] with the adjustment factors also used the equations [15 &
16] to predict the age and the CESALs. Those equations are only used to predict age
and CESALS for the first data point and then adjusted by the known change in time and
ESALs for later data points. This procedure was adopted from the explanation of how
the data was prepared in Lee et. al."?. Since Lee used only the roughness indicators of
PSR, the output in table 39 has to be converted into IR} using equation 13 that
correlates IRl and PSR. '® The correlation between IRI and PSR is given by:

PSR = 5 *a (-0.0026"IRI) [1 3]

This above formula gives an IRl value in terms of cm/km. The results of the conversion
are shown in table 41. Table 42 gives the standard error for the results of this model
using the actual data from the LTPP database.

The error is higher than all the other models investigated so far. This fact is also
pointed out in Lee et. al." The R? value of 0.52 from the report, means that it can only
explain about half the variation in the data. In addition this model used all AC
pavements and did not separate them into categories, GPS-1, GPS-2, GPS-6 ( table 1).
Figure 17 shows the Lee model compared to the perfect fit (45 degree line).
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Table 39. PSR Predicted for the eleven

test points using the Lee

Table 40. IRI converted from the
PSR values in table 39

Model 4
STATE [SHRP PSR (predicted) STATE| SHRP |IRI (predicted m/km)
CODE| ID CODE| ID

Original With Original With

Adjustment Adjustment
Factor Factor
34 1034 | 3.136669 3.015301 34 1034 |[1.793226 1.9450
34 1034 | 2.962869 2.789777 34 1034 |2.012469 2.1619
34 1034 |2.794196 2.743146 34 1034 |2.237908 2.2753
34 1034 | 2.528377 2.379117 34 1034 |2.622393 2.5211
34 1034 | 2.223608 2.139788 34 1034 [3.116419 2.7999
34 1034 | 1.984971 2.372318 34 1034 |3.553061 3.0008
34 1034 | 1.474213 2.087751 34 1034 |4.697214 3.7624
47 3101 | 2.892111 3.425283 47 3101 |2.105435 1.4547
47 3101 | 2.786978 3.421431 47 3101 |2.247854 1.5974
47 3101 | 2.643436 3.438719 47 3101 |2.451233 1.7190
47 3101 | 2.500016 2.887399 47 3101 | 2.665781 1.7831
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Table 41. Sum squared errors for the lee model ¥

Test

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 | D11

Data
r&?ﬂt 1.7932(2.0125|2.2379 |2.6224 |3.1164 | 3.5531 {4.6972 |2.1054 |2.2479 | 2.451 | 2.665
AF
Model 1.945 |2.1619|2.2753 2.5211|2.7999 | 3.0008 | 3.7624 | 1.4547 |1.5974 | 1.719 [ 1.783
output
Actual [1.3486/1.3914 /1.3838|1.4022 |1.4446 (1.4722| 1.486 |1.1462(1.0924 | 1.208 | 1.268

Sum Squared Errors Overall
S.S.E.
Original
model 0.1977|0.3858|0.7295 [ 1.4889|2.7949 |4.3301 [10.312|0.9201 (1.3352 | 1.544 | 1.953 | 25.9918
AF 0.3557|0.5937|0.7948 | 1.2519|1.8368|2.3366 | 5.182 |0.0952| 0.255 | 0.260 | 0.265| 13.2276

model
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Figure 17. Results of the Lee model ¥

DEFAULT PAVEMENT MANAGEMENT SYSTEM MODELS '?

Using eleven test points the default model is also tested. The results are given in both
table 42 and figure 18. The default model is only intended for use as a benchmark for
deterioration.
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CONCLUSIONS

There is potential for using the RITS models in a pavement management system as
default models for predicting future roadway roughness.The need for a further validation
of these models using actual data, is apparent. There is a prospect that models of
rehabilitated pavements can be improved and incorporated into the models developed
here.

Tables 43 & 44 and figure 19 summarize all the models from this section along with the
RITS models. Those tables show that the RITS models outperform the other models by
at least a factor of 10. Figure 19 shows the actual measured IRI values as to compare
visually the accuracy of each model.
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Table 43. Summarized test results of all the models

Test Data D1 | D2 | D3 | D4 | D5 | D6 | D7 D9 | D10 | D11
RITS NN Model  |1.3888[1.3912|1.4254 | 1.4330| 1.4564 | 1.4775| 1.6587 | 1.0832 | 1.1631| 1.109 | 1.24
RITS LR Model 1381 | 1.376 | 1.425 | 1.457 | 1501 | 1.536 | 1.727 | 1.098 | 1.197 | 1.185 | 1.258
FHWA Model 0.9308 [0.9597 | 0.9897 [ 1.0294 | 1.0731 | 1.1219|1.2523| 1.0518 | 1.105 | 1.1921| 1.236
Lee Model 1.945 |2.1619|2.2753 | 2.5211 [2.7999| 3.0008 | 3.7624 | 1.4547 | 1.5974 | 1.719 | 1.7831
MoDOT HPMS 1.3137 | 1.453 |1.5865|1.7497 | 1.9144 | 2.0844 | 2.4844 | 2.3525 | 2.5466 | 2.8364 | 2.972
Actual 1.3486 | 1.3914 | 1.3838 | 1.4022 | 1.4446 | 1.4722 | 1.486 | 1.1462 |1.0924 | 1.2086| 1.268
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Figure 19. Plot of all pavement models' result
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COMPARING RUTGER'S MODELS WITH EXISTING PAVEMENT DETERIORATION
MODELS

NEW JERSEY PAVEMENT MANAGEMENT SYSTEM DATA

More data is needed for further validation of the RITS models. The New Jersey
Department of Transportation’s Pavement Management System provided this data.
The acquired data enables us to test those models that were developed. We can also
confirm the feasibility of using the RITS models in this Pavement Management System.
Roughness measurements for seventeen different roadway sections in New Jersey
were requested and received.

After reviewing the initial data from these sections, the SN and the traffic data is
then requested. The NJDOT permitted researchers from Rutgers, under their
supervision, access to the pavement Management System. The as-built portion of the
Pavement Management Database contains the existing layer structures of the
pavements. It shows the thickness, the material type, and the date the pavement is
constructed. Unfortunately, there are several holes in the database. Large sections of
roadway are missing. Many of the existing roads have unknown structures (i.e.
historical data is missing) and many rehabilitation of pavements have not yet been
entered into the database.

The interstate highways have better potentials of providing the information for the RITS
models, but even the data for those roadways were not completely entered in the
database. Some of the required traffic data is taken from the pavement design
parameters also in the as-built database. The remaining traffic data is taken from traffic
count data on the NJDOT webpage. ?% After reviewing the seventeen initial sites, three
of the sites had sufficient data for the RITS models.

The three sites, for which appropriate data can be obtained, are considered relatively
new construction. Still two sites are classified as being rehabilitated, while the third is a
new construction. The RITS models are applied using pavements with original
pavement structures. None of the sites used for development of the RITS Models
contained rehabilitated structures. It is uncertain that how the RITS model will behave

with rehabilitated sites. The following sections present the performance of RITS
Models with data from those sites.

INITIAL IRI OR IRI INDICES

This section discusses the viability of employing a measured initial IR! input variable
instead of the estimated or calculated IRI values..

This reasoning is explained by the fact that initial pavement conditions, such as
temperature of the pavement during compaction, construction techniques and practices
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control the initial roughness of a pavement and play a role in the overall life of a
pavement

Employing RITS models validates using a measured IRI over an estimated one. A
Calculated IRI usually gives one IRl value for one site, whereas the measured IRl can
give a different IRI values for 0.2 mile segment of a site. Table 45 shows the results of
the deviation in new pavement roughness for sites where IRI is measured every 0.2
miles. The 0.2 miles section is used since the NJPMS contains roughness data at this
interval. It is shown that for the same pavement, constructed at the same time, using
the same material, the initial roughness has a large variation. This comparison proves
that the IR indices used in the RITS models are needed to account for this initial
variation.
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Table 45. Deviation of initial IRl in new pavements in New Jersey

Route Mile Post Directions Average Standard % Variation
IRI deviation
Begin End (m/km)

3 5 8 E&W 1.226933 | 0.291989 23.79831
17 23.4 26.4 N&S 1.385406 | 0.265091 19.13457
31 34 39 N 0.992396 0.13827 13.93293

3.8 4.8 N&S 0.954082 | 0.316446 33.16758
46 58 60.2 E&W 1.002411 | 0.361303 36.04335
78 6 9.6 E&W 0.964188 0.12017 12.46339
80 76 12.8 E&W 0.872591 | 0.125294 14.35888
295 62.4 68 N&S 0.918638 | 0.249926 27.20615




RESULTS USING NJDOT PAVEMENT MANAGEMENT DATA

The pavement management data was used to test the RITS LR and the RITS NN
models. As stated earlier there are some data limitations on the sites used for testing
these models. Fortunately three stretches of highway could be tested. The first section
of highway is on Interstate 78 (I-78). The pavement at this site is a new asphalt
pavement (GPS 2 classification). The other two sections are rehabilitated sections on
Interstate 80 (I-80). One of these rehabilitated sections is a new asphalt concrete layer
on an existing concrete pavement (GPS 7 classification) and the other is a new asphalt
concrete layer on an existing asphalt concrete pavement (GPS 6 classification).

The three stretches of highway have multiple sections that are tested by each model.
The |-78 site has 92 sections that are tested, the 1-80 asphalt on asphalt has 41
sections that are tested and the |-80 asphalt on concrete has 26 sections to use for
testing the models. Each stretch of highway is a true test for each model because it
tests multipie sections and not just a few points. This give reasons for significant
deviations in table 46.

Figure 20 shows the results from I-78. Figure 21 shows the results of the models’
prediction versus the actual roughness for the asphalt on asphalt pavement sections of
I-80. Figure 22 shows the asphalt on concrete pavement’s results. The results of these
figures are shown as a ratio of IRI actual to that predicted by the individual models. The
45° slope of the Actual IRl on these figures represent the measured IRI. This line is the
target for all the models. In figures 20, 21 and 22, the closer the other model's points to
that line, the better the model predicts the IRI. Table 46 summarizes the results of
these three sites and it shows the standard error of each model.
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Table 46. Summary of RMSE (iri m/km) for actual IRI vs. predicted IRI

Interstate 80 Interstate 80 Interstate 78
(Asphalt on Concrete) | (Asphalt on Asphalt) (New Pavement)
Default Model 0.5705 0.4273 0.5199
RITS LR Model 0.6300 0.3732 0.2582
RITS NN Model 0.5325 0.3460 0.3265




SUMMARY OF RESULTS

The results of the tests in this section show that the RITS models can be valuable tool
for estimating pavement roughness. Table 46 gives the summary of the resulting
standard errors. The predicted results for I-78 are the best overall for all the sections
tested. The RITS LR model preformed the best for this section. The default model
produced over 100% more standard error for this section then the RITS LR Model, while
the RITS NN model produced only 26% more standard error. The two RITS models are
specifically developed for the type of pavement that makes up this section of |-78. Thus
the accuracy of these models are expected to be superior.

The other two sections are not the same type of pavements that were used to develop
the RITS models. The rehabilitated pavement section on 1-80 with asphalt pavement
overlay on an existing asphalt pavement still produced acceptable results using the
RITS Models when compared to the default model. Both the RITS models give better
standard error than the default model produced. The RITS NN model produced the
overall best results for this section and the RITS LR model produced only 8% more
error than the RITS NN Model. The default model produced about 37% more error than
the RITS NN model.

The section of [-80 with asphalt pavement overlay on a Portland cement concrete
pavement is the worst case scenario. Not only was concrete pavements not used to
develop the RITS models but also concrete has different failure mechanisms than
asphalt. Also this type of rehabilitation is known to deteriorate faster than other types of
rehabilitation. The RITS models produce mixed results for this section. The RITS NN
model gives the best results. The RITS LR model produced 18% more error than the
RITS NN model, while the default model only produced 7% more. Even though the
percentage difference between the models is low, the standard error for the RITS NN is
54% higher than for the other section of 1-80. This means all the models are predicting
this type of pavement less accurately.

Figure 23 shows a graphical representation of the RMSE. The RITS LR model
predicted the roughness of pavement type that it is trained to predict. The further the
pavement type deviates from the original type of pavement, the worse the results
become. The RITS NN on the other hand does not predict the original pavement as
well as the linear regression model does, but is the best model for the other two
sections. The NN results are referred to as surfaces and is not at all linear. This non-
linear surface of results could be the reason it is able to predict the other sections better
than the other models.

As seen in figures 20 through 22, all the models under-estimate the pavement
roughness. Some of the points predicted for the section of I-78 are slightly over-
estimated but overall they are under-estimated. A trend is also noted regarding this
under-estimation; the further the pavement deviates from the new pavement, the more
the models under-estimate the roughness. This shows that rehabilitated pavements
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deteriorate faster than new pavements and asphalt paved over concrete pavements
deteriorates faster than asphalt paved over asphalt pavements.

Summary of RMSE
0.7
BRITS
06 NN
BRITSLR
0.5
ODefault
w 04-
[2)
z
0.3
0.2
0.17 " Default
Y RITSLR
RITS NN
-80 (AC/PC
( ) 1-80 (AC/AC) 178

Figure 23. Summary of Model RMSE
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CONCLUSIONS AND FUTURE RESEARCH

The RITS Models performed better than any other pavement deterioration model
studied in this report. The following shows the root mean square errors of model
estimations:

¢ RITS NN Model RMSE 0.0701
¢ RITS LR Model RMSE 0.0879
¢+ FHWA Model RMSE 0.2986
¢ Lee Model RMSE 1.0966

+ Pavement Management Default model RMSE 0.9946

In brief, this project has generated promising results in developing pavement
deterioration prediction models using NN and linear regression. The models
developed in this research are specifically developed for new pavements. The
NN models have shown potential for predicting deterioration in other types of
pavements as demonstrated by the results of earlier presented section. Further
research with NN could possibly lead to the development of better models that
could predict the deterioration of all types of pavements.

Another possible area for future research would be to test how well the ESALs
are estimated in New Jersey. This is one possible reason for the models
underestimating the roughness. Because if the trucks using the roadways are
heavier than estimated for the ESAL data the roughness would have been
underestimated. If weigh-station data is used, or even weigh in motion
equipment installed then ESALs can be estimated more accurately. A weigh-
station is located near the site on I-78 that is discussed in the previous section.
A better understanding of the traffic that uses the pavement at a site can lead to
a better model.

Summary of the future research needs are:
¢ More data for more training
¢ More test data
¢ Evaluation using IRI form newly constructed pavement sites
+ Testing and developing other pavement types
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APPENDIX A

The following are excepts from the IMS database field descriptions file. Only
those fields that were used primary in this report are given below due to the large
size of the original file. The original field descriptions is over 5000 pages when
opened in MS Word.

SHRP_ID Table: ALL
SHRP SECTION IDENTIFICATION.

Data Type:VARCHAR2(4) Protocol:

Units: Validation:
QC Required:No QC Range:
Source: Iltem Number:
STATE_CODE Table: ALL

CODE IDENTIFYING THE STATE OR PROVINCE.
Data Type:NUMBER(2,0) Protocaol:
Units: Validation: STATE_PROVINCE
QC Required:No QC Range:
Source:INVENTORY Sheet Item Number:;
1
CONSTRUCTION_NO Table: INV_LAYER
EVENT NUMBER INDICATING PAVEMENT LAYER CHANGES IN A SECTION. SETTO 1
WHEN A SECTION IS CHOSEN FOR INCLUSION IN THE LTPP STUDY AND INCREMENTED
AFTER EACH PAVEMENT LAYER CHANGE. IT IS ALL TABLES THAT RELATE TO A SECTION
AT A SPECIFIC TIME.
Data Type:NUMBER(2,0) Protocol:
Units: Validation:
QC Required:No QC Range:
Source:INVENTORY Sheet Item Number:
3

CN_ASSIGN_DATE Table: EXPERIMENT_SECTION
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A VALID DATE THAT INDICATES THE DATE THE CONSTRUCTION EVENT WAS ASSIGNED.
FOR INVENTORY, IT WILL BE THE DATE THE SECTION IS CHOSEN FOR THE LTPP STUDIES.
FOR ALL OTHER CONSTRUCTION EVENTS, IT WILL BE THE DATE THE LAYER STRUCTURE

CHANGED.
Data Type:DATE Protocol:
Units: Validation:
QC Range:

QC Required:No
Source:NIMS/L05B Item Number:

GPS_SPS Table: EXPERIMENT_SECTION

A code indicating if the section is a GPS (G) or SPS (S) section.

Data Type:CHAR(1) Protocol:

Units: Validation:

QC Required:No QC Range:

Source:NIMS/L05B Iltem Number:

EXPERIMENT_NO Table: EXPERIMENT_SECTION

The GPS or SPS experiment designation to which the section is assigned.

Data Type:CHAR(3) Protocol:
Units: Validation:
QC Range:

QC Required:No
Source:NIMS/L05B Item Number:

STATUS Table: EXPERIMENT_SECTION
A code indicating the status (null is approved, O is out of study, and R is released) of a section for a
given construction event. An experiment number (i.e., 6B, 7B, etc.), indicates the section is planned

for the specified experiment.
Data Type:CHAR(2) Protocol:
Units: Validation:

QC Regquired:No QC Range:

Source:NIMS/L05B Item Number:
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ASSIGN_DATE Table: EXPERIMENT_SECTION

Date representing when the section was chosen for the LTPP study or when the pavement was
modified so that the section was assigned to the given experiment.

Data Type:DATE Protocol:
Units: Validation:
QC Regquired:No QC Range:

Source:NIMS/L05B Iltem Number:
DEASSIGN_DATE Table: EXPERIMENT_SECTION

Date representing when the section was removed from the LTPP study or when the pavement was
modified so that the section was no longer assigned to the given experiment.

Data Type:DATE Protocol:
Units: Validation:
QC Required:No QC Range:

Source:NIMS/L05B Iltem Number:

SEAS_ID Table: EXPERIMENT_SECTION

State specific seasonal identification code

Data Type:CHAR(1) Protocol:
Units: Validation:
QC Required:No QC Range:

Source:NIMS/L05B Iltem Number:

RECORD_STATUS Table: EXPERIMENT_SECTION

A code indicating the general quality of the data as outlined based on the level of QC checks
described in the Data User's Guide.

Data Type:VARCHARZ2(1) Protocol:
Units: Validation:
QC Required:No QC Range:

Source:NIMS/L05B Item Number:
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CONSTRUCTION_DATE Table: INV_AGE

Date of latest (re)construction. The date is entered as month and year only. QC applies to GPS,
see QC Manual for SPS.

Data Type:DATE Protocol:
Units: Validation:
QC Required:Yes QC Range:

Source:INVENTORY Sheet Item Number:
TRAFFIC_OPEN_DATE Table: INV_AGE

Date when pavement was originally opened to traffic. The date is entered as a month and year
only. QC applies to GPS, see QC Manual for SPS.

Data Type:DATE Protocol:
Units: Validation:
QC Required:Yes QC Range:

Source:INVENTORY Sheet Item Number:

4

PROFILE_DATE Table: MON_PROFILE_DATA

The date of the profilometer run.

Data Type:DATE Protocol:
Units: Validation:
QC Required:No QC Range:

Source:Profilometer  ltem Number:

Data File

PROFILE_TIME Table: MON_PROFILE_DATA

The time of the profilometer run.

Data Type:CHAR(8) Protocol:
Units: Validation:
QC Required:No QC Range:

Source:Profilometer  Iltem Number:

Data File
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RUN_NUMBER Table: MON_PROFILE_DATA

A number indicating the position of the run in the series.

Data Type:CHAR(1) Protocol:
Units: Validation:
QC Required:No QC Range:

Source:Profilometer  Item Number:
IRI_LEFT_WHEEL_PATH Table: MON_PROFILE_MASTER
IRI value for left wheel path.
Data Type:NUMBER(5,3) Protocaol:
Units:m/km Validation:
QC Required:Yes QC Range: 0.4 - 4.8
Source:Profilometer  ltem Number:

Data File

IRI_RIGHT_WHEEL_PATH Table: MON_PROFILE_MASTER

IRI value for right wheel path.

Data Type:NUMBER(5,3) Protocol:
Units:m/km Validation:
QC Required:Yes QC Range: 04-4.8

Source:Profilometer  Item Number:

Data File

IRI_AVERAGE Table: MON_PROFILE_MASTER
Average IRI value.
Data Type:NUMBER(5,3) Protocol:
Units:m/km Validation:
QC Required:Yes QC Range: 0.4-4.8

Source:Profilometer  Item Number:
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Data File

MODIFICATION_NO Table: TRF_EST_ANL_TOT_LTPP_

A sequential number indicating the number of modifications made to the
estimates.

Data Type:NUMBER(2,0) Protocol:

Units: Validation:
QC Required:No QC Range:
Source: Iltem Number:
BEGIN_DATE Table: TRF_EST_ANL_TOT_LTPP_

First day of the year to which estimate applies.

Data Type:DATE Protocol:
Units: Validation:
QC Required:No QC Range:
Source: Item Number:
END_DATE Table: TRF_EST_ANL_TOT_LTPP_

Last day of year to which estimate applies

Data Type:DATE Protocol:
Units: Validation:
QC Required:No QC Range:
Source: Item Number:
KESAL_18K_SAMPLE_SIZE Table: TRF_EST_ANL_TOT_LTPP_

The weighted sample size used for computing the average annual traffic load.
Data Type:NUMBER(5,0) Protocol:
Units: Validation:

QC Required:No QC Range:
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APPENDIX B

This is the first data base developed from the GPS 2 sites in the LTPP.

04-Oct-89

1/1/80

1.8198

" 4 F
11.81063

R

948630.1 7.22
18 2008 | 25-Mar-91 1/1/80 4101 2.259 323967.2 13.73397 7.22
18 2008 | 11-Sep-91 1/1/80 4271 2.4399 655648 14.38962 7.22
18 2008 | 02-Oct-92 1/1/80 4658 2.753 369500.7 15.18722 7.22
18 2008 | 01-Feb-94 1/1/80 5145 2.79325 107647.2 15.3971 7.22
19 6150 | 17-Jun-90 6/1/52 13895 1.2432 3682.192 0.184682 3.52
19 6150 | 20-Jun-91 6/1/52 14263 1.3074 8065.753 0.192748 3.52
19 6150 | 12-May-92 6/1/52 14590 1.3558 7681.524 0.200429 3.52
19 6150 17-Oct-93 6/1/52 15113 1.3928 12901.9 0.213331 3.52
19 6150 | 17-Sep-94 6/1/52 15448 1.4482 8033.842 0.221365 3.52
19 6150 | 07-Aug-97 6/1/52 16503 2.2294 26241.98 0.247607 3.52
24 1632 | 12-Nov-90 10/1/86 1503 0.7772 100446.9 0.978447 517
24 1632 | 08-Apr-91 10/1/86 1650 0.8622 49997.77 1.028445 5.17
24 1632 | 30-Jun-92 10/1/86 2099 0.8612 164033.8 1.192478 5.17
24 1632 | 23-Jun-93 10/1/86 2457 0.8592 146040.6 1.3385619 5.17
24 1632 | 18-Jun-94 10/1/86 2817 0.9058 162007.5 1.500527 517
24 1632 | 04-Dec-95 10/1/86 3351 0.9166 269888.7 1.770415 517
24 1632 | 09-Jun-97 10/1/86 3904 1.014 131080.9 2.112707 517
24 1632 | 15-Dec-97 10/1/86 4093 0.9846 120850.2 2.233557 5.17
24 2401 | 04-Dec-89 7/1/87 887 0.83 50000 0.149 5.68
24 2401 10-Oct-90 7/1/87 1197 0.8714 40092.57 0.189093 5.68
24 2401 10-Aug-91 7/1/87 1501 0.867 43378.44 0.232471 5.68
24 2401 01-Jul-92 7/1/87 1827 0.8602 46753.2 0.279224 5.68
24 2401 23-Jun-93 7/1/87 2184 0.9022 51820.71 0.331045 5.68
24 2401 17-Jun-94 7/1/87 2543 0.9664 52603.86 0.383649 5.68
34 1033 | 30-Nov-90 5/1/74 6057 2.743 47583.56 0.754584 4.9
34 1033 | 06-Sep-91 51174 6337 2.7874 33068.49 0.787652 4.9
34 1033 | 18-Jun-92 5/1/74 6623 2.9176 28627.4 0.816279 4.9
34 1033 | 09-Jun-93 5/1/74 6979 2.8738 46658.4 0.862938 4.9
34 1033 | 08-Jun-94 511174 7343 2.9016 39753.98 0.902692 4.9
34 1033 | 22-Jun-95 5/1/74 7722 3.1426 26645.68 0.929338 4.9
34 1034 | 30-Nov-89 9/1/85 1561 1.3454 158893.2 0.544893 4.5
34 1034 | 17-Nov-90 9/1/85 1903 1.3486 174024.7 0.718918 4.5
34 1034 | 07-Sep-91 9/1/85 2197 1.3914 164424.7 0.883342 4.5
34 1034 | 20-Jun-92 9/1/85 2484 1.3838 174926 1.058268 4.5
34 1034 | 11-Jun-93 9/1/85 2840 1.4022 226005.1 1.41343 4.5
34 1034 | 10-Jun-94 9/1/85 3204 1.4446 4944351 1.907865 4.5
34 1034 | 24-Jun-95 9/1/85 3583 1.4722 373861.7 2.281726 4.5
34 1034 | 09-Dec-97 9/1/85 4482 1.486 435679.9 3.125886 4.5
34 1638 | 30-Nov-89 9/1/85 1551 0.8798 158893.2 0.544893 53
34 1638 | 16-Nov-90 9/1/85 1902 0.9446 174024.7 0.718918 5.3
34 1638 | 07-Sep-91 9/1/85 2197 0.9638 164424.7 0.883342 53
34 1638 | 20-Jun-92 9/1/85 2484 0.9348 174926 1.058268 5.3




34 1638 | 11-Jun-93 9/1/85 2840 0.9414 130000 1.317425 5.3
34 1638 | 10-Jun-94 9/1/85 3204 1.0178 560003.5 1.877428 5.3
34 1638 | 24-Jun-95 9/1/85 3583 1.0594 2497431 2.127171 53
34 1638 | 09-Dec-97 9/1/85 4482 1.0622 397018.5 2.52419 5.3
36 1643 | 23-Aug-89 5/1/78 4132 1.3246 1484384 15.85708 4.6
36 1643 | 08-Jun-90 5/1/78 4421 1.475667 985687.7 16.84276 46
36 1643 19-Apr-91 5/1/78 4736 1.51 466833.4 18.16182 4.6
36 1643 09-Jul-92 5/1/78 5183 1.8066 291042.5 18.45286 46
36 1643 | 14-Sep-93 5/1/78 5615 2.1176 318310.9 18.77117 4.6
36 1643 | 28-Jun-94 5/1/78 5902 2.608 420928.4 19.1921 4.6
36 1643 05-Jul-85 5/1/78 6274 2.8008 305878.7 19.49798 4.6
36 1644 | 23-Aug-89 8/1/80 3309 0.9482 67493.15 0.376849 3.4
36 1644 | 06-Jun-90 8/1/80 3596 0.9694 51109.59 0.427959 34
36 1644 | 21-Nov-90 8/1/80 3764 0.9466 29917.81 0.457877 3.4
36 1644 07-Jul-92 8/1/80 4358 0.9892 24910.02 0.537047 34
36 1644 | 13-Sep-93 8/1/80 4791 1.0618 16325.45 0.553372 3.4
36 1644 | 29-Jun-94 8/1/80 5080 1.0782 12717.76 0.56609 34
36 1644 06-Jul-95 8/1/80 5452 1.0926 13601.36 0.579692 3.4
36 1644 | 09-May-96 8/1/80 5760 1.1942 26046.08 0.605738 3.4
47 1029 | 08-May-90 | 01-Oct-82 | 2776 0.706111 64430.14 0.376455 4.79
47 1029 15-Apr-92 | 01-Oct-82 | 3484 0.728144 107287.7 0.572068 4.79
47 1029 | 25-Feb-94 | 01-Oct-82 | 4165 0.7502 122631.3 0.947191 4.79
47 1029 | 07-Dec-95 | 01-Oct-82 | 4815 0.9032 1527681 2.474873 4.79
47 1028 | 09-May-90 9/1/83 2442 1.209 101761.6 0.599055 4.23
47 1028 | 15-May-92 9/1/83 3179 1.3414 92150.68 0.779329 4.23
47 1028 | 28-Feb-94 9/1/83 3833 1.3632 126943.9 1.010371 4.23
47 1028 | 02-May-96 9/1/83 4627 1.4562 175545 1.376097 4.23
47 3101 16-May-90 1/1/80 3788 1.0632 37353.42 0.394022 4.36
47 3101 17-Jun-91 1/1/80 4185 1.1462 41158.9 0.435181 4.36
47 3101 | 27-Aug-92 1/1/80 4622 1.0924 38345.21 0.473526 4.36
47 3101 10-Jun-94 1/1/80 5274 1.2086 10738.25 0.524016 4.36
47 3101 10-Apr-95 1/1/80 5578 1.268 92091.49 0.616107 4.36
47 9025 | 16-May-90 1/1/80 3788 1.5066 37353.42 0.394022 3.23
47 9025 | 20-Apr-92 1/1/80 4493 1.5792 38698.63 0.486945 3.23
47 9025 | 25-Feb-94 1/1/80 5169 1.8448 24657 4 0.531901 3.23
47 9025 10-Apr-95 1/1/80 5578 1.9234 84729.22 0.61663 3.23
84 1802 | 28-Sep-89 10/1/80 3284 1.4974 268454.8 1.724466 6.78
84 1802 23-Jul-90 10/1/80 3582 1.6622 292356.2 2.016822 6.78
84 1802 | 20-Aug-91 10/1/80 3975 1.4848 236268.5 2.25309 6.78
84 1802 | 23-Sep-92 10/1/80 4375 1.352 242827.4 2.495918 6.78
84 1802 | 23-Aug-93 10/1/80 4709 1.4396 261000 2.756918 6.78
84 1802 | 07-Aug-94 10/1/80 5058 1.5944 312600 3.069518 6.78
84 1802 | 02-Aug-95 10/1/80 5418 1.664 2907151 3.360233 6.78
84 1802 24-Jul-97 10/1/80 6140 2.1566 183107.6 3.992665 6.78
88 1647 | 29-Sep-89 8/1/86 1155 1.2512 95000.27 0.224 4

88 1647 25-Jul-90 8/1/86 1454 1.3994 1254384 1.478384 4

88 1647 | 22-Aug-91 8/1/86 1847 1.4988 800983.6 2.279368 4

88 1647 | 21-Sep-92 8/1/86 2243 1.5456 56721.01 2.336089 4

88 1647 | 20-Aug-93 8/1/86 2576 1.5818 74306.63 2.410396 4

88 1647 | 09-Aug-94 8/1/86 2930 1.5484 82900.22 2.493296 4
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88 1647 | 05-Aug-95 8/1/86 3291 1.6106 74492.05 2.567788 4

88 1647 26-Jul-97 8/1/86 4012 1.874 56797.68 2.735532 4

89 2011 | 21-Sep-89 6/1/78 4130 1.1358 60446.58 0.573654 6.6
89 2011 21-Jun-90 6/1/78 4403 1.132 61942.47 0.635596 6.6
89 2011 13-Jul-91 6/1/78 4790 1.161 65657.53 0.701254 6.6
89 2011 | 27-Aug-92 6/1/78 5201 1.181 46833.01 0.748087 6.6
89 2011 22-Jul-94 6/1/78 5895 1.1692 43855.98 0.866032 6.6
89 201 16-Jul-85 6/1/78 6254 1.1658 73107.7 0.93914 6.6
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This is the database that contains the IRI indicators and delta values. This is a variation
of the above database.

STATE. | SHRP |AGE (Days) {IRF (m/Km) [SUM_ESALS |SN = IRKi} - . IDelta
CODE | _ID (Millions.of.. . [.7..2 L e ]
ESALS) Sl oot st
18 2008 | 4101.00 2.2590 13.7340 7.22 1.8198 19.2334
18 2008 | 4271.00 2.4399 14.3896 7.22 2.2590 0.4658 | 6.5565
18 2008 | 4658.00 2.7530 15.1872 7.22 2.4399 1.0603 7.9760
18 2008 | 5145.00 2.7933 15.3971 7.22 2.7530 1.3342 2.0989
19 6150 | 14263.00 1.3074 0.1927 3.52 1.2432 1.0082 0.0807
19 6150 | 14590.00 1.3558 0.2004 3.52 1.3074 0.8959 0.0768
19 6150 | 15113.00 1.3928 0.2133 3.52 1.3558 1.4329 | 0.1290
19 6150 | 15448.00 1.4482 0.2214 3.52 1.3928 0.9178 0.0803
19 6150 | 16503.00 2.2294 0.2476 3.52 1.4482 2.8904 0.2624
24 1632 | 1650.00 0.8622 1.0284 5.17 0.7772 0.4027 0.5000
24 1632 | 2099.00 0.8612 1.1925 5.17 0.8622 1.2301 1.6403
24 1632 | 2457.00 0.8592 1.3385 5.17 0.8612 0.9808 1.4604
24 1632 | 2817.00 0.9058 1.5005 517 0.8592 0.9863 1.6201
24 1632 | 3351.00 0.9166 1.7704 5.17 0.9058 1.4630 | 2.6989
24 1632 | 3904.00 1.0140 2.1127 5.17 0.9166 1.5151 3.4229
24 1632 | 4093.00 0.9846 2.2336 5.17 1.0140 0.5178 1.2085
24 2401 1197.00 0.8714 0.1891 5.68 0.8300 0.8493 0.4009
24 2401 1501.00 0.8670 0.2325 5.68 0.8714 0.8329 0.4338
24 2401 1827.00 0.8602 0.2792 568 0.8670 0.8932 0.4675
24 2401 | 2184.00 0.9022 0.3310 5.68 0.8602 0.9781 0.5182
24 2401 | 2543.00 0.9664 0.3836 5.68 0.9022 0.9836 0.5260
34 1033 | 6337.00 2.7874 0.7877 4.90 2.7430 0.7671 0.3307
34 1033 | 6623.00 2.9176 0.8163 4.90 2.7874 0.7836 0.2863
34 1033 | 6979.00 2.8738 0.8629 4.90 2.9176 0.9753 0.4666
34 1033 | 7343.00 2.9016 0.9027 4.90 2.8738 0.9973 0.3975
34 1033 | 7722.00 3.1426 0.9293 4.90 2.9016 1.0384 0.2665
34 1034 | 1903.00 1.3486 0.7189 4.50 1.3454 0.9644 1.7402
34 1034 | 2197.00 1.3914 0.8833 4.50 1.3486 0.8055 1.6442
34 1034 | 2484.00 1.3838 1.0583 4.50 1.3914 0.7863 1.7493
34 1034 | 2840.00 1.4022 1.4134 4.50 1.3838 0.9753 3.5516
34 1034 | 3204.00 1.4446 1.9079 4.50 1.4022 0.9973 | 4.9444
34 1034 | 3583.00 1.4722 2.2817 4.50 1.4446 1.0384 3.7386
34 1034 | 4482.00 1.486 3.1259 4.50 1.4722 2.4630 8.4416
34 1638 | 1902.00 0.9446 0.7189 5.30 0.8798 0.9616 1.7402
34 1638 | 2197.00 0.9638 0.8833 5.30 0.9446 0.8082 1.6442
34 1638 | 2484.00 0.9348 1.0583 5.30 0.9638 0.7863 1.7493
34 1638 | 2840.00 0.9414 1.3174 5.30 0.9348 0.9753 2.5916
34 1638 | 3204.00 1.0178 1.8774 5.30 0.9414 0.9973 5.6000
34 1638 | 3583.00 1.0594 21272 5.30 1.0178 1.0384 | 2.4974
34 1638 | 4482.00 1.0622 2.5242 5.30 1.0594 2.4630 3.9702
36 1643 | 4421.00 1.4757 16.8428 4.60 1.3246 0.7918 9.8569
36 1643 | 4736.00 1.5100 18.1618 4.60 1.4757 0.8630 | 13.1905
36 1643 | 5183.00 1.8066 18.4529 4.60 1.5100 1.2247 2.9104
36 1643 | 5615.00 2.1176 18.7712 4.60 1.8066 1.1836 3.1831
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36 1643 | 5902.00 2.6080 19.1921 4.60 2.1176 0.7863 4.2093
36 1643 | 6274.00 2.8008 19.4980 4.60 2.6080 1.0192 3.0588
36 1644 | 3596.00 0.9694 0.4280 3.40 0.9482 0.7863 0.5111

36 1644 | 3764.00 0.9466 0.4579 3.40 0.9694 0.4603 0.2892
36 1644 | 4358.00 0.9892 0.5370 3.40 0.9466 1.6274 0.7917
36 1644 | 4791.00 1.0618 0.5534 3.40 0.9892 1.1863 0.1633
36 1644 | 5080.00 1.0782 0.5661 3.40 1.0618 0.7918 0.1272
36 1644 | 5452.00 1.0926 0.5797 3.40 1.0782 1.0192 0.1360
36 1644 | 5760.00 1.1942 0.6057 3.40 1.0926 0.8438 0.2605
47 1029 | 3484.00 0.7281 0.5721 4.79 0.7061 1.9397 1.9561

47 1029 | 4165.00 0.7502 0.9472 4.79 0.7281 1.8658 3.7512
47 1029 | 4815.00 0.9032 2.4749 4.79 0.7502 1.7808 | 15.2768
47 1028 | 3179.00 1.3414 0.7793 4.23 1.2090 2.0192 1.8027
47 1028 | 3833.00 1.3632 1.0104 4.23 1.3414 1.7918 2.3104
47 1028 | 4627.00 1.4520 1.3761 4.23 1.3632 2.1753 3.6573
47 3101 | 4185.00 1.1462 0.4352 4.36 1.0632 1.0877 0.4116
47 3101 | 4622.00 1.0924 0.4735 4.36 1.1462 1.1973 0.3835
47 3101 5274.00 1.2086 0.5240 4.36 1.0924 1.7863 0.5049
47 3101 5578.00 1.268 0.6161 4.36 1.2086 0.8329 0.9209
47 9025 | 4493.00 1.5792 0.4869 3.23 1.5066 1.9315 0.9292
47 9025 | 5169.00 1.8448 0.56319 3.23 1.5792 1.8521 0.4496
47 9025 | 5578.00 1.9234 0.6166 3.23 1.8448 1.1205 0.8473
84 1802 | 3582.00 1.5622 2.0168 6.78 1.4974 0.8164 2.9236
84 1802 | 3975.00 1.4848 2.2531 6.78 1.5622 1.0767 2.3627
84 1802 | 4375.00 1.3520 2.4959 6.78 1.4848 1.0959 2.4283

84 1802 | 4709.00 1.4396 2.7569 6.78 1.3520 0.9151 2.6100

84 1802 | 5058.00 1.5944 3.0695 6.78 1.4396 0.9562 3.1260

84 1802 | 5418.00 1.6640 3.3602 6.78 1.56944 0.9863 2.9072
84 1802 | 6140.00 2.1566 3.9927 6.78 1.6640 1.9781 6.3243
88 1647 | 1454.00 1.3994 1.4784 4.00 1.2512 0.8192 | 12.5438
88 1647 | 1847.00 1.4988 2.2794 4.00 1.3994 1.0767 8.0098
88 1647 | 2243.00 1.5456 2.3361 4.00 1.4988 1.0849 0.5672

88 1647 | 2576.00 1.5818 2.4104 4.00 1.5456 0.9123 0.7431

88 1647 | 2930.00 1.5484 2.4933 4.00 1.5818 0.9699 0.8290
88 1647 | 3291.00 1.6106 2.5678 4.00 1.5484 0.9890 0.7449
88 1647 | 4012.00 1.8740 2.7355 4.00 1.6106 1.9753 1.6774
89 2011 | 4403.00 1.1320 0.6356 6.60 1.1358 0.7479 0.6194
89 2011 | 4790.00 1.1610 0.7013 6.60 1.1320 1.0603 0.6566
89 2011 5201.00 1.1810 0.7481 6.60 1.1610 1.1260 0.4683
89 2011 5895.00 1.1692 0.8660 6.60 1.1810 1.9014 1.1795
89 2011 6254.00 1.1658 0.9391 6.60 1.1692 0.9836 0.7311
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These are the additional data points added later to the above database.

5 1.8221
5 3071 1865 0.6458 2.8400 4.54 0.5940 2.1342 9.7891
5 3071 2431 0.7056 3.56500 4.54 0.6458 1.5507 7.0999
5 3071 3297 0.7968 4.6382 4.54 0.7056 2.3726 | 10.8823
40 4087 1766 1.1248 0.6736 2.85 1.0596 0.3890 0.5952
40 4087 2544 1.1066 1.0029 2.85 1.1248 2.1315 3.2931
40 4087 3178 1.1176 1.2900 2.85 1.1066 1.7370 2.8708
40 4087 4082 1.1892 1.7375 2.85 1.1176 2.4767 4.4750
51 2021 2057 1.4820 0.7442 3.60 1.4608 0.7452 0.5515
51 2021 2155 1.5098 0.7643 3.60 1.4820 0.2685 0.2010
51 2021 2775 1.4640 0.9048 3.60 1.5098 1.6986 1.4057
51 2021 3116 1.6086 0.9920 3.60 1.4640 0.9342 0.8721
51 2021 3478 1.7622 1.0895 3.60 1.6086 0.9918 0.9748

111



APPENDIX C
Sub-Model 1b

Figure A-1 Matlab NN Program

P
[6.
[2.
4.
[3.
[4.
[3.
(3.
[4.
[1.
[3.
[6.
(1.
(1.
3.

13;0.5737;
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4933;4)
4959;6.78)
3940;3.23)
4352;4.36]
5721;4.79]
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[14.59;0.2004;3.52]
[4.10;13.7340;7.22]
1320 1.
4848
.7061
L1942
8300
.3074
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goal
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1
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0
1
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trainParam.
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trainParam.

mu
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mu_
.mu_dec
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[1.16;0.2240;4])

[4.
[4.
[4.
{4.
{4.
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1.3520 1.
0.7281 O.
0.8798 0.
0.8714 0.
1

.3558 1.

1le-100;
500;
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10;
.5;

1e90;

max
T);

29;2.5678;4]

[4

71;2.7569;6.78]
49;0.4869;3.23]
62;0.4735;4.36]
17;0.9472;4.79]
63;1.3761;4.23]
[4.79;0.5534;3.4]
[1.90;0.7189;5.3]
[3.58;2.1272;5.3]
[6.98;0.8629;4.9]
[1.50;0.2325;5.68]
[1.65;1.0284;5.17]
[3.90;2.1127;5.17]
[15.11;0.2133;3.52]
[4.27;14.3896;7.22]
1810 1.1692 1.

4396
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8670
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[4.79;0.7013;6.6] [5.20
[1.45;1.4784;4]
.01;2.7355;4]
[5.06;3.0695;6.78]
[5.17;0.5319;3.23]
[5.27;0.5240;4.36]
[4.82;2.4749:4.79]
£3.31;0.3768;3.4)
[5.08;0.5661;3.4]
[2.20;0.8833;5.3]
[4.48;2.5242;5.3]
[7.34;0.9027;4.9]

[5.42;3
[5.58;0
[5.58;0
[2.44;0

[1.83;0.2792;5.68]
[2.10;1.1925;5.17]
[4.09;2.2336;5.17]
[15.45;0.2214;3.
[4.66;15.1872;7.
1658 1.2512 1.
1.6640 2.1566
1.2090 1.3414
0.9348 0.9414
0.9022 0.9664

1

't

[2.18;0C
[2.46;1

52]
22}
1.5944
9032
9638
8602
.4482

1.5066
.3632
.0178
L1772

.2590

0. 1
0. 1
0. 0
1 2.2294 1.8198 2

ansig'

70.7481;6.6]
[1.85;2.2794;¢]
[3.28;1.7245;6.78]

[3.60;0.4280;3.4)
[5.45;0.5797;3.4}
[2.48;1.0583;5.3]
[6.06;0.7546;4.9]
[7.72:;0.9293;4.9]

[13.80;0.1847;3.52]
[16.50;0.2476;3.52]
[5.15;15.3971:;7.221}:
3994 1.4988 1.54%6 1.5818 1.
1.5792 1.8448 1.9234
1.4520 0.9482 0.9694
1.05%94 1.0622 2.7430
C.8622 0.8612 0.8592
2.4399 2.7530 2.7933};
'purelin'});

[2.24;2.3361;4]

.3602;6.78]
.6166;3.23]
.6161;4.361
.5991;4.23]

.3310:5.
.3385;5.

681]
17]

[3.58;2.0168;6.78]

[5.90;0.8660;6.6]

[2.58;2.4104;4]}

5484 1.
1.0632
0.9466
2.7874
0.9058

6106 1.
1.1462
0.9892
2.9176
0.9166

[3.98;2.2531;6.78]
[6.14;3.9927;6.78]
[3.79;0.3940;4.36]
[2.78;0.3765;4.79]
[3.18;0.7793;4.23]
{3.76;0.4579;3.4)
[5.76;0.6057;3.4]
[2.84;1.3174;5.3]
[6.34;0.7877;4.9]
[0.89;0.1490:5.68]
[2.54;0.3836;5.68]
[2.82;1.5005;5.17]
[14.26;0.1927;3.52)
[3.56;11.8106;7.22]

8740

1.0924
1.0618
2.8738
1.0140

Table A-1 Weights for the input layer

Node
]

Weight's
Target

Weight's Origin(i)

0.0044 -0.337

0.4178

0.164 0.9666

-5.5199

1
2
3

0.9303 -1.4499

8.4575

Table A-2 Biases for all the Layers

Layer

Node 1 Node 2

Node 3

-0.9570 28.2244

-47.8449

-24.2128

1.9188

Table A-3 Weights for the hidd
112

en layer




Weight's Weight’s Origin(i)
Target
Node
)]
1 2 3
1 -3.7680 25.6871 26.4507
Table A-4 Weights for the output layer
Weight's Weight’s Origin(i)
Target Node
/),
1
1 1.0257
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Sub-Model 2b

Figure A-2 Matlab NN Program

P =
(1.
[1
[1.
[1.
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[1
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3928;15.4480;3.5200;0.9178;0.0803]
8198;4.1010;7.2200,;1.4712;19.2334]
4399;4.6580;7.2200;1.0603;7.9760]
{1.1320 1.1610 1.1810 1.
L4396 1.5944 1.6640 2.1566
.9892 1.0618 1.0782 1.0926
.0178 1.0594 1.0622 2.7874
.8592 0.9058 0.9166 1.0140

1610;5.2010;

.2512;1.4540;

4988;2.2430;
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.5622;3.9750;
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= train(net,P,T);
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3430:4.9000:0.
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5430;5.6800;0.
4570;5.1700;0.
9040;5.1700;1.

8740 1.5622 1.
1.4520 0.9694
0.9638 0.9348
0.9664 0.8622
2.7530 2.7933}

9836;0.7311)

9699;0.8290]
8164;2.9236]
9151;2.6100]
9781;6.3243]
1205;0.8473]

7863;0.5111]
1863;0.1633]
8438;0.2605)

7863;4.2093]
8082;1.6442]
9973;5.6000]
7671;0.3307]
9973;0.3975]
8329;0.4338]
9836;0.5260]
9808;1.4604]
5151;3.4229]

4848 1.3520
0.9466
0.9414
0.8612

;

Table A-5 Weights for the input layer

Weight’s
Target
Node

/)2

Weight’s Origin(i)

1.2111

0.02

-0.0161

0.0822

0.0282

-5.9494

0.099

1.7012

-0.0747

0.1173

2.8307

0.0522

-0.7862

-0.2387

-0.1166

1.1258

-2.3302

1.0154

-5.3858

-2.1901

AW N =

4.8948

-0.5412

1.2339

-2.4529

-0.9398
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Table A-6 Biases for all the Layers

Layer Node 1 Node 2 Node 3 Node 4 Node5

1 2.262 1.472 -1.33 -2.26 -0.521
2 5.9256 0.7037 3.5716 - -
3 1.5698 - - - -

Table A-7 Weights for the hidden layer
Weight's Weight's Origin(i)
Target
Node
()
1 2 3 4 5

1 -3.1957 2.3895 7.7277 5.6957 0.9123
2 -3.6448 -0.5572 2.5455 0.9412 -0.0447
3 5.1541 -4.3272 0.2448 0.307 0.8164

Table A-8 Weights for the output layer
Weight's Weight’s Origin(i)
Target
Node
-
1 2
1 1.2285 -2.2312 1.0732
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Sub-Model 3b

Figure A-3 Matlab NN Program

P =
[1.1810;5.8950
[1.3994:1.8470
[1.5818;2.9300
[1.4974;3.5820
[1.3520;4.7090
[1.6640;6.1400
[1.8448;5.5780
[0.7502;4.8150
[1.3632;4.6270
[0.9466;4.3580
[1.0782:5.4520
[1.4757;4.7360
[2.1176:5.9020
[0.9446:;2.1970
[0.9414;3.2040
{2.7430;6.3370
[2.8738;7.3430
[0.8714;1.5010
[0.9022;2.5430
[0.8612;2.4570
[0.9166;3.9040

[1.3074;14.5900;3.5200;0.8959]
[1.4482;16.5030;3.5200,;2.8904]

{[1.1358;4.4030;6.6000;0.7479]

;6.6000;1.9014}
;4.0000;1.0767]
;4.0000;0.9699]
$6.7800;0.8164]
;6.7800;0.9151]
;6.7800;1.9781]
$3.2300;1.1205]
;4.7900;1.7808]
;4.2300;2.1753]
;3.4000;1.6274)
$3.4000;1.0192]
;4.6000;0.8630]
;4.6000;0.7863)
:+5.3000;0.8082]
:5.3000;0.9973]1
;4.9000;0.7671}
;4.9000;0.9973}
;5.6800;0.8329]
;5.6800;0.9836]
;5.1700;0.9808]
;5.1700;1.5151])

[1.1320;4.7900;6.6000;1.0603]
[1.1692;6.2540;6.6000;0.9836]
[1.4988;2.2430;4.0000;1.0849]
[1.5484;3.2910;4.0000;0.9890]
[1.5622;3.9750;6.7800;1.0767]
[1.4396;5.0580;6.7800;0.9562]
[1.5066;4.4930;3.2300;1.9315]
[0.7061:3.4840;4.7900;1.9397]
[1.2090;3.1790;4.2300:2.0192)
[0.9482;3.5960;3.4000;0.7863]
[0.9892;4.7910;3.4000;1.1863]
[1.0926;5.7600;3.4000;0.8438]
[1.5100;5.1830;4.6000;1.2247]
[2.6080;6.2740;4.6000;1.0192]
[0.9638;2.4840;5.3000;0.7863]
[1.0178;3.5830;5.3000;1.0384]
[2.7874;6.6230;4.9000;0.7836]
[2.9016:;7.7220;4.9000;1.0384]
[0.8670;1.8270;5.6800;0.8932]
[0.7772;1.6500;5.1700;0.4027]

[1.1610;5.2010;6.6000;1.1260]
[1.2512;1.4540;4.0000;0.8192}
[1.5456;2.5760;4.0000;0.9123]
[1.6106;4.0120;4.0000;1.9753]
[1.4848;4.3750;6.7800;1.0959]
[1.5944;5.4180;6.7800;0.9863]
[1.5792:;5.1690;3.2300;1.8521]
{0.7281;4.1650;4.7900;1.8658]
(1.3414;3.8330;4.2300;1.7918]}
[0.9694;3.7640;3.4000;0.4603]
[1.0618;5.0800;3.4000;0.7918]
[1.3246;4.4210;4.6000,0.7918]
[1.8066;5.6150;4.6000;1.1836]
[0.8798;1.9020;5.3000;0.9616]
[0.9348;2.8400,5.3000;0.9753])
[1.0524;4.482075.3000;2.4630]
[2.9176;6.9790;4.9000;0.9753}
{0.8300;1.1970;5.6800;0.8493]
[0.8602;2.1840;5.6800;0.97811
[0.8622;2.0990:;5.1700;1.2301}
[0.8592;2.8170;5.1700;0.9863] [0.9058;3.3510;5.1700;1.4630]
[1.0140;4.0930;5.1700;0.5178) [1.2432;14.2630;3.5200;1.0082]
[1.3558;15.1130;3.5200;1.4329] [1.3928;15.4480;3.5200;0.9178]
[1.8198;4.1010;7.2200;1.4712] [2.2590;4.2710;7.2200;0.4658]

[2.4399;4.6580;7.2200;1.0603] [2.7530;5.1450;7.2200;1.33421};
T = {1.1320 1.1610 1.1810 1.1692 1.1658 1.3994 1.4988 1.5456 1.5818 1.5484 1.6106 1.8740 1.5622 1.4848
1.3520 1.4396 1.5944 1.6640 2.1566 1.5792 1.8448 1.9234 0.7281 0.7502 0.9032 1.3414 1.3632 1.4520 0.969%4
0.9466 0.9892 1.0618 1.0782 1.0926 1.1942 1.4757 1.5100 1.8066 2.1176 2.6080 2.8008 0.9446 0.9638 0.9348
0.9414 1.0178 1.0594 1.0622 2.7874 2.9176 2.8738 2.9016 3.1426 0.3714 0.8670 0.8602 0.9022 0.9664 0.8622
0.8612 0.8592 0.9058 0.9166 1.0140 0.9846 1.3074 1.3558 1.3928 1.4482 2.2294 2.2590 2.4399 2.7530
2.7933});
net = newff([(0 5;0 18;2 7;0 3],[4 1 1],{'logsig' 'tansig' 'purelin'});
net.trainParam.goal = 1e-100;
net.trainParam.epochs = 500;
net.trainParam.mu = .01;
net.trainParam.mu_inc = 10;
net.trainParam.mu_dec = .5;
net.trainParam.mu_max = 1e90;
net = train(net,P,T);
Table A-9 Weights for the input layer
Weight's Weight's Origin(i)
Target
Node
1 2 3 4
1 5.4544 0.1439 0.4710 1.2711
2 -3.9576 0.0159 0.0349 -0.0698
3 -5.2678 -0.1252 -0.4788 -1.3044
4 5.2053 -0.4420 1.6612 3.5388
Table A-10 Biases for all the Layers
Layer Node 1 Node 2 Node 3 Node 4
1 -17.3689 1.6958 16.8817 -22.3594
2 -33.1917 - - -
3 64.9048 - - -
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Table A-11 Weights for the hidden layer

Weight's Weight’s Origin(i)
Target
Node
1]
1 2 3 4
1 34.2096 5.6532 35.6650 0.9821

Table A-12 Weights for the output layer

Weight’s Target Weight's
Node Origin (i)
1),
1
1 -64.1458
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Sub-Model 4b

Figure A-4 Matlab NN Program
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1602;4.
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3047;4.
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3384;2.
7725;2.
5823;3.
0331;6.
1084:6.
1748;7.
0835;1.
1820;2.
0500;1.
3601;2.
7920;3.
2551;4.

{[1.1358;0.7479;6.6000;0.0619;4.4030]
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[2.7430;3.
[0.8300;0.
[0.8300;2.
[0.8300:4.
[0.7772;1.
[0.7772;3.
[0.7772;6.
[1.2432;1.

8356;6.
8192;4.
9808;4.
8630;4.
8274;4.
8932;6.
9041;:6.
8466;6.
9315;3.

.9041;3.

8055;4.
0192;4.
9863;4.
2466;3.
0603;3.
8712:3.
7918;4.
8795:4.
8493;4.
9616;5.
5562;5.
5288;5.
0301;5.
5507:4.
5233;4.
8493;5.
5753:5.
5370;5.
6329;5.
6000;5.
5781;5.
0082;3.

6000;0.
0000;1.
0000;2.
0000;2.
0000;2.
7800;0.
7800;1.
7800;1.6358;5.
2300;0.0929;4.4930]
2300;0.2226;5.5780]
7900;0.5707;4.1650]
2300;0.1803;3.1790]
2300;0.7770;4.6270])
4000;0.0810;3.7640)
4000;0.1765:;4.7910]
4000;0.2028;5.4520]
6000;0.9857;4.4210]
6000;2.5958;5.1830]
6000;3.3350;5.90201
3000;0.1740;1.9020]
3000;0.5134;2.4840]
3000;1.3325;3.2040]
3000;1.9793;4.4820]
9000;0.0617;6.6230]
9000;0.1481;7.3430]
6800;0.0401;1.1970]
6800;0.1302;1.8270]
6800;0.2346;2.5430])
1700;0.2140;2.0990]
1700;0.5221;2.8170]
1700:;1.1343;3.9040)
5200;0.0081;14.2630}

2924;5.
2544;1.
1121;2.
2693;2.
5115:4.
5286;3.
0325:4.

8950]
4540]
2430)
93001
0120]
97501}
70901
41801

0157;14.5900]
0367;15.4480}
5790;4.2710} [
5865;5.14501};

[1.2432;3.3370;3.5200;0.0286;15.1130]
[1.8198;1.4712;7.2200;1.9233;4.1010]
1.8198;2.9973;7.2200;3.3766;4.6580]

T {1
1.4848
1.4520
0.9%4406
0.8602
2.259%0
net
net.

net.

tr
tr

.1320 1.161
1.3520 1.4
0.9694 0.9
0.9638 0.9
0.9022 0.9
2.4399 2.7
newff ([0
ainParam.
ainParam.

go
ep

0 1.
396
466
348
664
530

1.5944 1.
0.9892 1.
0.9414 1.
0.8622 0.
2

L7933}

al
ochs

le-100;
500;

1810 1.1692 1.1658 1.
1566
0782
0594
8592

6640
0618
0178
8612

2.

1.
1.
0.

3994 1.
1.5792
0926
0622
9058

1.8448
1.1942
2.,7874

1.
1.
0. 0.9166

5;0 18;2 7;0 3;0.1 20],[5 1 1],{'tansig’

4988 1.

5456 1.
1.9234
1.4757
2.9176
1.0140

'tansig’'

5818 1.
0.
1.5100
2.

0.9846

5484 1.
0.7502
1.8066
2.9016
1.3074

7281

8738

'purelin'}):;

net.
net.
net.
net.

net

trainParam.
trainParam.
trainParam.
trainParam.
train(net

mu .01;
mu_inc
mu_dec =
mu_max
;BT

10;
.57
1e90;

[1.1358;1.8082;6.6000;0.1276;4.7900]

6106 1.8740 1.5622

0.9032 1.3414 1.3632
2.1176 2.6080 2.8008
3.1426 0.8714 0.8670
1.3558 1.3928 1.4482
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Table A-13 Weights for the input layer

Weight's Weight's Origin(i)
Target
Node
()
1 2 3 4 5
1 2.3099 0.2508 2.0016 -1.8884 -0.1629
2 2.0509 0.1527 0.3554 1.408 0.0384
3 -0.8833 -1.3167 -1.8835 3.0791 -0.5122
4 0.1421 0.0048 0.0019 0.0297 0.0005
5 -1.2195 0.5035 -1.6419 -1.9977 -1.4773
Table A-14 Biases for all the Layers
Layer Node 1 Node 2 Node 3 Node 4 Node5
1 -6.6118 -6.5387 -3.1838 -0.3425 2.8079
2 -0.5069 - - - -
3 1.8992 - - - -
Table A-15 Weights for the hidden layer
Weight's Weight’s Origin(i)
Target Node
)]
1 2 3 4 5
1 -0.4077 -0.3762 -0.0021 10.733 -1.5516

Table A-16 Weights for the output layer

Weight's Target Weight’s Origin(i)
Node
1),
1
1 1.2816

119




Sub-Model 1¢c

Figure A-5 Matlab NN Program
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[3
[4
[3

[3.
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{1.

[3
[6
[1
[1

[3.

{[4.

.25;0.
.93;:2.
.38;2.
.79;0.
.19;0.
.48;0.

83;1.

.36:0.

55;0.

L2071,
.62;0.
.20;0.
.50;0.

35;1.
{14.59;0.2004;3.52]
(4.10;13.7340;7.22]
[2.057;0.7442;3.6]

13;0.5737;6.6]

9391;6.6) [1.16;0.2240;4]
4933:4] [3.29:2.5678;4}
4959;6.78] [4.71;2.7569;6.
3940;3.23] [4.49;0.4869;3.
4352;4.36] [4.62;0.4735;4.
5721;4.79) [4.17:;0.9472;4.
0104;4.23) [4.63;1.3761;4.
5370;3.4] {4.79;0.5534;3.4
5449;5.3] [1.90;0.7189;5.3
8774;5.3] [3.58;2.1272;5.3
8163;4.9] [6.98;0.8629;4.9
1891;5.68] [1.50;0.2325;5.68]
9784;5.17] [1.65;1.0284;5.17]
7704;5.17) [3.90;2.1127;5.17]

[4.40;0.6356;6.6]

[1.45;1.4784;4)]

[4.01;2.7355;4]

78] [5.06;3.0695;6.78]
23] [5.17;0.5319;3.23]
36] [5.27;0.5240;4.36]
79] [4.82;2.4749;4.79]
23] [3.31;0.3768;3.4]
1 [5.08;0.5661;3.4]
] [2.20;0.8833;5.3])
] [4.48;2.5242;5.3)
1 [7.34;0.9027;4.9)

[1.85;2.2794;4}
[3.28;1.7245;6.78]

[4.79;0.7013;6.6]

[S.
[2.
[6.
[7.
[1.83;0.2792;5.68]
[2.10;1.1925;5.17]
[4.09;2.2336;5.17]
{15.11:;0.2133;3.52]
(4.27;14.3896;7.22]
[2.155;0.7643:3.6]

[15.45;0.2214;3.52]
[4.66;15.1872;7.22]
[2.775;0.9048;3.6}

[5.42;3.3602:;6.78]
[5.58;0.6166;3.23]
[5.58;0.6161;4.36]
[2.44;0.5991;4.23]
[3.60;0.4280;3.4]
45;0.5797;:3.4])
48;1.0583;5.3]
06;0.7546;4.9]
72;0.9293;4.9]
[2.18;0.3310;5.
[2.46;1.3385;5.

[5.20;0.7481;6.6]
[2.24;2.3361:4]
[3.58;2.0168;6.78]
[6.14;3.9927;6.78]
[3.79;0.3940;4.36]
[2.78;0.3765;4.79]
[3.18;0.7793;4.23]
[3.76;0.4579;3.4]
[5.76;0.6057;3.4]
[2.84;1.3174;5.3]
[6.34;0.7877:4.9]
[0.89;0.1490;5.68]
[2.54;0.3836;5.68]
[2.82;1.5005;5.17]

68]
17]

[13.90;0.1847;3.52]

[5.90;0.8660;6.6]

[2.58;2.4104; 4]
[3.98;2.2531;6.78]

[14.26;0.1927;3.52]

[16.520;0.2476;3.52]
[5.157;15.3971;7.22]
[3.116;0.992;3.6]

[3.56;11.8106;7.22]
[1.785;0.689;3.6]

[3.478;1.0895;3.6]

[0.941;1.6788;4.54] [1.086;1.8611;4.54] [1.865;2.84;4.54] [2.431;3.55;4.54] [3.297;4.6382;4.54]};
T = {1.1358 1.1320 1.1610 1.1810 1.1692 1.1658 1.2512 1.3994 1.4938 1.5456 1.5818 1.5484 1. 6106 1.8740
1.4974 1.5622 1.4848 1.3520 1.4396 1.5944 1.6640 2.1566 1.5066 1.35792 1.8448 1.9234 1.0632 1.1462 1.0924
1.2086 1.2680 0.7061 0.7281 0.7502 0.9032 1.2090 1.3414 1.3632 1.4520 0.9482 0.9694 0.9466 0.9892 1.0618
1.0782 1.0926 1.1942 0.8798 0.9446 0.9638 0.9348 0.9414 1.0178 1.0594 1.0622 2.7430 2.7874 2.9176 2.8738
2.9016 3.1426 0.8300 0.8714 0.8670 0.8602 0.9022 0.9664 0.7772 0.8622 0.8612 0.8592 0.9058 0.9166 1.0140
0.9846 1.2432 1.3074 1.3558 1.3928 1.4482 2.2294 1.8198 2.2590 2.4399 2.7530 2.79331.4608 1.4820 1.5098
1.4640 1.6086 1.7622 0.5938 0.5940 0.6458 0.7056 0.7968};
net = newff([0.5 17;0 20;2 7]1,[3 1 1],{'logsig' 'tansig' 'purelin'}):
net.trainParam.goal = 1e-100;
net.trainParam.epochs = 500;
net.trainParam.mu = .01l;
net.trainParam.mu_inc = 10;
net.trainParam.mu_dec = .5;
net.trainParam.mu_max = 1eS0;
net = train{net,P,T);
Table A-17 Weights for the input layer
Weight’s Weight's Origin (i)
Target
Node
1 2 3
1 6.0435 -3.8313 0.3209
2 1.9036 0.5316 -2.9015
3 4111 -0.2141 5.0176
Table A-18 Biases for all the Layers
Layer Node 1 Node 2 Node 3
1 -18.2123 6.0453 -46.144
2 -0.6514 - -
3 3.0227 - -
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Table A-19 Weights for the hidden layer

Weight’s Weight's Origin (i)
Target
Node
i
1 2 3
1 -0.1605 0.2997 0.2936

Table A-20 Weights for the output layer

Weight's Target Weight’s Origin (i)

Node
()
1
1 3.7689
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Sub-Model 2¢

Figure A-6 Matlab NN program
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ne
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ne

= {[1.1358;4.4030;6.6000;0.7479;0.6194)

= {1

.3520
.9694
. 9638
.9022
.2590
.7056

t =

1610:5.
1692:6.
3994;1.
5456;2.
5484; 3.
4974; 3.
4848;4.
4396;5.
6640;6.
5792;5.
7061:3.
7502:4.
3414;3.
9482;3.
9466;4.
0618;5.
0926;5.
4757;4.
.8066;5.
6080;6.
9446;2.
9348;2.
0178;3.
.7430;6.
9176;6.
9016;7.
8714;1.
8602;2.
7772: 1.
8612;2.
9058;3.
0140;4.

8198;4.
4399;4.
4608;2.
5098;2.
6086;3.
1248;2.
1176;4.

0.

0
0
0.
2

4396
. 9466
.9348
9664
. 4399

1

0
0
0
2

7968} ;
newff ([0

t.trainParam.
t.trainParam.
t.trainParam.
t.trainParam.
t.trainParam,.
t.trainParam.

+ =

8150;4.7900;1.7808;15.2768]
8330;4.2300;1.7918;2.3104]
5960;3.4000,;0.7863;0.5111]
3580;3.4000;1.6274;0.7917]
0800;3.4000;0.7918;0.1272]
7600;3.4000;0.8438;0.2605]
7360;4.6000;0.8630;13.1905]

0930;5.1700;0.5178;1.
3074;14.5900;3.5200;0.8959:;0.0768]
3928;15.4480;3.5200;0.9178;0.0803)
1010;7.2200;1.4712;19.2334]
6580;7.2200;1.0603;7.9760]
057;3.6;0.745205;0.055145]
775:3.6;1.69863;0.14057]
478;3.6;0.991781;0.09748]
544;2,85;2.131507;0.329305]
082;2.85;2.476712;0.447504]
594;1.865;4.54;2.134247;0.978908]
7056;3.297;4.54;2.372603;1.
.1320 1.
1.

610 1.1810 1.1692 1.1658 1.
1.

5944 1.6640 2.
.9892 1.0618 1.
.9414 1.0178 1.
.8622 0.8612 0.
.7530 2.7933 1.

08823511}

1566 1.5792
0782 1.0926
0594 1.0622
8592 0.9058

[1.1320;4.7900;6.6000;1.0603;0.6566]

2010;6.6000;1.1260;0.4683] [(1.1810;5.8950;6.6000;1.9014;1.1795]
2540;6.6000,0.9836;0.7311] [1.2512;1.4540;4.0000;0.8192;12.5438]
8470;4.0000,1.0767,;8.0098] [1.4988;2.2430;4.0000;1.0849;0.5672]
5760;4.0000;0.9123;0.7431) [1.5818;2.9300;4.0000;0.9699;0.8290]
2910;4.0000;0.9890;0.7449] [1.6106;4.0120;4.0000;1.9753;1.6774]
5820;6.7800;0.8164;2.9236] [1.5622;3.9750;6.7800;1.0767;2.3627]
3750;6.7800;1.0959;2.4283] [1.3520;4.7090;6.7800;0.9151;2.6100]
0580;6.7800;0.9562;3.1260]1 [1.5944;5.4180;6.7800;0.9863;2.9072]
1400;6.7800;1.9781;6.3243) [1.5066;4.4930,3.2300;1.9315;0.9292]
1690;3.2300;1.8521;0.4496] [1.8448;5.5780,;3.2300;1.1205;0.8473]
4840;4.7900;1.9397;1.9561) [0.7281;4.1650;4.7900;1.8658;3.7512]
[1.2090;3.1790;4.2300;2.0192;1.8027])
[1.3632;4.6270,;4.2300;2.1753;3.6573]
[0.9694;3.7640;3.4000;0.4603;0.2992]
[0.9892;4.7910,;3.4000;1.1863;0.1633]
[1.0782;5.4520;3.4000;1.0192;0.1360]
[1.3246;4.4210;4.6000;0.7918;9.8569]
[1.5100;5.1830;4.6000;1.2247;2.9104]
6150;4.6000;1.1836;3.1831] [2.1176;5.9020;4.6000;0.7863;4.2083]
2740;4.6000;1.0192;3.0588] [0.8798;1.9020;5.3000;0.9616;1.7402]
1970;5.3000;0.8082;1.6442] [0.9638;2.4840;5.3000;0.7863;1.7493]
8400,5.3000;0.9753;2.5916] [0.9414;3.2040;5.3000;0.9973;5.6000]
5830;5.3000;1.0384;2.4974) {1.0594;4.4820;5.3000;2.4630;3.9702]
3370;4.9000;0.7671;0.3307] (2.7874;6.6230;4.9000;0.7836;0.2863]
9790;4.9000;0.9753;0.4666] [2.8738;7.3430;4.9000;0.9973;0.3975]
7220;4.9000;1.0384;0.2665] [0.8300;1.1970;5.6800;0.8493;0.4009]
5010;5.6800;0.8329;0.4338] [0.8670;1.8270;5.6800;0.8932;0.4675]
1840;5.6800;0.9781;0.5182] [0.9022;2.5430;5.6800;0.98326;0.5260)
6500;5.1700;0.4027;0.5000] [0.8622;2.0990;5.1700;1.2301;1.6403]
4570;5.1700;0.9808;1.4604] [0.8592;2.8170;5.1700;0.9863;1.6201})
3510;5.1700;1.4630;2.6989] [0.9166;3.9040;5.1700;1.51£1;3.4229]}
2085] [1.2432;14.2630;3.5200;1.0082;0.0807]
[1.3558;15.1130;3.5200;1.4329;0.1290]
[1.4482;16.5030;3.5200;2.€904;0.2624]
[2.2590;4.2710;7.2200;0.4€58;6.5565]
[2.7530;5.1450;7.2200,;1.3342;2.0989]
[1.482;2.155;3.6;0.268493;C.020099]
[1.464;
[1.0596;1.766;2.85;0.389041;0.059523)
[1.1066;3.178;2.85;1.736986;0.287083])
[0.593778;1.086;4.54;0.39726;0.18221)
[0.6458;2.431;4.54;1.550685;0.709991]

3.116:3.6;0.934247;0.€87212]

3994 1.4988 1.5456 1.5818 1.5484 1
1.8448 1.9234 0.7281 0.7502 0.9032
1.1942 1.4757 1.5100 1.8066 2.1176
2.7874 2.9176 2.8738 2.9016 3.1426
0.9166 1.0140 0.9846 1.3074 1.3558

482 1.5098 1.464 1.6086 1.7622 1.1248 1.1066 1

5;0 18;2 7;0 3;0.1 20),([(5 3 1 1],{'tansig’' 'logsig' 'logsig'

goal = 1le-100;
epochs = 500;

mu = .01;
mu_inc = 10;
mu_dec = .5;

mu_max = 1e90;

train{net.P.T):

.6106 1.8740 1.5622 1.4848
1.3414 1.3632 1.4520
2.6080 2.8008 0.9446
0.8714 0.8670 0.8602
1.3928 1.4482 2,2294
L1176 1.1892 0.594 0.6458

'purelin'});
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Table A-21 Weights for the input layer

Weight's Weight's Origin (i)
Target
Node
1)
1 2 3 4 5
1 -2.9398 -5.5444 -5.0563 -0.8952 -3.9407
2 -1.9047 0.0952 -1.7833 0.7767 -0.769
3 -10.2404 -7.0474 6.4027 3.9701 5.6018
4 -4.9464 -0.0558 -0.3084 -0.983 -0.0411
5 1.0932 0.001 -0.0071 -0.0075 0.0115
Table A-22 Biases for all the Layers
Layer Node 1 Node 2 Node 3 Node 4 Nodeb
1 -3.9338 -1.1644 -2,8237 14.1146 -1.8147
2 3.7965 -2.1073 5.033 - -
3 0.2705 - - - -
4 -4.2629 - - - -
Table A-23 Weights for the first hidden layer
Weight's Weight’s Origin (i)
Target
Node
/)]
1 2 3 4 5
1 -3.0208 -2.8189 0.8574 -7.6968 2.7748
2 0.8061 -3.1505 0.9124 1.6547 2.5761
3 -1.4026 -1.9401 1.5259 1.4104 0.8474
Table A-24 Weights for the second hidden layer
Weight's Weight’'s Origin (i)
Target
Node
/)]
1 2 3
1 13.1202 -12.51 0.6376
Table A-25 Weights for the output layer
Weight's Target Weight'’s Origin (i)
Node
@
1 7.1527
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Sub-Model 3¢

Figure A-7 Matlab NN program
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0603]
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810 1.
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.0178
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le-100;
500;

1;
= 10;
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9890]
0767]
9562]
9315]
9397]
0192]
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18631
8438]
2247)
0192]
7863]
0384}
7836}
0384]
8932]
4027]

[1.
[1.
[1.
[1.
[1.
[1.
{o.

2512;1.4540;4.
£456;2.5760;4.
6106;4.0120;4.
4848;4.3750;6.
£944:;5.4180;6.
£792:;5.1690;3.
7281:;4.1650;4.
[1.3414:3.8330;4.
[0.9694;3.7640;3.
.(618;:;5.0800;3.
.2246;4.4210;:4.
.8066;5.6150;4.
.8798;1.9020;5.
.©348;2.8400;5.
.£594;4.4820;5.
.8176;6.9790;4.
.8300;1.1970;5.
.8602;2.1840;5.
.8622;2.0990;5.

0000,;0.8192]
0000;0.9123]
0000;1.9753]
7800;1.0959]
7800;0.9863]
2300;1.8521)
7900;1.8658]
2300;1.7918]
4000;0.4603]
4000;0.7918]
6000;0.7918]
6000;1.1836]
3000;0.9616]
3000;0.9753]
3000;2.4630]
9000;0.9753]
6800;0.8493)
6800;0.9781)
1700;1.2301)

1692 1.1658
.1566 1.5792
1.0782 1.0926
1.0594 1.0622
0.

1.482 1.5098 1.464 1.6086 1.7622 1.

31,04 1 1]1,{'1logsig’

[0.8592;2.8170;5.1700;0.9863]
[1.0140;4.0930;5.1700;0.5178] [1.
[1.3558;15.1130;3.5200;1.4329])
[1.8198;4.1010;7.2200;1.4712]
[2.7530;5.1450;7.2200;1.
[1.5098;2.7750;3.6000;1.
[1.0596;1.7660;2.8500;0.
[1.1176;4.0820;2.8500;2.
[0.6458;2.4310;4.5400;1.5507]
1.3994 1.4988 1
1.8448 1.9234
1.1942 1.4757
2.7874 2.9176
0.9166 1.0140

6986]
3890]
4767]

[1.
[1.
[0.
[0.
.5456 1.
0.7281
1.5100
2.8738

8592 0.9058 0.9846

'tansig'

.2058;3.

3510:5.

1700;1.

4630}

2432;14.2630;3.5200;1.0082]

4640;3.
1248;2.
5938;1.
7056;3.
5818 1.
0.7502
1.8066
2.9016
1.3074
1248 1.

‘purelin'}):;

net.
net

trainParam

.mu_dec = .5;
.mu_max = 1e90;

train(net,P,T):

1160:3.
5440;2.
0860;:4.
2970;:4.
5484 1.
0.9032
2.1176
3.1426
1.3558
1066 1.

6000;0.
8500:2.
5400;0.
5400;2.
6106 1.
1.3414
2.6080
0.8714
1.3928
1176 1.

9342]

1315]

3973]

37261}
8740 1.
1.3632
2.8008
0.8670
1.4482
1892 0.

[1.1610;5.2010;6.6000;1.1260]

[1.3928;15.4480;3.5200;0.9178]
[2.2590;4.2710;7.2200;0.4658]
3342][1.4€08;2.0570;3.6000;0.7452]

5622 1.4848
1.4520
0.9446
0.8602
2.2294
594 0.6458

Table A-26 Weights for the input layer

Weight's
Target
Node

/)]

Weight's Origin (i)

1

-0.7775

-0.014

0.0143

0.0068

-16.8961

-0.3985

-0.4806

-5.2564

22.7923

1.6488

-12.268

-6.8246

BWIN(=

-1.681

-1.3998

-0.85

-0.8758
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Table A-27 Biases for all the Layers

Layer Node 1 Node 2 Node 3 Node 4
1 3.9005 41.6026 -0.5269 -3.594
2 -9.2356 - -
3 -4.9507 - - -

Table A-28 Weights for the first hidden layer
Weight's Weight’s Origin (i)
Target
Node
)]
1 2 3 4
1 8.4304 0.2078 0.0856 1.0203

Table A-29 Weights for the output layer

Weight's Target Weight’s Origin (i)
Node
()
1
1 -8.1231
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APPENDIX D

This is data from NJDOT’s Pavement Management System. These are the sites
that were used to test the models in chapter 7.

Undivided Mile Post
Route | Route |Route|Direction| Lane Dir Test Test |[From| To IRI Rut RQl
Type |Number| Aux Date | Year Depth
I 78 E 06/20/89| 1989 | 6.4 6.6 60.5 0.3 3.9
{ 78 E 05/24/90( 1990 { 6.4 6.6 62.4 0.1 3.87
| 78 E 07/12/91( 1991 | 6.4 6.6 714 0.2 3.73
I 78 E 09/01/93( 1993 | 6.4 6.6 81.4 0.2 3.58
I 78 E 06/24/94 | 1994 | 6.4 6.6 80.7 0.2 3.59
| 78 E E 08/23/96] 1996 | 6.4 6.6 0 0.17 3.09
I 78 E 06/20/89| 1989 | 6.6 6.8 59.3 0.2 3.92
I 78 E 05/24/90{ 1990 | 6.6 6.8 70.1 0.1 3.75
| 78 E 07/12/91| 1991 | 6.6 6.8 69.4 0.2 3.76
| 78 E 09/01/93| 1993 | 6.6 6.8 82.8 0.2 3.56
I 78 E 06/24/94 | 1994 | 6.6 6.8 86.2 02 3.51
[ 78 E E 08/23/96| 1996 | 6.6 6.8 0 0.17 2.76
I 78 E 06/20/89( 1989 | 6.8 7 66.9 0.1 3.8
I 78 E 05/24/90| 1990 | 5.8 7 64.3 0.1 3.84
I 78 E 07/12/91( 1991 | 6.8 7 76 0.1 3.66
I 78 E 09/01/93| 1993 | 5.8 7 103.5 0.1 3.27
I 78 E 06/24/94 | 1994 | 6.8 7 109.5 0.1 3.19
| 78 E E 08/23/96 | 1996 | 6.8 7 0 0.16 2.65
I 78 E 06/20/89| 1989 | 7 7.2 721 0.1 3.72
| 78 E 05/24/90( 1990 | 7 7.2 84.1 0 3.54
[ 78 E 07/12/91| 1991 7 7.2 876 0.1 3.49
! 78 E 09/01/93| 1993 | 7 7.2 101.2 0.1 3.3
] 78 E 06/24/94| 1994 | 7 7.2 103.5 0.1 3.27
| 78 E E 08/23/96( 1996 | 7 7.2 0 0.13 2.66
{ 78 E 06/20/89( 1989 | 7.2 7.4 54.4 0.2 4
| 78 E 05/24/90( 1990 | 7.2 7.4 60.5 0.1 3.9
] 78 E 07/12/91( 1991 | 7.2 7.4 63.7 0.1 3.85
| 78 E 09/01/93( 1993 | 7.2 7.4 78.7 0.1 3.62
| 78 E 06/24/941| 1994 | 7.2 7.4 78 0.1 3.63
I 78 E E 08/23/96 | 1996 | 7.2 7.4 0 0.14 3.08
I 78 E 06/20/89| 1989 | 7.8 8 54.4 0.1 4
I 78 E 05/24/90| 1990 | 7.8 8 51.3 0 4.05
| 78 E 07/12/91| 1991 | 7.8 8 54.4 0.1 4
I 78 E 09/01/93] 1993 | 7.8 8 69.4 0.1 3.76
| 78 E 06/24/94| 1994 | 7.8 8 82.1 0.2 3.57
I 78 E E 08/23/96| 1996 | 7.8 8 0 0.15 2.89
| 78 E 06/20/89| 1989 | 8 8.2 495 0.1 4.08
I 78 E 05/24/90( 1990 | 8 8.2 56.8 0 3.96
| 78 E 07/12/91 | 1991 8 8.2 64.3 0.1 3.84
I 78 E 09/01/93( 1993 | 8 8.2 84.8 0.1 3.53
I 78 E 06/24/94( 1994 | 8 8.2 99.8 0.1 3.32
| 78 E E 08/23/96( 1996 | 8 8.2 0 0.16 2.86
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I 78 E 06/20/89| 1989 | 8.2 8.4 51.9 0.1 4.04
| 78 E 05/24/90]| 1990 | 8.2 8.4 57.4 0 3.95
I 78 E 07/12/91] 1991 | 8.2 8.4 59.9 0.1 3.91
| 78 E 09/01/93| 1993 | 8.2 8.4 86.2 0.1 3.51
I 78 E 06/24/94]1 1994 | 8.2 8.4 94 0.1 3.4

I 78 E 08/23/96| 1996 | 8.2 8.4 0 0.15 3.2

| 78 E 06/20/89| 1989 | 8.4 8.6 58.1 0.1 3.94
| 78 E 05/24/90( 1990 | 8.4 8.6 52.6 0 4.03
| 78 E 07/12/91( 1991 | 8.4 8.6 56.8 0.1 3.96
| 78 E 09/01/93| 1993 | 8.4 8.6 69.4 0.1 3.76
[ 78 E 06/24/94| 1994 | 8.4 8.6 74.7 0.2 3.68
| 78 E 08/23/96| 1996 | 8.4 8.6 0 0.14 3.21
| 78 E 06/20/89]| 1989 | 8.6 8.8 68.2 0.1 3.78
[ 78 E 05/24/90| 1990 | 8.6 8.8 67.5 0.1 3.79
I 78 E 07/12/911 1991 | 8.6 8.8 74.7 0.1 3.68
I 78 E 09/01/93) 1993 | 8.6 8.8 82.1 0.1 3.57
I 78 E 06/24/94| 1994 | 86 8.8 85.5 0.1 3.52
| 78 E 08/23/96| 1996 | 8.6 8.8 0 0.13 3.12
I 78 E 06/20/89| 1989 | 9.2 9.4 53.8 0.2 4.01
| 78 E 05/24/90] 1990 | 9.2 9.4 53.2 0.1 4.02
| 78 E 07/12/911 1991 | 9.2 9.4 63.1 0.1 3.86
| 78 E 09/01/93] 1993 | 9.2 9.4 89.7 0.2 3.46
] 78 E 06/24/94] 1994 | 9.2 9.4 99.8 0.2 3.32
I 78 E 08/23/96| 1996 | 9.2 9.4 0 0.15 2.35
I 78 E 06/20/89| 1989 | 9.4 9.6 51.3 0.1 4.05
| 78 E 05/24/90| 1990 | 9.4 9.6 54.4 0 4

| 78 E 07/12/91[ 1991 | 9.4 9.6 66.9 0.1 3.8

I 78 E 09/01/93| 1993 | 9.4 0.6 102.7 0.1 3.28
| 78 E 06/24/94| 1994 | 9.4 9.6 110.3 0.2 3.18
| 78 E 08/23/96| 1996 | 9.4 9.6 0 0.15 2.22
| 78 E 06/20/89| 1989 | 9.6 9.8 63.7 0.1 3.85
| 78 E 05/24/90| 1990 | 9.6 9.8 51.3 0.1 4.05
| 78 E 07/12/91[ 1991 | 9.6 9.8 76.7 0.1 3.65
| 78 E 09/01/93| 1993 | 9.6 9.8 108.7 0.2 3.2

| 78 E 06/24/94| 1994 | 9.6 9.8 113.4 0.2 3.14
| 78 E 08/23/96| 1996 | 9.6 9.8 0 0.16 2.31
| 78 W 06/20/89{ 1989 | 6 6.2 60.5 0.2 3.9

J 78 W 05/24/901 1990 | 6 6.2 62.4 0.1 3.87
| 78 W 07/12/9111991| 6 6.2 63.1 0.2 3.86
J 78 W 09/01/93| 1993 | 6 6.2 72.7 0.2 3.71
I 78 W 06/24/941 1994 | 6 6.2 78.7 0.2 3.62
I 78 W 08/23/96| 1996 | 6 6.2 0 0.19 3.1
I 78 W 06/20/89( 1989 | 6.2 6.4 61.2 0.2 3.89
I 78 W 05/24/90] 1990 | 6.2 6.4 65 0.1 3.83
I 78 W 07/12/91] 1991 | 6.2 6.4 64.3 0.2 3.84
I 78 W 09/01/93] 1993 | 6.2 6.4 72.1 0.2 3.72
| 78 W 06/24/94]1 1994 | 6.2 6.4 70.1 0.2 3.75
| 78 W 08/23/96] 1996 | 6.2 6.4 0 0.18 3.26
I 78 W 06/20/89| 1989 | 6.4 6.6 53.8 0.1 4.01
| 78 W 05/24/90| 1990 | 6.4 6.6 55 0 3.99
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| 78 W 07/12/91] 1991 | 6.4 6.6 65.6 0.2 3.82
I 78 W 09/01/93, 1993 | 6.4 6.6 76 0.2 3.66
| 78 W 06/24/94| 1994 | 6.4 6.6 78.7 0.2 3.62
I 78 W 08/23/96| 1996 | 6.4 6.6 0 0.17 3

| 78 W 06/20/89| 1989 | 6.6 6.8 58.1 0.2 3.94
| 78 W 05/24/90| 1990 | 6.6 6.8 57.4 0.1 3.95
I 78 W 07/12/911 1991 | 6.6 6.8 61.2 0.2 3.89
| 78 W 09/01/93| 1993 | 6.6 6.8 75.4 0.2 3.67
| 78 W 06/24/94| 1994 | 6.6 6.8 78 0.2 3.63
I 78 W 08/23/96| 1996 | 6.6 6.8 0 0.16 3.25
I 78 W 06/20/89| 1989 | 6.8 7 63.1 0.2 3.86
| 78 W 05/24/90| 1990 | 6.8 7 61.8 0.2 3.88
| 78 W 07/12/91| 1991 | 6.8 7 70.7 0.3 3.74
| 78 W 09/01/93} 1993 | 6.8 7 80 0.3 3.6

I 78 W 06/24/94| 1994 | 6.8 7 92.5 0.4 3.42
I 78 W 08/23/96| 1996 | 6.8 7 0 0.2 2.7
[ 78 W 06/20/89| 1989 | 7 7.2 75.4 0.2 3.67
| 78 W 05/24/90| 1990 | 7 7.2 75.4 0.1 3.67
| 78 W 07/12/91]1991 | 7 7.2 76.7 0.2 3.65
! 78 W 09/01/93]| 1993 | 7 7.2 89.7 0.2 3.46
| 78 W 06/24/9411994 | 7 7.2 95.4 0.2 3.38
| 78 W 08/23/961 1996 | 7 7.2 0 0.18 3.2

I 78 W 06/20/89| 1989 | 7.2 7.4 57.4 0.2 3.95
| 78 W 05/24/90| 1990 | 7.2 7.4 54.4 0.1 4

! 78 W 07/12/91]1991 | 7.2 7.4 61.2 0.2 3.89
I 78 W 09/01/93| 1993 | 7.2 7.4 69.4 0.2 3.76
| 78 W 06/24/94( 1994 | 7.2 7.4 80 0.3 3.6

| 78 W 08/23/96| 1996 | 7.2 7.4 0 0.17 3.13
| 78 W 06/20/89| 1989 | 7.4 76 74.7 0.2 3.68
| 78 W 05/24/90| 1990 | 7.4 7.6 77.4 0.1 3.64
I 78 W 07/12/91] 1991 | 7.4 76 82.1 0.2 3.57
I 78 W 09/01/93| 1993 | 7.4 7.6 96.1 0.1 3.37
I 78 W 06/24/94| 1994 | 7.4 7.6 104.2 0.2 3.26
! 78 W 08/23/96| 1996 | 7.4 7.6 0 0.16 2.68
I 78 W 06/20/89] 1989 | 7.6 7.8 74 0.1 3.69
I 78 W 05/24/90| 1990 | 7.6 7.8 81.4 0.1 3.58
I 78 W 07/12/911991 | 7.6 7.8 91.1 0.1 3.44
| 78 W 09/01/93| 1993 | 7.6 7.8 108.7 0.1 3.2

I 78 W 06/24/94| 1994 | 7.6 7.8 119.6 0.2 3.06
I 78 W 08/23/96| 1996 | 7.6 7.8 0 0.13 2.63
| 78 W 06/20/89| 1989 | 7.8 8 53.8 0.1 4.01
I 78 W 05/24/90| 1990 | 7.8 8 67.5 0 3.79
1 78 W 07/12/91]1991 | 7.8 8 80 0.1 3.6

I 78 W 09/01/93} 1993 | 7.8 8 112.6 0.1 3.15
I 78 W 06/24/94| 1994 | 7.8 8 128.6 0.2 2.95
I 78 W 08/23/96| 1996 | 7.8 8 0 0.15 2.49
| 78 W 06/20/89| 1989 | 8 8.2 60.5 0.1 3.9

I 78 W 05/24/90| 1990 | 8 8.2 66.2 0 3.81
| 78 W 07/12/91]1991| 8 8.2 66.9 0.1 3.8

! 78 W 09/01/93] 1993 | 8 8.2 87.6 0.1 3.49
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| 78 W 06/24/94| 1994 | 8 8.2 95.4 0.2 3.38
I 78 W 08/23/96| 1996 | 8 8.2 0 0.19 2.77
| 78 W 06/20/89{ 1989 | 8.2 8.4 54.4 0.1 4

I 78 w 05/24/90] 1990 | 8.2 8.4 61.8 0 3.88
I 78 w 07/12/91]1 1991 | 8.2 8.4 62.4 0.1 3.87
I 78 W 09/01/93]| 1993 | 8.2 8.4 74.7 0.1 3.68
| 78 W 06/24/94| 1994 | 8.2 8.4 85.5 0.2 3.52
[ 78 W 08/23/96| 1996 | 8.2 8.4 0 0.15 2.88
| 78 W 06/20/89| 1989 | 8.4 8.6 61.2 0.1 3.89
] 78 W 05/24/90] 1990 | 8.4 8.6 63.7 0 3.85
| 78 W 07/12/91{1991 | 84 8.6 65 0.1 3.83
I 78 w 09/01/93| 1993 | 8.4 8.6 76.7 0.1 3.65
| 78 W 06/24/94| 1994 | 8.4 8.6 78 0.1 3.63
| 78 W 08/23/96| 1996 | 8.4 8.6 0 0.16 2.81
I 78 W 06/20/89| 1989 | 8.6 8.8 71.4 0.1 3.73
| 78 W 05/24/90]| 1990 | 8.6 8.8 721 0.1 3.72
! 78 W 07/12/91]1 1991 | 8.6 8.8 721 0.2 3.72
I 78 W 09/01/93] 1993 | 8.6 8.8 74.7 0.1 3.68
I 78 W 06/24/94) 1994 | 8.6 8.8 84.1 0.1 3.54
I 78 W 08/23/96| 1996 | 8.6 8.8 0 0.16 3.12
I 78 W 06/20/89| 1989 | 8.8 9 72.7 0.1 3.71
| 78 W 05/24/90( 1990 | 8.8 9 73.4 0.1 3.7
| 78 W 07/12/911 1991 | 8.8 9 72.7 0.2 3.71
| 78 W 09/01/93| 1993 | 8.8 9 83.5 0.2 3.55
| 78 W 06/24/94] 1994 | 8.8 9 84.1 0.2 3.54
[ 78 W 08/23/96| 1996 | 8.8 9 0 0.17 3.1
I 78 W 06/20/89| 1989 | 9 9.2 59.9 0.2 3.91
| 78 W 05/24/90| 1990 | 9 9.2 59.9 0.2 3.91
I 78 W 07/12/9111991| 9 9.2 58.7 0.3 3.93
I 78 W 09/01/93| 1993 | 9 9.2 63.1 0.3 3.86
I 78 W 06/24/94)11994 | 9 9.2 65.6 0.3 3.82
I 78 W 08/23/96| 1996 | 9 9.2 0 0.17 3.28
| 78 W 06/20/89| 1989 | 9.2 9.4 56.2 0.2 3.97
I 78 W 05/24/90| 1990 | 9.2 9.4 56.8 0.2 3.96
! 78 w 07/12/91] 1991 | 9.2 2.4 G2.1 0.2 2.00
I 78 W 09/01/93| 1993 | 9.2 9.4 72.7 0.3 3.71
I 78 W 06/24/94]1 1994 | 9.2 9.4 701 0.3 3.75
I 78 W 08/23/96| 1996 | 9.2 9.4 0 0.14 2.98
| 78 W 06/20/89} 1989 | 9.4 9.6 61.2 0.2 3.89
| 78 W 05/24/90| 1990 | 9.4 9.6 66.9 0.1 3.8
I 78 W 07/12/91] 1991 | 94 9.6 66.9 0.2 3.8
I 78 W 09/01/83| 1993 | 9.4 9.6 86.9 0.3 3.5
| 78 W 06/24/841 1994 | 9.4 9.6 93.3 0.4 3.41
I 78 W 08/23/96] 1996 | 9.4 9.6 0 0.15 2.62
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Undivided Mile Post
Route| Route [Route|Direction| Lane Dir | Test | Test |From| To IRI Rut RQl
Type |Number| Aux Date | Year Depth
| 80 E 6/20/94 } 1994 | 7.60 | 7.80 | 64.30 020 } 384
| 80 E E 8/28/96 | 1996 | 7.60 | 7.80 0.00 0.09 | 3.52
| 80 E 6/20/94 | 1994 | 7.80 | 8.00 | 51.90 0.10 | 4.04
| 80 E E 8/28/96 | 1996 | 7.80 | 8.00 0.00 0.06 | 3.43
| 80 E 6/20/94 [ 1994 | 8.00 | 8.20 52.60 0.10 | 4.03
! 80 E E 8/28/96 | 1996 | 8.00 | 8.20 0.00 0.04 | 345
| 80 E 6/20/94 | 1994 | 8.20 | 8.40 | 56.20 0.10 | 3.97
I 80 E E 8/28/96 | 1996 | 8.20 | 8.40 0.00 0.04 | 3.45
I 80 E 6/20/94 | 1994 | 8.40 | 8.60 | 50.10 0.20 | 4.07
| 80 E E 8/28/96 | 1996 | 8.40 | 8.60 0.00 0.06 | 3.48
I 80 E 6/20/94 | 1994 | 860 | 8.80 | 46.00 0.20 | 4.14
I 80 E E 8/28/96 | 1996 | 8.60 | 8.80 0.00 0.06 | 3.57
| 80 E 6/20/94 | 1994 | 8.80 | 9.00 | 48.40 0.10 | 4.10
| 80 E E 8/28/96 | 1996 | 8.80 | 9.00 0.00 0.06 | 3.50
I 80 E 6/20/94 | 1994 | 9.00 | 9.20 | 51.90 0.10 | 4.04
I 80 E E 8/28/96 | 1996 | 9.00 | 9.20 0.00 0.07 | 3.65
I 80 E 6/20/94 | 1994 | 9.20 | 9.40 | 55.60 020 | 3.98
[ 80 E E 8/28/96 | 1996 | 9.20 | 9.40 0.00 0.05 | 3.59
| 80 E 6/20/94 | 1994 | 9.40) | 9.60 | 47.20 0.10 | 4.12
| 80 E E 8/28/96 | 1996 | 9.40 | 9.60 0.00 0.06 | 3.60
| 80 E 6/20/94 1 1994 | 960 | 9.80 | 47.20 0.20 | 4.12
[ 80 E E 8/28/96 | 1996 | 9.60 | 9.80 0.00 0.07 | 3.61
1 80 E 6/20/94 | 1994 | 9.80 | 10.00 | 54.40 0.10 | 4.00
[ 80 E E 8/28/96 | 1996 | 9.80 | 10.00 | 0.00 0.05 | 3.64
[ 80 E 6/20/94 | 1994 |10.00( 10.20 | 53.20 0.20 | 4.02
I 80 E E 8/28/96 | 1996 [10.00| 10.20 | 0.00 0.06 | 3.49
| 80 E 6/20/94 | 1994 | 10.20| 10.40 | 49.50 0.10 | 4.08
I 80 E E 8/28/96 | 1996 [10.20| 10.40 | 0.00 0.08 | 3.13
I 80 E 6/20/94 | 1994 |10.40| 10.60 | 49.00 0.10 | 4.09
I 80 E E 8/28/96 | 1996 |10.40| 10.60 | 0.00 0.08 | 3.44
I 80 E 6/20/94 | 1994 |10.60( 10.80 [ 51.30 0.10 | 4.05
I 80 E E 8/28/96 | 1996 [10.60| 10.80 | 0.00 0.08 | 3.33
I 80 E 6/20/94 | 1994 |{10.80| 11.00 | 42.50 0.10 | 4.20
I 80 E E 8/28/96 | 1996 [10.80| 11.00 | 0.00 0.07 | 3.41
| 80 E 6/20/94 | 1994 {11.00| 11.20 | 44.20 0.20 | 4.17
] 80 E E 8/28/96 | 1996 [11.00} 11.20 | 0.00 0.08 | 3.37
] 80 E 6/20/94 | 1994 111.20| 11.40 | 41.30 0.10 |4.22
| 80 E E 8/28/96 | 1996 [11.20| 11.40 | 0.00 0.09 | 3.40
| 80 E 6/20/94 | 1994 {11401 11.60 | 44.20 0.10 | 417
l 80 E E 8/28/96 | 1996 {11401 1160 | 0.00 0.09 1329
] 80 E 6/20/94 | 1994 {1160 11.80 | 45.40 0.20 | 4.15
| 80 E E 8/28/96 | 1996 {11.60| 11.80 | 0.00 0.06 | 3.37
I 80 E 6/20/94 | 1994 [11.80( 12.00 | 43.60 0.20 | 4.18
I 80 E E 8/28/96 | 1996 [11.80| 12.00 | 0.00 0.10 | 3.17
I 80 E 6/20/94 | 1994 |12.00| 12.20 | 68.20 0.20 | 3.78
I 80 E E 8/28/96 | 1996 |12.00| 12.20 | 0.00 0.17 | 3.44
I 80 E 6/20/94 | 1994 |12.20( 12.40 | 66.20 020 ! 3.81
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| 80 E E 8/28/96 | 1996 |12.20| 12.40 | 0.00 0.17 | 3.39
| 80 E 6/20/94 | 1994 [12.40| 12.60 | 59.30 0.20 | 3.92
| 80 E E 8/28/96 | 1996 |12.40} 1260 | 0.00 015 | 3.57
I 80 E 6/20/94 | 1994 | 12.60] 12.80 | 66.90 0.20 | 3.80
I 80 E E 8/28/96 | 1996 |12.60| 12.80 | 0.00 0.14 | 3.50
I 80 W 6/20/94 | 1994 | 760 | 7.80 | 61.20 0.20 | 3.89
l 80 W W 8/28/96 {1996 | 7.60 | 7.80 0.00 012 | 347
I 80 W 6/20/94 [ 1994 [ 7.80 | 8.00 | 59.30 0.10 | 3.92
I 80 W W 8/28/96 | 1996 | 7.80 | 8.00 0.00 0.10 | 3.39
I 80 W 6/20/94 | 1994 [ 8.00 | 8.20 | 65.00 0.20 | 3.83
I 80 W W 8/28/96 [ 1996 | 8.00 | 8.20 0.00 0.09 |3.55
I 80 W 6/20/94 [ 1994 | 8.20 | 8.40 | 6240 0.10 | 3.87
| 80 W W 8/28/96 | 1996 | 8.20 | 8.40 0.00 0.09 | 3.45
| 80 W 6/20/94 | 1994 | 840 | 860 | 63.70 010 | 3.85
I 80 w wW 8/28/96 | 1996 | 8.40 | 8.60 0.00 0.08 [ 3.46
i 80 W 6/20/94 | 1994 | 8.60 | 8.80 | 57.40 0.10 | 3.95
| 80 W wW 8/28/96 | 1996 | 8.60 | 8.80 0.00 0.10 | 3.40
! 80 w 6/20/94 | 1994 | 8.80 | 9.00 | 53.20 0.10 | 4.02
I 80 W W 8/28/96 | 1996 | 8.80 | 9.00 0.00 0.08 | 3.68
[ 80 W 6/20/94 | 1994 | 9.00 | 9.20 | 54.40 0.10 | 4.00
I 80 W W 8/28/96 | 1996 | 9.00 | 9.20 0.00 011 | 3.32
I 80 W 6/20/94 | 1994 | 9.20 | 9.40 | 48.40 0.10 | 4.10
| 80 W W 8/28/96 | 1996 | 9.20 | 9.40 0.00 0.11 332
I 80 W 6/20/94 | 1994 | 9.40 | 9.60 | 46.60 0.10 | 413
| 80 W w 8/28/96 | 1996 | 9.40 | 9.60 0.00 012 | 319
| 80 W 6/20/94 | 1994 | 960 | 9.80 | 53.80 0.10 | 4.01
I 80 W W 8/28/96 | 1996 | 9.60 | 9.80 0.00 012 | 3.24
I 80 W 6/20/94 | 1994 [ 9.80 [ 10.00 | 53.80 0.10 | 4.01
I 80 W W 8/28/96 | 1996 | 9.80 | 10.00 | 0.00 012 |3.25
I 80 W 6/20/94 | 1994 110.00| 10.20 | 57.40 0.20 | 3.95
| 80 W W 8/28/96 | 1996 |10.00| 10.20 | 0.00 0.06 | 3.74
| 80 W 6/20/94 | 1994 | 10.20| 10.40 | 49.00 0.10 | 4.09
| 80 W W 8/28/96 | 1996 [ 10.20| 10.40 | 0.00 0.09 | 3.71
| 80 W 6/20/94 | 1994 {10.40( 10.60 | 59.90 010 | 3.91
| 80 W W 8/28/96 | 1996 {10.40| 10.60 | 0.00 0.10 | 3.66
| 80 W 6/20/94 | 1994 |10.60| 10.80 | 59.90 0.10 | 3.91
| 80 W W 8/28/96 | 1996 | 10.60| 10.80 | 0.00 009 |335
| 80 W 6/20/94 | 1994 (10.80( 11.00 | 51.30 020 | 405
| 80 W W 8/28/96 | 1996 | 10.80| 11.00 | 0.00 0.13 |3.50
. 80 W 6/20/94 | 1994 [11.00| 11.20 | 55.00 0.20 | 3.99
I 80 wW W 8/28/96 | 1996 [11.00| 11.20 | 0.00 0.10 | 3.54
I 80 W 6/20/94 | 1994 [11.20| 11.40 | 62.40 0.10 | 3.87
I 80 W W 8/28/96 | 1996 | 11.20| 11.40 | 0.00 0.08 | 3.58
1 80 W 6/20/94 | 1994 |11.40| 11.60 | 57.40 0.10 | 3.85
| 80 W w 8/28/96 | 1996 ([11.40( 11.60 | 0.00 0.08 | 340
I 80 W 6/20/94 | 1994 | 11.60| 11.80 | 53.20 0.10 | 4.02
i 80 W W 8/28/96 | 1996 |11.60| 11.80 | 0.00 0.10 | 3.47
| 80 W 6/20/94 | 1994 |11.80| 12.00 | 66.20 0.20 | 3.81
I 80 W W 8/28/96 | 1996 |11.80| 12.00 | 0.00 0.09 | 3.49
I 80 W 6/20/94 | 1994 [12.00| 12.20 | 74.00 0.20 | 3.69
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I 80 wW w 8/28/96 | 1996 [12.00| 12.20 | 0.00 0.10 | 3.52
I 80 W 6/20/94 | 1994 {12.201 12.40 | 70.10 020 | 3.75
I 80 W w 8/28/96 | 1996 | 12.20| 12.40 | 0.00 0.10 | 3.55
I 80 wW 6/20/94 | 1994 (12.40| 1260 | 67.50 020 | 3.79
| 80 w wW 8/28/96 | 1996 | 12.40| 12.60 | 0.00 0.09 | 3.48
1 80 W 6/20/94 | 1994 |12.60| 12.80 | 61.20 0.20 | 3.89
] 80 W w 8/28/96 | 1996 [12.60| 12.80 | 0.00 0.09 | 357
Undivided Mile Post
Route| Route |Route|Direction| Lane Dir | Test | Test |From| To IRI Rut RQl
Type |Number| Aux Date | Year Depth
I 80 E 6/20/94 | 1994 120.00| 20.20 | 54.40 0.20 | 4.00
I 80 E E 8/28/96 | 1996 | 20.00| 20.20 | 0.00 0.17 | 3.74
| 80 E 6/20/94 | 1994 {20.20| 20.40 | 51.30 0.10 | 4.05
| 80 E E 8/28/96 | 1996 120.20| 20.40 | Q.00 0.18 | 3.86
| 80 E 6/20/94 | 1994 (20.40| 20.60 | 41.30 0.10 | 422
| 80 E E 8/28/96 | 1996 [20.40| 2060 | 0.00 0.17 | 3.87
| 80 E 6/20/94 | 1994 | 20.60| 20.80 | 41.90 0.10 | 4.21
| 80 E E 8/28/96 | 1996 [20.60{ 20.80 { 0.00 0.17 | 3.85
] 80 E 6/20/94 | 1994 |20.80( 21.00 | 45.40 0.20 | 4.15
I 80 E E 8/28/96 | 1996 120.80| 21.00 | 0.00 0.18 | 3.88
I 80 E 6/20/94 | 1994 [21.00| 21.20 | 44.20 0.10 | 4.17
| 80 E E 8/28/96 | 1996 |21.00| 21.20 | 0.00 0.15 | 3.85
1 80 E 6/20/94 | 1994 {21.20| 21.40 | 43.60 0.10 | 4.18
| 80 E E 8/28/96 | 1996 |21.20( 21.40 | 0.00 0.17 | 3.87
{ 80 E 6/20/94 | 1994 |21.40) 21.60 | 44.80 0.10 | 4.16
| 80 E E 8/28/96 | 1996 [21.40{ 2160 | 0.00 0.17 | 3.84
I 80 E 6/20/94 | 1994 |21.60| 21.80 | 49.50 020 | 4.08
I 80 E E 8/28/96 | 1996 [21.60| 21.80 | 0.00 0.16 | 3.69
I 80 E 6/20/94 | 1994 |21.80( 22.00 | 45.40 010 | 415
| 80 E E 8/28/96 | 1996 |21.80( 22.00 | 0.00 0.17 | 3.66
| 80 E 6/20/94 | 1994 122.00| 22.20 | 45.40 0.10 | 4.15
I 80 E E 8/28/96 | 1996 [22.00| 22.20 | 0.00 0.17 | 3.88
I 80 E 6/20/94 | 1994 |22.20| 22.40 | 46.60 010 | 413
I 80 E E 8/28/96 | 1996 |22.20| 22.40 | 0.00 0.17 | 3.95
I 80 E 6/20/94 | 1994 (22.40| 22.60 | 45.40 0.10 | 4.15
| 80 E E 8/28/96 | 1996 |22.40| 22.60 | 0.00 0.17 | 3.92
I 80 E 6/20/94 | 1994 |22.60| 22.80 | 50.70 0.10 | 4.06
I 80 E E 8/28/96 | 1996 |22.60| 22.80 | 0.00 0.18 | 3.87
I 80 E 6/20/94 | 1994 |22.80| 23.00 | 55.60 0.20 | 3.98
I 80 E E 8/28/96 | 1996 {22.80| 23.00 | 0.00 0.18 | 3.52
I 80 E 6/20/94 | 1994 |23.00| 23.20 | 44.80 0.10 | 4.16
I 80 E E 8/28/96 | 1996 [23.00| 23.20 | 0.00 0.17 | 3.93
| 80 E 6/20/94 | 1994 | 23.20| 23.40 | 69.40 0.10 | 3.76
i 80 E E 8/28/96 | 1996 {23.20| 23.40 | 0.00 0.16 | 3.28
| 80 E 6/20/94 | 1994 |23.40| 23.60 | 42.50 0.10 | 4.20
| 80 E E 8/28/96 | 1996 [23.40| 2360 | 0.00 0.16 | 3.94
| 80 E 6/20/94 | 1994 | 23.60| 23.80 | 45.40 010 | 4.15
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I 80 E 8/28/96 | 1996 [23.60| 23.80 | 0.00 0.18 | 3.96
| 80 E 6/20/94 | 1994 |23.80| 24.00 | 46.60 0.20 | 413
I 80 E 8/28/96 | 1996 |23.80| 24.00 | 0.00 0.19 | 3.93
] 80 E 6/20/94 | 1994 {24.00| 2420 | 43.10 020 | 4.19
| 80 E 8/28/96 | 1996 |24.00| 2420 | 0.00 017 | 3.86
| 80 E 6/20/94 | 1994 |24.20| 2440 | 43.10 020 | 4.19
| 80 E 8/28/96 | 1996 [24.20( 2440 | 0.00 0.15 | 3.99
I 80 E 6/20/94 | 1994 [24.40| 2460 | 43.10 0.10 | 4.19
| 80 E 8/28/96 | 1996 [24.40| 24.60 | 0.00 0.16 | 3.96
| 80 E 6/20/94 | 1994 |124.60| 24.80 | 41.90 020 | 421
| 80 E 8/28/96 | 1996 {24.60| 24.80 | 0.00 0.16 | 3.92
| 80 E 6/20/94 | 1994 |124.80 | 25.00 | 43.10 010 | 4.19
| 80 E 8/28/96 | 1996 |24.80| 25.00 | 0.00 0.16 | 3.87
I 80 E 6/20/94 | 1994 | 25.00]| 25.20 | 46.60 0.20 | 4.13
| 80 E 8/28/96 | 1996 {25.00| 25.20 | 0.00 015 | 3.90
I 80 E 6/20/94 | 1994 |25.20| 25.40 | 65.00 020 | 3.83
I 80 E 8/28/96 | 1996 |25.20| 25.40 | 0.00 0.15 | 3.16
I 80 E 6/20/94 | 1994 |25.40| 25.48 | 51.90 0.30 | 4.04
I 80 E 8/28/96 | 1996 |25.40| 2648 | 0.00 014 | 3.68
| 80 E 6/20/94 | 1994 {25.48) 25.60 | 51.90 0.30 | 4.04
I 80 E 8/28/96 | 1996 [25.48| 25.60 | 0.00 014 | 3.68
I 80 E 6/20/94 | 1994 |25.60| 25.80 | 55.60 0.30 | 3.98
I 80 E 8/28/96 | 1996 |25.60| 25.80 | 0.00 015 | 3.54
I 80 E 6/20/94 | 1994 {25.80| 26.00 | 65.60 0.20 | 3.82
| 80 E 8/28/96 | 1996 {25.80| 26.00 | 0.00 018 | 3.14
i 80 E 6/20/94 | 1994 [26.00| 26.20 | 64.30 0.10 | 3.84
I 80 E 8/28/96 | 1996 [26.00]| 26.20 | 0.00 017 | 3.58
I 80 E 6/20/94 | 1994 |26.20| 26.40 | 91.80 0.20 | 3.43
| 80 E 8/28/96 | 1996 [26.20| 26.40 | 0.00 016 |2.96
| 80 E 6/20/94 | 1994 {26.40]| 26.60 | 56.20 020 |3.97
I 80 E 8/28/96 | 1996 [26.40| 26.60 | 0.00 0.16 | 3.84
! 80 E 6/20/94 | 1994 | 26.60| 26.80 | 51.90 020 | 4.04
! 80 E 8/28/96 | 1996 {26.60| 26.80 | 0.00 0.14 | 3.82
| 80 E 6/20/94 | 1994 126.80| 26.88 | 46.00 020 | 414
l 80 E 8/28/96 | 1996 {26.80| 26.88 | 0.00 014 | 3.88
I 80 E 6/20/94 | 1994 [26.88| 27.00 | 46.00 020 | 414
| 80 E 8/28/96 | 1996 {26.88| 27.00 | 0.00 014 | 3.88
I 80 E 6/20/94 | 1994 |[27.00| 27.20 | 51.90 020 | 4.04
I 80 E 8/28/96 | 1996 |27.00| 27.20 | 0.00 0.15 | 3.39
[ 80 E 6/20/94 | 1994 |27.20]| 27.40 | 67.50 010 | 3.79
I 80 E B/28/96 | 1996 [27.20| 27.40 | 0.00 0.14 | 3.52
! 80 E 6/20/94 | 1994 |27.40| 27.60 | 55.00 020 | 3.99
i 80 E 8/28/96 | 1996 |27.40| 27.60 | 0.00 013 | 3.62
I 80 E 6/20/94 | 1994 {27.60| 27.80 | 51.90 0.20 | 4.04
I 80 E 8/28/96 | 1996 |27.60{ 27.80 | 0.00 014 | 3.84
| 80 E 6/20/94 | 1994 |[27.80| 28.00 | 47.20 0.20 | 4.12
I 80 E 8/28/96 | 1996 |27.80| 28.00 | 0.00 013 | 3.84
| 80 E 6/20/94 | 1994 [28.00| 28.20 | 67.50 030 [3.79
i 80 E 8/28/96 | 1996 [28.00| 28.20 | 0.00 014 | 3.11
I 80 E 6/20/94 | 1994 {28.20| 2840 | 36.20 020 |4.31
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| 80 E 8/28/96 | 1996 |128.20| 28.40 | 0.00 0.13 | 3.86
I 80 E 6/20/94 | 1994 [28.40| 28.60 | 31.70 0.20 | 4.39
| 80 E 8/28/96 | 1996 | 28.40| 28.60 | 0.00 013 | 3.97
| 80 E 6/20/94 | 1994 [28.60| 28.80 | 33.90 020 | 4.35
| 80 E 8/28/96 | 1996 |128.60) 28.80 | 0.00 0.16 | 3.89
| 80 E 6/20/94 | 1994 [28.80| 29.00 | 78.00 0.20 | 3.63
J 80 E 8/28/96 | 1996 [28.80| 29.00 | 0.00 0.16 | 3.09
J 80 E 6/20/94 | 1994 [ 29.00| 29.20 | 56.80 0.10 | 3.96
| 80 E 8/28/96 | 1996 |29.00| 29.20 | 0.00 0.17 | 3.31
| 80 E 6/20/94 | 1994 ;29.20)| 29.40 | 68.80 020 | 3.77
| 80 E 8/28/96 | 1996 |129.20| 29.40 | 0.00 0.13 | 3.49
| 80 E 6/20/94 | 1994 | 29.40| 29.60 | 41.90 020 | 4.21
J 80 E 8/28/96 | 1996 |29.40| 29.60 | 0.00 0.13 | 3.96
! 80 E 6/20/94 | 1994 |29.60( 29.80 | 47.20 010 | 4.12
| 80 E 8/28/96 | 1996 [{29.60| 29.80 | 0.00 012 | 3.980
! 80 E 6/20/94 | 1994 [29.80| 30.00 | 63.10 0.10 | 3.86
| 80 E 8/28/96 | 1996 |29.80| 30.00 | 0.00 013 | 3.93
| 80 E 6/20/94 | 1994 [30.00| 30.20 | 49.50 020 | 4.08
I 80 E 8/28/96 | 1996 | 30.00| 30.20 | 0.00 012 | 3.74
| 80 E 6/20/94 | 1994 [30.20; 30.40 | 43.60 0.20 | 4.18
I 80 E 8/28/96 | 1996 |30.20| 30.40 | 0.00 0.13 | 3.89
I 80 E 6/20/94 | 1994 [ 30.40| 30.60 | 41.90 0.10 | 4.21
I 80 E 8/28/96 | 1996 | 30.40| 30.60 | 0.00 0.13 | 3.93
| 80 E 6/20/94 | 1994 [30.60| 30.80 | 55.60 0.20 | 3.98
{ 80 E 8/28/96 | 1996 | 30.60) 30.80 | 0.00 0.11 | 3.47
[ 80 E 6/20/94 | 1994 [ 30.80| 31.00 | 47.80 0.20 | 4.11
I 80 E 8/28/96 | 1996 [30.80| 31.00 | 0.00 0.12 | 3.90
I 80 E 6/20/94 | 1994 [ 31.00| 31.20 | 49.00 0.20 | 4.09
I 80 E 8/28/96 | 1996 |31.00} 31.20 | 0.00 0.14 | 3.87
l 80 E 6/20/94 | 1994 |31.20| 31.40 | 45.40 020 | 415
I 80 E 8/28/96 | 1996 |31.20| 31.40 | 0.00 014 | 3.94
I 80 E 6/20/94 | 1994 [31.40| 31.60 | 40.20 0.20 | 4.24
| 80 E 8/28/96 | 1996 | 31.40| 31.60 | 0.00 013 | 3.92
i 80 E 6/20/94 | 1994 [ 31.60| 31.80 | 45.40 0.20 | 4.15
l 80 E 8/28/96 | 1996 131.60) 31.80 | 0.00 0.14 | 3.88
I 80 E 6/20/94 | 1994 | 31.80| 32.00 | 50.70 0.20 | 4.06
I 80 E 8/28/96 | 1996 [31.80| 32.00 | 0.00 0.16 | 3.18
| 80 E 6/20/94 | 1994 [ 32.00{ 32.20 | 66.90 0.20 | 3.80
i 80 E 8/28/96 | 1996 [32.00| 32.20 | 0.00 013 | 3.55
| 80 E 6/20/94 | 1994 {32.20) 32.40 | 50.70 020 | 4.06
! 80 E 8/28/96 | 1996 [32.20| 32.40 | 0.00 013 | 3.86
I 80 E 6/20/94 | 1994 [32.40| 32.60 | 66.90 0.20 | 3.80
| 80 E 8/28/96 | 1996 |32.40| 32.60 | 0.00 017 | 2.95
! 80 E 6/20/94 | 1994 [32.60| 32.80 | 49.00 020 | 4.09
l 80 E 8/28/96 {1996 |32.60| 32.80 | 0.00 0.14 | 3.96
| 80 E 6/20/94 | 1994 [32.80| 33.00 | 43.10 020 | 4.19
I 80 E 8/28/96 | 1996 |32.80| 33.00 | 0.00 013 | 3.91
I 80 E 6/20/94 | 1994 | 33.00| 33.20 | 41.90 020 | 4.21
I 80 E 8/28/96 | 1996 |33.00| 33.20 | 0.00 012 | 3.91
I 80 E 6/20/94 | 1994 (33.20| 33.40 | 46.00 020 {414
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| 80 E E 8/28/96 | 1996 |33.20| 33.40 | 0.00 013 | 3.86
I 80 E 6/20/94 [ 1994 [33.40( 33.60 | 61.80 0.20 | 3.88
l 80 E E 8/28/96 | 1996 133.40| 33.60 | 0.00 0.13 | 3.34
| 80 E 6/20/94 | 1994 [ 33.60| 33.80 | 53.20 0.20 | 4.02
i 80 E E 8/28/96 | 1996 |33.60| 33.80 | 0.00 013 |3.93
i 80 E 6/20/94 | 1994 |33.80| 34.00 | 59.90 020 | 3.91
I 80 E E 8/28/96 | 1996 {33.80| 34.00 | 0.00 015 | 3.43
| 80 W 6/20/94 | 1994 (20.00| 20.20 | 49.50 0.20 | 4.08
I 80 W W 8/28/96 | 1996 |20.00| 20.20 | 0.00 0.08 | 3.89
| 80 W 6/20/94 | 1994 [20.20| 20.40 | 57.40 020 | 3.95
I 80 W W 8/28/96 | 1996 120.20| 2040 | 0.00 0.08 | 3.87
| 80 W 6/20/94 | 1994 [20.40( 20.60 | 53.80 0.10 | 4.01
| 80 W W 8/28/96 | 1996 |20.40| 20.60 | 0.00 0.07 | 3.82
| 80 W 6/20/94 | 1994 {20.60| 20.80 | 42.50 020 | 4.20
l 80 W W 8/28/96 | 1996 |20.60( 20.80 | 0.00 0.05 | 3.88
| 80 W 6/20/94 | 1994 [20.80| 21.00 | 56.20 0.20 | 3.97
| 80 W w 8/28/96 | 1996 [20.80( 21.00 | 0.00 005 |3.75
I 80 W 6/20/94 | 1994 [21.00| 21.20 | 54.40 0.20 | 4.00
I 80 W W 8/28/96 | 1996 [21.00| 21.20 | 0.00 0.09 | 263
I 80 W 6/20/94 | 1994 [21.20| 21.40 | 48.40 0.20 | 4.10
I 80 W W 8/28/96 | 1996 121.20| 21.40 | 0.00 011 | 3.82
| 80 W 6/20/94 | 1994 |21.40| 21.60 | 49.50 0.20 | 4.08
| 80 W W 8/28/96 | 1996 |21.40| 21.60 | 0.00 0.14 | 3.80
I 80 W 6/20/94 | 1994 (21.60| 21.80 | 43.10 020 | 4.19
I 80 W wW 8/28/96 | 1996 |21.60|21.80 | 0.00 009 | 3.84
| 80 W 6/20/94 | 1994 |121.80| 22.00 | 53.80 0.20 | 4.01
| 80 W W 8/28/96 | 1996 |21.80| 22.00 | 0.00 0.08 | 3.86
| 80 W 6/20/94 | 1994 |22.00| 22.20 | 46.00 030 | 4.14
| 80 W W 8/28/96 | 1996 (22.00| 22.20 | 0.00 012 | 3.89
I 80 W 6/20/94 | 1994 |22.20| 22.40 | 47.80 030 | 4.1
I 80 W W 8/28/96 | 1996 |22.20| 22.40 | 0.00 0.09 | 3.85
1 80 W 6/20/94 | 1994 |22.40| 22.60 | 44.80 020 | 4.16
| 80 w W 8/28/96 | 1996 |22.40| 22.60 | 0.00 012 |3.79
| 80 W 6/20/94 | 1994 [22.60| 22.80 | 45.40 0.30 | 4.15
| 80 W W 8/28/96 | 1996 |22.60{ 22.80 | 0.00 0.10 | 3.86
! 80 W 6/20/94 | 1994 122.80| 23.00 | 62.40 0.20 | 3.87
[ 80 W W 8/28/96 | 1996 |22.80| 23.00 | 0.00 0.07 | 3.47
I 80 W 6/20/94 | 1994 [23.00| 23.20 | 37.90 020 | 4.28
I 80 W W 8/28/96 | 1996 |23.00| 23.20 | 0.00 0.06 | 3.81
| 80 W 6/20/94 | 1994 123.20| 23.40 | 54.40 0.20 | 4.00
I 80 W wW 8/28/96 | 1996 |23.20| 23.40 | 0.00 009 | 374
| 80 W 6/20/94 | 1994 [23.40| 23.60 | 43.10 0.20 | 4.19
! 80 W W 8/28/96 | 1996 |23.40| 2360 | 0.00 0.08 | 3.94
| 80 W 6/20/94 | 1994 |23.60| 23.80 | 39.00 020 | 426
I 80 w W 8/28/96 | 1996 (23.60| 23.80 | 0.00 0.08 | 3.94
I 80 W 6/20/94 | 1994 |23.80| 24.00 | 40.70 0.10 | 4.23
I 80 W W 8/28/96 | 1996 [23.80| 24.00 { 0.00 0.07 | 3.92
i 80 W 6/20/94 | 1994 |24.00] 24.20 | 41.90 0.10 | 4.21
| 80 W \ 8/28/96 | 1996 |24.00| 2420 | 0.00 0.06 | 3.91
I 80 W 6/20/94 | 1994 |24.20| 24.40 | 47.80 020 | 4.1
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| 80 W W 8/28/96 | 1996 |124.20| 24.40 | 0.00 0.07 | 3.80
I 80 W 6/20/94 | 1994 [24.40| 2460 | 48.40 0.20 | 4.10
I 80 w W 8/28/96 | 1996 [24.40| 24.60 | 0.00 0.07 | 3.86
| 80 W 6/20/94 | 1994 |24.60| 24.80 | 46.60 0.20 | 4.13
| 80 W W 8/28/96 | 1996 {24.60| 24.80 | 0.00 0.08 | 3.93
| 80 W 6/20/94 | 1994 |24.80| 25.00 | 46.60 010 | 4.13
| 80 W W 8/28/96 | 1996 |24.80| 25.00 | 0.00 0.09 | 3.83
| 80 W 6/20/94 | 1994 {25.00) 25.20 | 50.10 0.20 | 4.07
J 80 W W 8/28/96 | 1996 {25.00] 25.20 | 0.00 009 | 3.79
I 80 W 6/20/94 | 1994 |25.20| 25.40 | 73.40 0.20 | 3.70
I 80 W W 8/28/96 | 1996 [25.20| 25.40 | 0.00 011 | 3.29
I 80 W 6/20/94 | 1994 [25.40| 25.48 | 46.60 030 | 4.13
| 80 W wW 8/28/96 | 1996 |25.40| 25.48 | 0.00 013 | 3.77
I 80 W 6/20/94 | 1994 | 25.48| 25.60 | 46.60 0.30 | 4.13
I 80 W W 8/28/96 | 1996 |25.48| 25.60 | 0.00 0.13 | 3.77
| 80 W 6/20/94 | 1994 | 25.60| 25.80 | 54.40 0.10 | 4.00
[ 80 W W 8/28/96 | 1996 |25.60| 25.80 | 0.00 013 | 3.76
I 80 W 6/20/94 | 1994 | 25.80| 26.00 | 66.20 020 | 3.81
I 80 W w 8/28/96 | 1996 |25.80| 26.00 | 0.00 013 | 3.7
I 80 W 6/20/94 | 1994 |26.00| 26.20 | 76.70 0.30 | 3.65
! 80 W W 8/28/96 | 1996 {26.001 26.20 | 0.00 0.16 | 3.13
I 80 W 6/20/94 | 1994 |26.20| 26.40 | 121.20 | 0.20 | 3.04
I 80 W w 8/28/96 | 1996 [26.20| 26.40 | 0.00 0.14 | 2.87
| 80 W 6/20/94 | 1994 | 26.40| 26.60 | 62.40 0.30 | 3.87
! 80 W W 8/28/96 | 1996 [26.40| 26.60 | 0.00 0.16 | 3.45
| 80 W 6/20/94 | 1994 |26.60| 26.80 | 57.40 020 | 3.95
i 80 W W 8/28/96 | 1996 |26.60| 26.80 | 0.00 0.18 | 3.54
I 80 W 6/20/94 | 1994 126.80| 26.88 | 50.10 0.30 | 4.07
[ 80 W wW 8/28/96 | 1996 [ 26.80| 26.88 | 0.00 0.17 | 3.62
[ 80 W 6/20/94 | 1994 |26.88| 27.00 | 50.10 0.30 | 4.07
I 80 W W 8/28/96 | 1996 [26.88| 27.00 | 0.00 0.17 | 3.62
I 80 W 6/20/94 | 1994 | 27.00 | 27.20 | 62.40 0.30 | 3.87
[ 80 W W 8/28/96 | 1996 |27.00| 27.20 | 0.00 0.18 | 3.29
| 80 W 6/20/94 | 1994 127.20] 2740 | 73.40 0.30 | 3.70
| 80 W W 8/28/96 | 1996 |27.20| 27.40 | 0.00 0.16 | 3.17
I 80 W 6/20/94 | 1994 |27.40| 27.60 | 56.20 0.30 | 3.97
| 80 W w 8/28/96 | 1996 [27.40| 27.60 | 0.00 011 | 3.74
I 80 W 6/20/94 | 1994 |27.60| 27.80 | 43.60 0.30 | 4.18
| 80 W W 8/28/96 | 1996 [27.60| 27.80 | 0.00 0.09 | 3.84
I 80 wW 6/20/94 | 1994 | 27.80| 28.00 | 46.60 0.20 | 413
| 80 w W 8/28/96 | 1996 [27.80| 28.00 | 0.00 0.11 | 3.68
] 80 W 6/20/94 | 1994 [28.00| 28.20 | 70.70 030 | 3.74
| 80 W W 8/28/96 | 1996 |28.00| 28.20 | 0.00 013 | 2.96
I 80 W 6/20/94 | 1994 |28.20| 28.40 | 42.50 0.20 | 4.20
I 80 W W 8/28/96 | 1996 |28.20| 28.40 | 0.00 0.06 | 3.80
I 80 W 6/20/94 | 1994 |28.40| 28.60 | 46.00 020 | 414
I 80 W W 8/28/96 | 1996 |28.40| 28.60 | 0.00 0.08 | 3.84
[ 80 W 6/20/94 | 1994 |28.60| 28.80 | 47.80 030 | 4.11
i 80 W W 8/28/96 | 1996 |28.60| 28.80 | 0.00 0.09 | 3.65
| 80 W 6/20/94 | 1994 |28.80| 29.00 | 82.80 0.30 | 3.56
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I 80 W w 8/28/96 | 1996 [28.80| 29.00 | 0.00 0.11 | 3.33
I 80 W 6/20/94 | 1994 |29.00| 29.20 | 76.70 0.20 | 3.65
I 80 W W 8/28/96 | 1996 {29.00| 20.20 | 0.00 0.11 | 3.44
| 80 W 6/20/94 | 1994 |129.20| 29.40 | 55.00 020 | 3.99
) 80 W W 8/28/96 | 1996 | 29.20| 29.40 | 0.00 0.08 | 3.78
J 80 W 6/20/94 | 1994 |29.40| 29.60 | 51.30 0.20 | 4.05
| 80 W w 8/28/96 | 1996 |29.40| 29.60 | 0.00 011 | 3.66
| 80 W 6/20/94 | 1994 |{29.60| 29.80 | 43.60 020 | 4.18
I 80 W wW 8/28/96 | 1996 |129.60| 29.80 | 0.00 011 | 3.92
| 80 w 6/20/94 | 1994 [29.80| 30.00 | 50.10 0.30 | 4.07
| 80 W w 8/28/96 | 1996 129.80| 30.00 | 0.00 012 | 3.86
i 80 W 6/20/94 | 1994 |30.00| 30.20 | 55.60 0.30 | 3.98
| 80 W W 8/28/96 | 1996 | 30.00| 30.20 | 0.00 0.13 | 3.67
J 80 W 6/20/94 | 1994 | 30.20| 30.40 | 53.80 0.20 | 4.01
I 80 W wW 8/28/96 | 1996 |30.20| 30.40 | 0.00 0.11 | 3.64
I 80 wW 6/20/94 | 1994 | 30.40| 30.60 | 61.80 0.30 | 3.88
| 80 W w 8/28/96 | 1996 |30.40| 30.60 | 0.00 0.09 | 3.41
| 80 W 6/20/94 | 1994 | 30.60| 30.80 | 49.50 0.30 | 4.08
| 80 W w 8/28/96 | 1996 | 30.60| 30.80 | 0.00 0.10 | 3.62
| 80 W 6/20/94 | 1994 [ 30.80| 31.00 | 49.00 0.20 | 4.09
| 80 W W 8/28/96 | 1996 {30.80| 31.00 | 0.00 011 | 3.86
| 80 W 6/20/94 | 1994 [31.00| 31.20 | 48.40 020 | 4.10
| 80 W W 8/28/96 | 1996 [31.00| 31.20 | 0.00 0.11 | 3.80
| 80 W 6/20/94 | 1994 |31.20| 31.40 | 46.00 020 | 4.14
i 80 W W 8/28/96 | 1996 [31.20| 31.40 | 0.00 0.11 | 3.86
| 80 W 6/20/94 | 1994 | 31.40| 31.60 | 46.00 020 | 4.14
| 80 W W 8/28/96 | 1996 [31.40| 31.60 | 0.00 012 | 3.76
| 80 w 6/20/94 | 1994 | 31.80| 32.00 | 75.40 0.30 | 3.67
I 80 W w 8/28/96 | 1996 [31.80| 32.00 | 0.00 014 | 2.91
I 80 W 6/20/94 | 1994 | 32.00| 32.20 | 47.20 020 | 4.12
| 80 W W 8/28/96 | 1996 |32.00) 32.20 § 0.00 0.11 | 3.93
I 80 W 6/20/94 | 1994 |32.20| 32.40 | 46.60 020 | 4.13
| 80 w w 8/28/96 | 1996 [32.20| 32.40 | 0.00 0.13 | 3.63
| 80 W 6/20/94 | 1994 |32.40| 32.60 | 82.80 020 | 3.56
] 80 W W 8/28/96 | 1996 | 32.40| 32.60 0.00 0.1¢ 3.12
l 80 W 6/20/94 | 1994 [32.60( 32.80 | 43.60 0.20 | 4.18
[ 80 w W 8/28/96 | 1996 {32.60| 32.80 | 0.00 013 | 3.96
| 80 W 6/20/94 | 1994 |32.80| 33.00 | 43.60 0.20 | 4.18
! 80 W W 8/28/96 | 1996 [32.80| 33.00 | 0.00 0.09 | 3.91
! 80 W 6/20/94 | 1994 | 33.00| 33.20 | 46.60 020 | 4.13
! 80 W W 8/28/96 | 1996 |33.00| 33.20 | 0.00 0.09 | 3.88
I 80 W 6/20/94 | 1994 | 33.20| 33.40 | 53.80 0.20 | 4.01
I 80 W w 8/28/96 | 1996 |33.20| 33.40 | 0.00 0.13 | 3.88
l 80 W 6/20/94 | 1994 1 33.40| 33.60 | 66.20 0.20 | 3.81
I 80 W W 8/28/96 | 1996 [33.40| 33.60 | 0.00 0.10 | 3.25
I 80 W 6/20/94 | 1994 | 33.60| 33.80 | 52.60 0.30 | 4.03
I 80 W W 8/28/96 | 1996 |33.60| 33.80 | 0.00 011 | 3.35
I 80 W 6/20/94 | 1994 | 33.80| 34.00 | 85.50 0.20 | 3.52
| 80 W W 8/28/96 | 1996 |33.80| 34.00 | 0.00 013 | 3.34
| 80 W 6/20/94 | 1994 134.00| 3420 | 91.80 0.20 | 3.43
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I 80 ) wW 8/28/96 | 1996 | 34.00| 34.20 | 0.00 0.14 | 3.35
| 80 w 6/20/94 | 1994 |34.20| 34.40 | 60.50 0.30 | 3.90
| 80 W W 8/28/96 | 1996 | 34.20| 34.40 | 0.00 0.15 | 3.34
I 80 W 6/20/94 | 1994 |34.40| 34.60 | 39.60 0.20 | 4.25
| 80 w wW 8/28/96 | 1996 [ 34.40| 34.60 | 0.00 012 | 3.89
I 80 w 6/20/94 | 1994 |34.60 34.80 | 50.70 0.20 | 4.06
! 80 W W 8/28/96 | 1996 | 34.60| 34.80 | 0.00 011 |3.73
| 80 W 6/20/94 | 1994 134.80| 35.00 | 56.80 020 | 3.96
| 80 W W 8/28/96 | 1996 {34.80| 35.00 | 0.00 0.11 | 3.80
| 80 W 6/20/94 | 1994 {35.00| 35.20 | 54.40 0.20 | 4.00
| 80 \ W 8/28/96 | 1996 [35.00| 35.20 | 0.00 0.08 | 3.61
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