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INTRODUCTION 

There are thousands of miles of paved roads in the United States that are traveled daily by 
millions of cars and trucks transporting people and goods. For this reason, the condition of 
the Nation's roadways plays a very important role in everyday life. The importance of the 
quality of roadways is also clear to the federal government. Billions of dollars are spent to 
build, maintain, and improve roadways. The cost of building a new roadway or rehabilitating 
an existing pavement can be considerable. If these roads are not repaired, poor pavement 
conditions can be just as costly to the driving public. Rough pavements can decrease 
speeds of traffic flow, cause damage to vehicles, and increase the number of traffic 
accidents. These costs, defined as social costs, are difficult to quantify and unfortunately, 
are born by the public at large. 

To address these concerns, the Federal Highway Administration has developed guidelines 
for developing a Pavement System .(I) Many State Departments of Transportation (DOT) 
have developed to manage their highways. Being able to know when a pavement needs to 
be repaired before the pavement actually fails is an important element of management. 

Development of reliable pavement deterioration prediction models is a challenge to 
developers. Accurate pavement deterioration prediction models can be a valuable tool to the 
DOTS to achieve a more efficient highway management. Due to the challenges of modeling 
the behavior of pavements, current pavement management's strength depends upon the 
measurement of existing pavement conditions rather than predicting future conditions of 
pavements. Projected roughness trends are a big factor used for evaluation, since 
pavement roughness is a good indicator of its future performance. 

There is also the need for modeling different types of pavements. Portland cement concrete 
pavements are solid structures (i.e. rigid pavements). Most deterioration models for these 
structures are fairly accurate because their failure follows a more typical structural pattern. 
On the other hand, the deterioration of asphalt pavements is more difficult to predict due to 
the visco-elastic characteristic of the asphalt. Even though modeling the behavior of asphalt 
material can be easily done in a pavement laboratory, there are various external conditions 
that can be impossible to mimic. By including the many variables a roadway pavement 
endures, such as construction techniques, weathering or aging, the modeling effort becomes 
even more difficult. 
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OBJECTIVE AND SCOPE 

The objective of this report is to explain the research done at Rutgers University in the area 
of developing models that can predict pavement deterioration more accurately. Neural 
networks and linear regression are the tools selected for developing these models. Neural 
networks are capable of distinguishing trends in data that are not easily recognized by 
standard statistical techniques. Careful consideration was given to the data used in 
developing the models, since the information needed to be accurate. The Long Term 
Pavement Project Database developed by the Federal Highway Administration had the 
potentials of representing the type of data sought. This program has been collecting data 
since 1989 at hundreds of sites across North America. The LlTP database gathers data 
coveting a wide-range of variables and employs precise techniques for the collection of the 
information. These factors make this database an excellent choice for use in developing 
pavement models. 

The scope of research focuses on modeling one particular type of pavement from this 
database, specifically an asphalt pavement that consists only of its original structure (i.e. the 
pavement was never rehabilitated). The reason for choosing this type of pavement is that it 
represents the most basic type of asphalt pavement. All other types of asphalt pavement 
use this pavement as a foundation. Thus, any model developed in this research could be 
used as the basis for developing other pavement models. 

METHODOLOGY 

Figure 1 represents the flow chart of the research methodology followed in this project. 
Multiple processes, shown in this Figure, are at times accomplished simultaneously. The 
first area of investigation is surveying the existing information on pavement deterioration 
models, pavement theory, regression analysis, and neural networks. 

In addition to the information on pavements, the LTPP database is investigated thoroughly. 
As a first step, a search of the database is performed for the sites that should be included for 
developing the models. After acquiring the requested data for these sites, further inspection 
of the available data is done. Statistical analysis of the data played an important role in the 
selection of the variables for the development of models. Once the variables are chosen for 
developing the models, they are compiled into a database. The neural network and linear 
regression models are then developed using the compiled database. A comparison of these 
models with some of the existing models is carried out afterwards. 
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Literature review of pavement deterioration models, pavement theory and 

.t 
Statistical analysis of data ] 

1 I Investigation of the type of data available- 

Selection of relevant pavement variables to 
be used as inputs for the construction of NN 
models to predict IRI. develop models. 

-+ 

Identify existing 
pavement 
deterioration I! Models 

I I I 

I I v 
Construction of a database of the variables, for all 
relevant sites and compilation of all the data that will 
be used to train the NN 

4 4 
Development of linear regression models 
using the exact same data used to train the 

Testing of the NN and linear regression 
models with data not used in the 
development of the models 

I Conclusions I 

Figure 1. Research Methodology 
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LITERATURE REVIEW 

This section presents a summary of the literature review that was done for the purpose of 
pavement model development. Pavement theory in general was studied, specifically 
pavement properties and mechanics. Emphasis was placed on pavement roughness, its 
measurement, existing indices and their correlation. Prospect tools for model development 
were also reviewed, mainly Neural Networks and Linear Regression. Their application, 
precision indicators and their statistical significance were studied thoroughly. L lTP 
background, data collection, database structure and its accessibility was also examined. 
Finally, extensive research for existing pavement models was performed by focusing on their 
input variables, validity and outcome reliability. 

REVIEW OF PAVEMENT ROUGHNESS 

One of the main objectives of our transportation system is to provide a comfortable ride for 
users. Roadway roughness is a good indicator of whether this criteria will be fulfilled. A brief 
look at the historical development of this indicator can be useful. In the 1940’s the roadway 
longitudinal profiles were measured using an idmile scale, which was the popular basic unit 
of measurement.@) The inlmile scale represents the change in elevation over a given 
interval. In the ~ O ’ S ,  the devices used were simple and not as sophisticated and efficient as 
those used in recent years. 

There are many reasons why these devices did not measure the true profile of the roadway. 
One main reason was that the technology was not available to give a continuous reading of 
the roadway profiles. Another reason is that a vertical drop caused by a crack or a joint in 
the pavement gave an infinite change in the slope and made calculations difficult, if not 
impossible. To overcome this problem, data was collected in intervals of a fixed length. The 
early devices were one foot long sticks that were moved end over end. The difference in 
height of the ends of the sticks was recorded and converted into the in/mile units. Later 
devices that could measure the response of springs in a vehicle’s suspension were used to 
measure the roadway roughness by recording the response of those springs as it traveled 
along a road. 

There are many different devices that have been developed to measure roughness or ride 
quality. The main problem with these devices is that they do not employ a common 
standard. The different devices did not give results that could be compared to one another 
even for the same pavement. In the 1 9 7 0 ’ ~ ~  the NCHRP studied these different systems to 
better understand these problems by developing and testing mathematical models to 
demonstrate the response of vehicles to the roadway. 

The most famous model that came out of that NCHRP study was the quarter car model. In 
this algorithm, the behavior of one wheel of a car is modeled, including the effects of the 
suspension spring and damper. Including these effects was important because most road 
roughness was measured based on a response-type measuring system. This model 
demonstrates how a vehicle or a passenger is affected by the roughness of the road. One 
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major factor in why roughness measurements were not compatible or comparable was that 
the suspension of vehicles was not calibrated or standardized. Using accelerometers, 
computers, and the quarter car algorithms, a “virtual response-type system” can be 
developed.(’) This system can then be used to model the response of a vehicle to a 
pavement, or use a vehicle to measure the roughness of a pavement. 

Inaccurate and incompatible road roughness measurements were not experienced just in 
the United States. The findings of many World Bank sponsored research programs 
concluded that poor roads are costly to many developing countries. The cost of repair or 
reconstruction of pavements is high but the user costs as a result of rough roadways is even 
higher when calculated over the service life of the pavement. Road roughness indices were 
a primary factor for investigating the trade-off between the costs. This problem was the 
same as the one faced earlier in the United States because many countries used different 
roughness indices and standards. The roughness indices in reports submitted to the World 
Bank were suspect because they were measured by different standards and methods.(’) 

To provide a common quantitative basis on which the different measurement of roughness 
can be compared, the International Roughness Index (IRI) was developed at the 
International Road Roughness Experiment held in Brazil in 1982 under the sponsorship of 
the World Bank. The IRI summarizes the longitudinal surface profile in the wheelpath and is 
computed from the surface elevation data collected by either a topographic survey or a 
mechanical profilometer. It is defined by the average rectified slope (ARS), which is the ratio 
of the accumulated suspension motion to the distance traveled obtained from the 
mathematical model of a standard quarter car transversing a measured profile at a speed of 
50 mph (80 km/h). It is expressed in units of inches per mile (m/km). 

One drawback to the IRI is that there exist an infinite number of profiles for a given 
roadway. A profile is a line along the path of a pavement with no width. Thus, theoretically, 
an infinite number of profiles exist for each roadway width. The vehicle used in the recording 
of the IRI will not travel in a perfectly straight line, and could produce a variance in the 
roughness measured. Procedures exist to compensate for this variability. Each time a 
profile was recorded, five profile runs were performed so that during each run, the profiles 
were within a given deviation of the normal (2% deviation) for all the runs. In the next section 
on building a neural network database, table 6-7 shows a minimum of five runs for each 
profile date. If one of these runs is not within the 2% deviation then additional runs are 
preformed. Those that are not within the 2% deviation are removed, and are not included in 
the database. In the LTPP database each profile run is recorded in the table 
MON-PROFILE-MASTER. The runs are in numerical sequence and so a profile run is not 
to be included if a break in the numerical sequence (i.e. 1, 2, 3, 5, 6) would occur. 

Several models in the reports reviewed used different types of measurements for roughness 
and deterioration. Although there is a considerable push for all State agencies to use the 
same indicators, this has not yet happened, thus reports that study the correlation between 
different pavement performance indices were investigated. IRI is the roughness indicator 
used in the LTPP database. For this reason, papers regarding the relationship of IRI and 
other roughness indicators were closely reviewed. A Transportation Road Research paper 
showing the relationship between PSR and IRI was used extensively for this project.(’’) The 
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document from ITX Stanley was more involved('g) as it includes relationships between 
several different types of roughness indices. Many of these relationships also involved IRI 
and RQI. 

LONG TERM PAVEMENT PROJECT (LTPP) 

In the 1987 Highway Act, congress authorized the strategic ,Highway Research Program 
(SHRP) which was a 5-year, $150 million research program. SHRP concentrated on 
asphalt, concrete, highway operations and structures, and pavement performance research 
results. The Long Term Pavement Project (LTPP) was originally designed as a twenty-year 
project to monitor and gather data on various types of pavements. After the first 5 years of 
data collection, SHRP had concluded its requirements as set by Congress. The remaining 
15 years of the LTPP program was to be managed by the Eederal Highway Administration 
(FHWA). The FHWA is the current coordinator of the LTPP project and database. 

The objectives of the LTPP program were the following :(*'I 

Evaluate existing design methods. 

0 Develop improved design methodologies and strategies for rehabilitation of existing 
pavements 

0 Develop improved design equations for new and reconstructed pavements. 

0 Determine the effects of (a) loading, (b) environment, (c) material properties and 
variability, (d) construction quality, and (e) maintenance level on pavement distress 
and performance. 

Establish a national long-term pavement database to support SHRP objectives and 
future needs. 

The LTPP program was originally designed to include three types of studies: General 
Pavement Studies (GPS), Specific Pavement Studies (SPS), and Accelerated pavement 
Testing (APT). The largest of these studies is the GPS, and includes 742 in-service sections 
throughout the United States and Canada. The SPS have specific goals, and are performed 
by experimental approaches to achieve these goals. The APT has not yet been 
incorporated into the LTPP database. The GPS experiments within the LTPP program 
include the types described in table 1. It also includes the number of sites used in each GPS 
study. 

The LTPP project has been in existence for ten years with 7 to 8 years of the data processed 
and available for use. With more data from future years, any model developed with the first 
half of the data can be tested, refined and calibrated with the second half of the data. 
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Table 1. Description of the General Pavement Studies 

GPS 6A 

GPS 6B 

General Pavement Studies (GPS) Descriptions 

Existing AC Overlay on AC Pavement 

New AC Overlay on AC Pavement 

GPS 1 I Asphalt Concrete (AC) on Granular Base 

GPS 7A 

GPS 2 I AC on Bound Base 

Existing AC Overlay on Portland Cement Concrete (PCC) 
Pavements 

GPS 3 1 Jointed Plain Concrete 

GPS 4 I Jointed Reinforced Concrete 
~~ 

GPS 5 ~ I Continuously Reinforced Concrete 

GPS 7B 1 New AC overlay on PCC Pavements 

GPS 9 I Unbonded PCC Overlays on PCC Pavements 

Number of 
GPS Study 

Sites 

191 

115 

128 

52 

75 

51 

57 

22 

24 

27 

The data collected for the LTPP project is stored in the LTPP jnformation Management 
- System (IMS). There are two components that control the data entry in the IMS database, 
the four regional offices and the central IMS office. The four regional offices focus on the 
data collection and the submitting of that data to the central office. Another requirement is to 
exercise quality control of regional personnel and control data collected and submitted by 
State Highway Agencies (SHAs). The central office is responsible for the climatic data, 
suality assurance (QA) of all LTPP data, and providing data to the public. The LTPP IMS 
has seven data modules, which contain the data collected from each GPS site. The 
modules as shown in table 2 categorize the data. The background information for each site 
is the most important information contained within these modules. 

The Inventory Module contains the historical information for each site in the database. The 
state departments of transportation generally provide this information. This data includes the 
location of the section, pavement type, layer thickness, layer type, material pro erties, 

records might not be always complete. 
composition, construction improvements, and other background information.(*' P These 
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Table 2. Summary of IMS Database Modules 

Module 

Inventory 

Material Testing 

Climate 

Maintenance 

Sub-module Number of Tables within 
Module 

None 26 

None 76 

None 5 

None 9 

Rehabilitation 

Traffic 

Monitoring 

None 49 

None 6 

Automated and manual 
distress 8 

Friction 1 

Long i t ud in al Profile 

Cross Profile 

Even though some material properties are given in the inventory record, material testing was 
also separately performed for this study. The information gathered from field sampling and 
laboratory material testing is contained in the Material Testing Module. This data verifies and 
documents the existing pavement structure for each site in the LTPP study. It also gives an 
evaluation of existing layers of the pavement. The laboratory testing involves over 40 
different types of procedures, many of them are employed currently in designing 
pavement.(20) 

2 

4 

The climate data for a site is available in the Climate Module. This module shows the 
conditions recorded from at least one nearby weather station. Statistical estimates based on 
as many as five weather stations are also included. A summary of daily measurements, 
monthly statistics, and yearly average can be found for some of the sites. (20) 

Deflection (FWD) 

Maintenance and rehabilitation is contained in their respective modules: Maintenance 
Module and Rehabilitation Module. The primary purpose of the Maintenance Module is to 
record all the activities relating to maintenance that was performed at the GPS site. This 
could include seal coating, patching, joint resealing, milling, or grooving. The Rehabilitation 
Module on the other hand includes any major improvement at a GPS site. Rehabilitation 
includes resurfacing, reconstruction, or addition of lanes. Anything that would have altered 
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the structure of a pavement is considered rehabilitation and its data is recorded in this 
module. 

The Trafic Module contains data regarding the annual traffic statistics for all the GPS sites. 
Counts by vehicle classification, and distributions of axle weights are some of the traffic 
factors in this module. The annual average daily traffic (AADT) statistic in the database 
applies only to one lane at each site. Traffic statistics in this section are based on monitored 
data, for approximately two-thirds of the sites. The remaining is based on historical records 
or is not included at all. 

The last module contains information on all the data gathered on the current conditions of the 
pavement at a site. The Monitoring Module contains several sub-modules; automated and 
manual distress, longitudinal profile, cross profile, and falling weight deflectometer. The 
Automated and Manual Distress section contains information regarding the pavement 
conditions. This concentrates primarily on the severity of surface defects. The Friction 
section of monitoring stores the friction number, surface type, test methods and other fields 
relating to the surface friction of the GPS sites. The Longitudinal Profile section contains the 
information on the longitudinal profile which is predominately measured in IRI. The Cross 
Profile section contains information regarding the transverse profile, commonly referred to as 
rut data. The last section of the Monitoring Module is called Falling-Weight Deflectometer. A 
falling-weight deflectometer measures the response of dynamic loads applied to a pavement 
structure. This loading and the data recorded from this test can determine the strength of the 
pavement along with the structure of the pavement. (20) 

This is an overview of the data contained in the LTPP database. There are many tables of 
varying length and width. It is difficult to image the full size of the overall database. Table 2 
includes the number of table that are within each module. Chapter 3 of this report includes 
some examples of the table included in the LTPP database, which will give a better 
understanding of its large size. 

Background on Neural Networks 

Man has been interested in the workings of the human brain since the beginning of 
civilization. Many have tried to model its functions. Ancient Greek philosophers tried to 
conceptualize the thought process into mathematical formulae. This type of thinking has 
evolved with the aid of more powerful tools, like computers, which can now model the simple 
learning patterns of the brain. 

In the past few decades better understanding of the human process of intelligence has lead 
to its modeling on a computer. This is how neural networks, or rather artificial neural 
networks (ANN) come into play. An ANN attempts to model how the brain transmits 
information to the body. 

Major projects, which involved ANN, were performed in the 1960’s. One such project was 
called The Percep!ion, which was a mixture of neural networks and pre-processing 
algorithms. The Perception was based on the first stages of primitive vision based on 
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pattern recognition. This program could determine the gender of a person by ‘seeing’ hidher 
face. Research continued in the 70’s but it was not until the mid-80’s that wide spread 
interest in ANN grew with the proliferation of the computer itself. Now ANNs are used in a 
wide variety of research fields. 

An ANN acts as a biological neural network, that is, it acts as a network of neurons 
processing information. A single neuron is a single nerve cell and a chain of neurons 
transfers information to or from the brain. Neurons upon receiving information must interpret 
the information and determine what to do with it. A neuron could either pass information on 
to the next cell or it could cause a muscle to contract. The type of information passed on to 
other cells is dependent on past experiences. That is an infant does not know what pain 
feels like until it experiences it for the first time. An ANN works in the same way. 

Information put into an ANN is just like a signal from the braiin or nerve ending in a biological 
neural network. The individual signals in an ANN are called vectors, pin figure 2 or X in figure 
3. What happens is that a set of inputs are applied to a network, which are labeled X1, X2, .... 
, X, in figure 3 . Each signal is then multiplied by an associated weight, W11, W21 ... Wnn, and 
then they are passed to the summation block in which they are summed. Each neuron 
outputs a weighted sum of the inputs. In this case it is a simple matrix multiplication. The 
example shown in figure 3 is used as an educational tool to understand the basic network 
structure. One example of this is called an activation function. Example: 

OUT= 1 if Yn > Z 

OUT= 0 if Y n s Z  
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Inputs General Neuron 

a = m P  + b) 

Figure 2. Representation of a single neuron in a neural network 
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This is commonly used in visual recognition, in which the network will tell you if it is or is not 
the target sought. This is a linear activation function, but there can be non-linear activation 
functions too. 

Figure 2 represents a single neuron within a network. The variables in the diagram are as 
follows: 

P = all inputs vectors 

W= weight applied to the inputs 

b = bias applied to the inputs 

n = net input vector 

a = the final values once all the weights and biases are applied. 

A neural network consists of many neurons combined together. The diagram in Figure 3 
represents a multiple layer network consisting of nine neurons in three different layers. This 
network has architecture similar to the one in the program shown in Figure 4. Multilayer 
networks are more complex than single layer networks, and offer a greater ability for the 
computational capabilities than a single layer network. This layering mimics portions of the 
brain by using different algorithms. In the past decade algorithms were perfected and 
refined in order to train ANN with multiple layers. 

Figure 4 is a simple example of a NN training program written in Matlab. This program 
trains the NN to predict the simple equation: 

Y = 2 X + 5  

P = { 1 2 3 4 5 6 7 8 9 1 0 } ;  
T = { 7  9 11 13 15 17 19 21 23 25}; 
net = newff ([0 101, [ 4  1 11, { 'logsig' 'tansig' 'purelin' 1 ) ;  
net.trainPararn.goa1 = le-100; 
net.trainParam.epochs = 500; 
net.trainParam.rnu = .01; 
net.trainParam.mu - inc = 10; 
net.trainParam.mu-dec = .5; 
net.trainParam.mu-rnax = le90; 
net = train (net, P, T) ; 

Figure 4. Example of NN Training Program Written in Matlab Using Matlab NN Toolbox (3) 
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D = t 1 . 5  2.5 3.5 4.5 5.5 6.5 7.5 8.5 9 . 5 } ;  
[R] = sim(net,D); 
V = (R) 1 

Figure 5. Example of NN Program To Test The Trained Neural Networks 

In figure 4, P represents the training input vectors for the NN, to predict equation [I]. Values 
within the brackets represents one set of input vectors. These values would correspond to 
the {w values in equation [I]. 

The T represents the target vectors that the trained NN produces. In this case these values 
represent the {ZX + 5) portion of equation [I]. NEWFF is a function that performs a 
backpropagation NN training algorithm as part of the Matlab program. The brackets 
following it represent the input ranges and the NN architecture. A value representing the 
input range must be given in the training program. Since this is only a test this value will 
range from zero to ten, {P = 1,2.. .lo}. The [4 1 13 is the architecture of the NN program in 
figure 4. According to this NN architecture first layer has four nodes, the second layer has 
one nodes and the last (output layer) has one node. 

TANSIG represents the transfer function between the layers. This means that the output 
between the first layer and the second is transformed by a hyperbolic tangent sigmoid 
function. This function maps a neuron input from an interval of (-00 , +00 ) into an interval of 
(-1, +I). There are three different types of transfer functions in the Matlab NN toolbox: 
TANSIG, LOGSIG, and PURELIN. LOGSIG is a Log-Sigmoid transfer function, which fits 
the inputs into an interval of (0, +I). The PURLIN is the simplest of the transfer functions 
because it is simply a linear transformation of the input. 

The rest of the lines of the program are different training parameters. These parameters can 
be changed and adjusted. For example ... GOAL = 1 E-I 00 means that the NN will train until 
the mean square error (MSE) is under 1 E -100. This is only one criteria that the Droaram 
uses to termiwte training. The MSE was chosen to be this low so that other limitations like 
the numbers of training epochs (net.trainParam.epochs = 500) could be reached. 500 
epochs mean t'iat the NN will use the input data 500 times before terminating the training, 
unless another criteria for ending the training has been met. (3) 

To test how w t  I the NN predicts equation [I], the program in figure 5 is run. This program 
contains nine t -  j t  points. These test points are, {1.5, 2.5, 3.5,4.5, 5.5, 6.5, 7.5, 8.5, 9.5}, 
and are shown as the D values. These are nine different points that were not used to train 
the NN. Table 3 shows the results of using these test points compared to the actual data. 
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Table 3. Results of example NN training 

Y 

1.5 

2.5 

3.5 

4.5 

2X + 5 NN prediction % Difference 

8 7.65 -4.38 

10 10.16 1.64 

12 11.89 -0.88 

14 14.05 0.36 

I 5.5 I 16 I 15.99 I -0.06 

I 7.98 

20.00 <-0.01 

22.02 0.09 

I 9.5 1 24 I 24.01 I 0.04 

A multilayer network has a matrix (figure 2) of neurons (figure 3). There could be different 
transfer functions for each layer, thus the variable s" is used to distinguish between the 
different types of layers. The functions shown in figures 2 and 3 represent transfer functions. 
A transfer function is used to calculate the output from separate layers given the weights, 
biases and inputs. If the desired output is not achieved the weights and biases would then 
be adjusted and again fed to the transfer function. This is repeated until the desired output 
is achieved. Figure 6 represents the algorithms for this process. 

The object of training is to make the weights converge to some values that will produce 
target output values. There are two types of training for ANNs: supervised and 
unsupetvised. Supervised training requires an input and output vector, and these two 
vectors are called a training pair. The weights are adjusted until the desired output vector is 
obtained within a certain percentage of error. Unsupervised training requires no output 
vector. The network modifies weight until subsequent output vectors are consistent. 

Another factor of NN is the type of training algorithm used to train it. There are several types 
of training algorithms. The training algorithm acts on a principle similar to that used by the 
brain, the more you use your knowledge the better it becomes. Synaptic strength will 
increase if both the source and destination neurons are activated. In the NN the specific 
weights will increase if both the input and output to each NN neuron is used often. 
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REVlEW OF REGRESSION ANALYSIS 

Regression analysis is a statistical technique used to express the relationship of a set of 

variables by an equation. Linear regression is the simplest form of regression analysis. 

Linear regression consists of two types of variables, a dependant variable (y) and an 

independent variable (x). 

The linear regression model is called simple linear regression model when it involves only 
one independent variable. 

A more complicated from of regression is called "multiple linear regression". This model 
consists of multiple independent variables and corresponding coefficients. It takes the 
following form: 

There are more advanced forms of regression but multiple linear regression is the most 
advanced form used for this type of research. 

In simple linear regression the parameters PO and /31 must be estimated. For the purpose of 
explanation, assume that there are n pairs of (x, y )  pairs. Were X is the average xvalue 
and p is the average y value: 

and 

P,  = 

The fitted simple linear regression model then takes the form of a line: 
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Y = B o  + B , x  [51 

There are ways to test how well the regression model estimates the dependant variable. 

The coefficient of determination, R2, estimates how well the data points (x, y) fit the line 
representing the model. R2 is calculated as follows: 

The range of R2 is between zero and one. A coefficient of determination of 1 .O corresponds 
to a perfect model, while values close to zero indicates little correlation between the model 
and the data. 

The test for significance of regression may also be performed using the t-test and null 
hypothesis. To test the hypothesis that the slope is equal to zero, the hypotheses are then 
stated as: 

H a  :PI = O  

HI :PI # O  

This implies that if the hypothesis is proven correct, then the linear regression model is a 
horizontal line. This means the slope cannot be statistically distinguished from zero, and 
that y may not have a relationship with x. (21) 

The t-test is used to test the null hypothesis. The t-test equation is: 

bl -a, 
to = 

JT 
Where, 

A, = 0 

171 
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By comparing the calculated value of to to the a/: percentage point of the tn-2 distribution 
). The null hypothesis can be rejected if: 

( t%,”-* 

The values o f t  distributions are usually found in table format in most statistical texts. 

This procedure can be used to test the significance of each independent variable in multiple 
linear regression. If the null hypothesis tests for pk = 0 and is proven correct, then the x, 
may not be statistically viable. The x variable may not have a relationship with the 
dependant variable, y. These are the basic basis techniques used to statistically validate 
linear regression models. 

EXISTING PAVEMENT MODELS 

This section summarizes the most important available pavement models. 

FNWA Model 
FHWA publication No. FHWA-RD-97-147, emplo s the first four data entries in the LTPP 
database to develop a model for each GPS typeJ2) The only reason for using so few data 
points is due to the fact that at the time of the publication they were the only data points 
available in the LTPP database. There are also no statistics in this report on how well these 
models perform. This along with the few data points can be considered a drawback to these 
models and the report. 

The GPS 2 sites are broken down, in the FHWA report, into four groups for modcling the 
pavement bcsed on the type of base used in the construction of GPS-2 pavement namely, 
AC treated, Hot Mix Asphalt Concrete (HMAC), cement-agg., and soil cement. Below is the 
HMAC model. This model is the model used primarily in this report. 
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Asphalt. Hot Mix AC Base Model (I2) 

A=5.375 

B=-0.5110 

Gl953.287 

O=-2.95004 

(a) IRI, = A(ACThick)B + C(BaseThick)D + E(P#4)F + G(SN)H 

F=-0.8682 K=20.7016 

- 
G=40.0891 L=l2.00 

- 
H=-0.75037 Mz2.00E-04 

- 

1=101.57589 N4 .2060  

I (KESAL/~~)  N P + M(ACThick) + O(days32-) + Q(AnnPercip) 
K(SN) 

(b) ro = 

Ez349.64172 

[I 31 

J=0.6117952 0~3.12E-09 

Where, 

t 
ACthick 
BaseThick 
P##4 
SN 
KESAUyr 
Days32- 
AnnPercip 

=Age (years) 
=Thickness of the AC surface course (inches) 
=Thickness of the HMAC base (inches) 
= Percentage passing the number 4 sieve 
= Structural Number 
= Thousands of ESALslyr 
= Days that were below freezing 
= Annual precipitation (inches of rain) 

Table 4. Summary of FHWA Model Parameter for GPS-2 Pavements with 
HMAC Bases (12) 

P=2.3060 

R=0.1813 

S=l.2379 

T=0.0226 
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Lee Model 

A recent Iransportation Research Record, TRR, by Ying-Haur Lee describes the need for 
simplified models that can predict future trends of the pavements with a minimal amount of 
data. (I4) Unlike the other model that predicts IRI, the Lee rriodel calculates eresent 
- serviceability rating, PSR. There are models in this report far five basic types of pavements 
namely, flexible, composite, jointed plain cement eavements (JPCP), jointed reinforced 
- concrete eavements (JRCP), and continuous reinforced concrete pavement (CRCP). Since 
flexible pavements are the focus of this report that model is shown below: (14) 

PSR = PSRI- a * STRb * AGEC * CESALd [I 41 

PSR, = 

STR = Existing pavement: structural number tor flexible pavements 

AGE = Age of pavement since construction (years) 

CESAL = Cumulative 18-kip equivalent single-axle load (ESALs) applied to 
pavement in the heaviest traffic lane. (Millions) 

a, b, c, & d are coefficients 

Initial value of PSR at construction (4.5 used in analysis) 

This is the original model developed in the TRB report, but there is also a later modification 
of this model. The modified model uses an adjustment factor that is based on the climate in 
which the pavement is located. Since both of the test sites are in a wet thaw-freeze zone 
the adjustment factor that is used is, AF = 0.40. The original model : 

PSR = PSRI- AF * (a * STR *AGE * iCESAL d ,  [I 51 

I nis model was accompanied by two other equations that were used to estimate the original 
age and the CESAL for pavements. The reason that was used is that many sites in their 
database did not include the age and traffic data that was required for their original model. 
Thus, these values had to be predicted. 

1 PSR, - PSR, 

AF * (a * STR * ESPALY I< 
AGE = 

CESAL = AGE * ESPALYR [I 71 

Since Lee used only roughness indicators in the form of PSR, it has to be converted to IRI 
using equation [18], which correlates IRI and PSR. The correlation between IRI and PSR is 
given by: (Iu) 
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This above formula gives an IRI value in terms of m/km. 

The performance of the Lee models for asphalt is given in the report. In the paper, Lee et. 
al. shows the R2 value to be 0.52, only explaining about half the variation in the data. This 
model used all AC pavements and did not separate them into categories, GPS-1, GPS-2, 
GPS-6. 

Default Pavement Management System Models 

The New Jersey Department of Iransportation (NJDOT) uses a ride quality index (RQI) 
model for determining life expectancy of its roadways. The performance prediction model 
used in th-ir HPMS is as follows: 

(a-bc‘ ) P=Po- e 

Where, P = performance index 

PO = PatageO ( f=0)  

t = Log, (l/age) 
a,b,c = model coefficients 

33.26 a 

34.65 b - 

1.02 

- - 
- 

- - C 

Above are the values of the coefficients for the default model. This model also assumes that 
the PO is at the value of 4.5 (RQI). 

The trigger vz!ue for determining the useful life of a pavement is an RQI value of 2.5. (”) 
This would ii Itan that the default model would give all pavements a useful life of about 20 
years. Fic_xe 7 shows the trend of the default pavement model. Note that this is the same 
for all pavements and pavement types. 
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Figure 7. Plot of the Default Pavement Deterioration Model in the NJDOT Pavement 
Management System 

Since this model uses RQI and the others use IRI, RQI had to be converted so that a 
comparison could be made. A correlation study preformed by ITX Stanley for the NJDOT 
was used to make this conversion.(1g) Equation [20] is the conversion of IRI RT3000 to RQI. 
(RTIRI refers to IRI recorded by the RT3000 device). 

(-0.00s I I + R T I R I ~ . ~ ~ : ~  1 RQI = 5.0e 

Even though RT3000 measures IRI it is a different type of sensor so a correlation between 
the two was used to convert RT3000 IRI to K.J. Law T6600 (device used in the LTPP) IRI 
given by the following equation: 

RTlRl = 0.9512 IRI(LTPP) + 23.884 [211 

These two equations, [20] & [21], give the IRI value in the units of inches/mile and would 
have to be converted to the units of m/km for comparison to the other models. 
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BUILDING A NEURAL NETWORK TRAINING DATABASE 

This section explains the preliminary work done before the actual development of the 
models. Preparing the data and presenting it in the proper form required extensive 
efforts. Exploring the LTTP, selecting the candidate sites, choosing the input 
independent variables, testing their statistical significance, were all tasks that involved 
thorough inspection in order to avoid any kind of unreliable or biased outcome. 

Selecting Sites from LTTP Database 

DataPave 97 is the software that FHWA distributes for the purpose of browsing and 
studying LTPP sitesDataPave97 provide the option of selecting sites according to a 
certain perceived criteria. In this project, sites in a “wet-freeze” climate are chosen. Our 
screening process returned only sites from the GPS category. 

After receiving the requested data of GPS 2 sites, two concerns became apparent. The 
first concern was the flaws in the initial assignment. The second was the reclassification 
of sites. 

ITX Stanley is the regional contractor collecting the data for the New Jersey LTPP sites. 
They revealed at a meeting in Trenton, that the New Jersey GPS 1 sites can also be 
considered GPS 2 sites. The reasoning behind this is that the original classifications 
are not assisncd properly. The original criteria the State Highway Agencies or SHA 
used for classifying sites for the LTPP program was not concise enough, the matter that 
led to the classification problem. Moreover, when data was investigated closely, it was 
discovered that some of these sites have been reclassified. Most reclassifications are 
due to rehabilitation done to a section of highway (i.e. a new surface coarse layer). This 
changes the classification from a GPS 2 to a GPS 6B. 

Figure 8 shows both the GPS 1 and the GPS 2 sites in New Jersey. Table 5 shows all 
the sites rcquxted from the LTPP IMS database. 
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Figure 8. Location of New Jersey GPS 1&2 sites 

25 



Table 5. GPS sites in wet freeze zones requested 

G P S  2 SITES GPS 1 SITES 
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DATA MAN I PU LATl ON 

All data received from the LTPP IMS database is in the Microsoft's (MS) Access 97 
format. 
spreadsheet, for an easier manipulation. The description of the fields in each table is 
given in an accompanying text file. This text file presents a brief description of each 
data field and its units of measurement. Appendix A gives the description of the data 
fields that are used in the tables in this section. The first step investigated the 
appropriateness of the pavement classification. . The classifications of the sites can 
change after the data is entered in the DataPave software. Classification information is 
found in the table, EXPERIMENT-SECTION. An example of this LTTP table is shown in 
table 6. The column labeled EXPERIMENT-NO gives the current GPS site classification 
and the column labeled STATUS gives the current status of each site. For instance, if a 
GPS 2 site is resurfaced with an asphalt layer, then the section should become a GPS 
6B site, or it is deassigned. Another column in this table gives the date at which a 
reclassificatbn took place. Any data before the change can be used for this project. 
Only in a few cases, the sites requested did change classification. 

The data needed from each table is copied and inserted into an excel 

The next table investigated gives the construction date of the pavement at each site. 
The table that provides this data is INV-AGE. An example of this is shown in table 7. 
Since aging of asphalt starts immediately after it is laid, the construction date is used to 
determine the age of a pavement during which a roughness measurement or other 
variables are recorded. The factor that measures the roadway roughness in the LTPP 
database is t ie International Roughness lndex (IRI). IRI measures the height variation 
of the pavement over a given length in meters/ kilometer. 

IRI is enterpd for both wheel paths and an average IRI value is calculated. This 
average IRI value is the value used for analysis in this project. The table where the IRI 
data is loca.2-d in is MON-PROFILE-r IASTER Table 8 shows an example of this data. 
The columt IS where the values are located are in IRI-LEFT-WHEEL-PATH, 
IRI-RIGHT-WI 1EEL-PATH, and IRI-AVERAGE. There are multiple profile runs for each date 
and a corres .onding IRI value is entered in the database for each run. Due to the 
quality contr I guidelines for IRI profiling, some of these runs are omitted. . The 
guidelines rtquest providing the IRI profile for each run that is within a maximum preset 
deviation from the other runs on the same date. Accordingly, the averaging of the IRI 
runs can be disputed if it was not for the profiler's specification to use only data within a 
2% deviati t 

Table 8 sh-% s a minimum of five rL8 i i s  for each profile date. If one of these runs is not 
within the 2 deviation then additlma' runs are preformed. Those that are not within 
the 2% c'evic. ion are removed, and no: included in the database. In the LTPP database 
each prufik in is recorded in the ' -  512 MON-PROFILE-MASTER. The runs are in 
numerical r - quence and so a prof 2 run is not to be included if a break in the numerical 
sequence ( I  2. 1, 2, 3, 5, 6) would ccciir 
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Table 6. Example of the LTPP table EXPERIMENT-SECTION 

2 

2 

2 

2 

31 -May-80 

3 1 -May-84 

30-Sep-80 

0 31-May-83 10-Aug-91 

6B 24-Sep-91 

Note: This table is an abbreviated version. The actual table used has 48 rows. . 
I I I I I 

0 . 0 . . . 

~ I- - ~. 

SEAS 
- ID 

~- 

RECORD 
- STATUI 

GPS tXvtH11LltNi slATUS ASSIGN-DATE DEASSIGN 
- No I I I -DATE 

G E 31 -May-78 

G E 31-JuI-86 

31 -May-80 

1680 , 87 I , 31-May-84 

31-Jul-86 

G E 

G E 

G E 30-Sep-80 

31 -May-83 G E 

1683 1 50 I 1 1 31-Aug-63 G 

G 
- 

E 

1683 1 50 I 2 E 

1681 I 50 I 1 1 31-Aug-63 G 1 1 6B 1 31-Aug-63 19-Sep-91 

31 -Dec-79 1 -Sep-95 

E 

9025 I 47 I 1 I 31-Dec-79 G E 

9025 I 47 I 2 1 I -~ep-95 G 6B I E 

0 . . 
- . . . 

I I I . I .  l 0 I .  



Table 7. Example of the LTPP table INV-AGE 

J 

201 1 89 1 1 -Jun-78 

TRAFFIC-OPEN 
DATE 

1 -0ct-79 0 . .  

SH RP-ID 

1647 I 88 1 1 I 1-Aug-86 I 1-Oct-86 1 

CONSTRUCTION CONSTRUCTIOC STATE-CODE 

1646 I 88 I 1 

0 

0 

0 

1680 I 

0 

8 

8 

1 87 I 
1 -Jun-80 I-Jun-80 

1-Jun-85 

1802 I 84 I 1 I 1-Oct-80 I 1-Oct-80 1 
4 I a 0 8  I I 1 -Jun-83 I I 'l -Jun-83 I 

I 
54 I 1640 1 

1683 I 50 I 1 I 1-Sep-63 I 1-Sep-63 I 

Note: This table is an abbreviated version. The actual table used has 36 rows and 11 columns 



Table 8. Example of LTPP the table MON-PROFILE-MASTER 

Note: This table is an abbreviated version. The actual table used has 1211 rows and 49 columns. 



Figure 9. GPS 2 site with irregular trend 

IRI should steadily increase with time unless there were some external interferences. 
This rationale was used to check any abnormal breaks in the time-sequence of the IRI 
data at each site. 

After anomalies similar to that shown in figure 9 are found, the IRI trends are further 
investigated to ensure the reliability of the data at other sites and to explain such 
anomalies. 

Since rehabilitation or maintenance activities can affect pavement roughness they are 
assumed to b e  the major reason for these anomalies. This could be easily checked 
from the records in the rehabilitation and maintenance module. The following tables 
were investigated: 
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M NT-AS P HALT-CRACK-S E AL : 

M NT-AS PHALT-PATC H : 

M N T-AS PHALT-S EAL: 

MNT-HIST: 

RH B-LAYER: 

RHB-RESTORE-AC-SHOLDER: 

Contains information about any crack 
sealing that took: place at a GPS site. 

Contains information about any potholes 
repaired or any other patchwork that 
was performed at a GPS site. 

Contains information about any seal 
coats that were performed at a GPS 
site. 

Contains the information on all the 
maintenacne activities for each site. 

Contains information on the layers that 
were added to a rehabilitated GPS site. 

Contains information for any data if the 
site received s holder re habilitation. 

Rehabilktion and maintenance activities justifies, as expected, many of the anomalies 
in the age vs. IRI relationship. For example, the odd trend in figure 9 was the result of 
re ha b i I i t a t i o n . 

The IRI of individual wheel paths versus time is compared for each site and some of the 
exterior v:kel paths can be seen to be more erratic than the interior wheel paths. This 
could bt: L -:e to the effects of crack close to the edge of the pavement.(12) figure 10 
shows a spike in the trend. Upon investigation, it is found that the profile run on that 
date is in the incorrect lane, thus creating the spike. Another important observation 
regardi, ,; the available IRI values that it is not always recorded during the same time 
each yc -.r. This variation can lead to seasonal and environmental effects, which 
influenc t t e  IRI values. Moisture can cause the subgrade to swell or shrink and durina 
the wintei the frost can cause the subgrade to heave. ("' 

After all - s are thoroughly investigated to determine the variation of IRI with the age 
of the p ~ .  ,lent, the sites that received maintenance or rehabilitation are eliminated 
due to the Arop in IRI values. Those sites that have erratic IRI values are not included 
in the K:J training database. The criteria used to determine if a site has erratic data is 
the R2 . 'L2 for the linear relationship between IRI and age. Sites with an R2 value less 
than 0 :r negative slopes are not included for future use because it is clear that IRI 
cannot 7 -  rove with time without roadway maintenance or rehabilitation. The summary 
of the K Jdlues for individual sites are as follows: over 75% the sites were above R2 = 
0.8, and dj:2r 80% above R2 = 0.7. Approximately 10% of the sites were not above this 
threshol! R2 = 0.5. 

It is im; - . - A  to note at this stage, that when including all data points, the R2 value of 
the reli ' 3' between age and IRI is calculate 0.1 1. Data for individual sites seem to 
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contrac :' 'his by having a high correlation between age and IRI. This results shows that 
the de:t ,dm ation behavior of different sites, within a geographical region, is less 
considc .kle than that of one site. Additional research should be conducted to explain 
this var. :::n. 

c 

c 
I 

1.1 

1.05 

1 

3.95 

0.9 

0.85 

/ 
'C 1 ................. 

1500 2000 2500 3000 3500 4000 4500 

Age (days) 

Figure 10. Plot of left and right wheel paths 

It is a we I-known fact that roads with high levels of traffic, especially truck traffic, need 
to be reraired more often than roads with lower levels of traffic. Heavy vehicles will do 
far more lamage to pavements than lighter vehicles. The relationship between the 
weight c '  the vehicle and the damage it causes to the road is exponential. (**I An 
- equival i t  standard axle load (ESAL) equates the weight of a vehicle's axle to a 
stands, load, or 18 kip axle. The concept of vehicles causing damage to the pavement, 
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lead ur 13 the investigation of the relationship between IRI and ESALs. The LTPP 
datab: : ? keeps track of the ESAL in table TRF-EST-ANL-TOT-LTPP-LN. Table 9 shows 
an example of this data. In this table the column labeled KESAL-18K-TOTAL has the total 
ESALs for each year, and is entered as units of thousands of ESALs, or KESALs (Kilo 
ESALs). The IMS records that were received first contained only the traffic data before 
1993. The remaining data used is also received along with the IMS data, but is from a 
contractor. This data is unprocessed and is contained in ASCII file format. Macros are 
written in Microsoft Excel to process these large data files so that the required data can 
be extrc Aed. 

Using ' processed data, the ESALs can be determined to the exact day that the IRI 
was reL izd ,  while the IMS data is only on a yearly basis. The KESALs in the original 
databa: are entered on a yearly basis and cannot be used to find the correct 
relatior :hi,: with IRI. For exampk, if the IRI is measured in the spring, the 
corresp -nc! ng ESAL entry in the LTPP database is for the whole year, thus these 
ESALs ticlucle those which caused damage to the pavement after the IRI is recorded. 
Traffic 1 i t z  before 1993 is located in the LTPP database and entered as KESALs/yr. It 
is unlih 'he processed data, which can provide ESAL values for each day. A weighted 
value i s  s e d  to correct this problem, and is shown in equation [22]. For example the 
data fr 1 sate 47-2008, shown in both tables 8 and 9, has no roughness profile for the 
year 1 .- 3 1 .  All the ESALs from the previous profile run should be taken into account so 
as to fc 1 -n appropriate NN datatase. Refer to both tables 8 and 9 to validate some 
of the f ,L i n g  numbers: 

I'IRI F ?<'&  KESALs (1 990) 

24-m?:, = 221 days remaining in the year = 171 KESAUyr (221/365) = 103.5 KESALs [22] 

KESALs I1 991 

1991 = 365 days in the year = 182 KESAL/yr (3651365) = 182 KESALs 

2"'IRI R - -'a KESALs(l992) 

16-Apr-i = 106 days into the year = 193 KESAL/yr (106/365) = 56.1 KESALs 

103.5 KESALs + 182 KESALs + 56.1 KESALs = 341.6 KESALs 

The to.- ' SALs incurred between the 1990 and 1992 profile recording is calculated as 
341.6 1 ' ALs. There are other problems associated with the traffic data. There are 
sites n ioles' in the data. Some sites have no KESAL data available for a particular 
year. I iiese few cases, the KESALs were estimated using Federal guidelines as 
show i 1,zipter 4 of investigation of Development of Pavement Roughness. (I2) 

Traffic -d age are external varizblcs that affect the deterioration of a pavement, but 
there c 2 characteristics of the pavement itself that affect the rate of deterioration. 
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Layer t h  ekness and the material properties of those layers have a known effect on 
paverre i t  life. The structural number (SN) is an appropriate indicator of these 
charatt C'GS because it combines the layer thickness and materials into one number 
for eac' 
TRF-ES 
columr 3r the sites requested The SN is instead found in the traffic database files that 
are se d L  along with the IMS data This SN is recently calculated so it has not yet been 
placed I :he IMS database. From a phone conversation with the contractor, it is 
determ zd that a backcalculation process using falling weight deflectometer readings is 
used tc 2h'culate the SN. This IS a common procedure and there are Federal guidelines 
for this rcczss. 

avement. The SN IS supposed to exist in the LTPP database within the table 
NLJOT-LTPP-LN, column ESAL-FACTOR-SN, but there is no data in this 

(23, 24) 
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Table 9. Example Of  table TRF-EST-ANL-TOT-LTPP-LN 

BEGIN-DATE StiRP-ID F:J: ~CONSTRUCTlON'MODlFlCATlON 
- NO I NO 

END-DATE 1 ... 1 KESAL 18 k 1 ... 
TOTAL 

2008 1 47 I 
1 -Jan-89 

1 -Jan-90 

I-Jan-91 

1 

31 -Dec-89 . . . 163 ... 

31 -Dec-90 . . . 171 ... 

31-Dec-91 . . .  182 ... 

1 

I-Jan-92 

I-Jan-93 

2008 I 47 I 

31-Dec-92 ... 193 ... 

31-Dec-93 ... 203 ... 

1 1 

1 

1 

~ 

2008 I 47 1 1 1 

2001 I 47 I 1 1 

2001 I 47 I 1 1 

I-Jan-88 1 31-Dec-88 I ... I 148 1 ... 

I-Jan-94 I 31-Dec-94 1 ... 1 214 I 
Note: This table is an abbreviated version. The actual table used has 538 rows and 27 columns. 



Choosing the Variables 

The development of the models in this project employed the LTTP data either in its 
original form or in a manipulated form.Example of data manipulation is that of a time 
variable, which is calculated by taking the difference in time between one IRI profile and 
another. This section explains these concepts along with the process of choosing which 
variables to use in this project. 

Determination of Statistical Significance 

Roughness is an appropriate way to determine the conditions of a pavement. The 
roughness measurement in the LTPP database is IRI and it is the variable to be 
predicted in this research project. Figure 11 shows a good relationship between IRI and 
age for a site in New Jersey. The R in that figure is the R2 value. Noticeably, it shows a 
high correlation between age and IRI for that site. Multiple linear regression and the 
coefficient of determination, R2, is used for determining the significance of the variables 
that are used for the models. 

The measure of the improvement in the coefficient of determination, R2, is used as an 
indicator of the ability of the variable to predict IRI. As mentioned in the previous section 
the R2 for the age vs. IRI is equal to 0.1 1 when all the sites are combined. With the 
addition of ESALs to Age and IRI, the multiple regression model for all the sites 
combined, has an R2 value of 0.35. This does not explain the variance in the IRI data, 
but does improve the R2 value. 

37 



1.5 

1.48 

1.46 

1.44 

h 

E 
5 1.42 
E 

z 
v 

- 
1.4 

1.38 

1.36 

1.34 

y = n i l  + m 2 * X  
Value I Error I 
1.26 I 0.017165 j I mlI ..... 

--I .. ........................................... //’ 

~ c; /’ 
/ 

................................ .............. 
‘ I  , 
~ ,/ 

: ................ IL,‘ .......... 

~ c; /’ 

........ /’. ....... : . .  
,/”; /”’” I /’ 

‘ I  , -1 

, i. , , _ _ I  , , . . . . . .  ............................................. .~ 

1500 2000 2500 3000 3500 4000 4500 

Figure 11. Typical IRI Vs. age plot for a typical GPS 2 site 

As for the pavement structural characteristic, SN is chosen as the independent variable. 
In the determination of the IRI of an individual site there is no correlation between SN 
and IRI because SN is constant. It does not vary over time, however, when all the sites 
are pulled together it becomes a distinguishing variable among different sites. The R2 
value for the multiple linear regression involving IRI, age, ESALs and SN improved 
greatly. The new R2 becomes 0.49 when SN was added to IRI, age and ESALs in a 
multiple linear regression model. This means the new regression model can determine 
about half the variance in the data. A large portion of the remaining variations is 
thought to be due to the inconsistencies introduced during the initial construction of 
each pavement. The section on initial IRI and delta variables attempts to explain the 
use of an initial IRI to incorporate this variance. 

A statistical measure is used to compare different models. In the following sections 
statistical notations of sum squared errors (SSE) or root mean squared error (RMSE) 
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are used for comparison of different models. SSE and RMSE are computed as the 
following: 

L 

i=l 

Where, 

observation "1' 

estimated value of "x/' 

- - Xi 

XI 

n = sample size 

rn - - 

Initial IRIS and Delta Variables 

The construction of an asphalt pavement has several variables that can introduce 
inconsistencies in the initial pavement's roughness. Even though, there already exists 
many models for estimating the initial IRI of pavements at the time that the pavement is 
constructed (12), the predicted values are theoretical and could predict quite different 
values from the actual initial IRI values. Moreover, these models involve the use of 
numerous variables to predict the initial IRI value (equation [12]), which could be quite in 
practice due to the availability limitations of data and costly sometimes. Using these 
calculated IRI values in the development of pavement performance models might 
question their reliability. Moreover, these models also involve the use of numerous 
variables to predict the initial IRI value (equation [12]). 

Using an initial measured IRI values to alleviate the difficulties of estimating an initial 
IRI could represent a more practical and yet dependable approach. There are two forms 
of logic that are used in attemp:ing to adopt an initial IRI value in conjunction with neural 
networks and multiple regression. 

The first approach is to let the neural network take the initial IRI into account by giving it 
known IRIS as an input vector znd the age at which the IRI is measured. The A values 
are the c h m y  in time (t2 - i , )md change in ESALs (ESAL, -EsAL,) from the date of 
the known IRI to that of the IRI that is to be predicted. 

During training of NN, each dah point is considered separately and not associated with 
any group of points for an indiv dual site, so in the first case of training, each set of data 
uses the previous IRI value as J basis of predicting the future IRI. To clarify this logic, a 
small example is shown. The kb le 10 gives the date at which the IRI is measured. As 
observed, thcre IS no data reccrded before 1990. The pavement is built in 1974, and 
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there is no data on which to base an initial IRI value. Because of this the IRI value 
(2.787) measured on September 6, 1991 is used as the target value and the IRI (2.743) 
from Nov. 30, 1990 is employed as an initial IRI indicator. This is for the first data set 
developed from this site. The next data set uses the IRI (2.787) from Sept. 6, 1991, as 
its initial IRI indicator. Below are the first three values developed from the site in table 
10. 

Input Values Target Value 

Initial IRI indicator .\t AESAL IRI 

1. 2.743 2CO 33068.5 2.787 

2. 2.787 2C6 28627 2.918 

3. 2.918 356 46658 2.874 

The second logic that could be  used in the model is similar to the first, but all data points 
use Nov. 30, 1390 as a reference point for the initial IRI indicator (2.743). Below is the 
same three data points developed from table 10, using the second model development 
logic. 

Input Values 

Initial IRI indicator A: AESAL 

1. 2.743 280 33068.5 

Tarqet Value 

IRI 

2.787 

2. 2.743 SC6 61695.9 2.91 8 

3. 2.743 S22 108354.2 2.874 

Notice mat tne same value is being predicted, and the only difference between the two 
type of models is the way time between IRI values is measured. Notice also that if the 
actual initial IN is known it can be used as the initial IRI variable value, At = Age, and 
AESALs = Lifetime ESALs. This, naturally, is correct because a deterioration model 
should take into account all the damage that has occurred during the pavement's 
lifetime. 
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Table 10. Compiled data for a typical GPS-2 site (25) 

SHRP ID STATE 
CODE 

IRI-RUN DATE CONSTRUCTION ESALS AGE 
(days) 

SUM ESALS IRI 

(Measured) 

SN 

1033 22-Jun-95 5-Jan-74 

34 1033 1 + 2.743 

707000 

754583.6 34 1033 1 30-Nov-90 1 5-Jan-74 4.9 47583.5 

34 1033 1 6-Sep-91 1 5-Jan-74 6453 I 2.7874 33068.4 787652.1 4.9 

34 1033 I 18-Jun-92 I 5-Jan-74 ::G’: 1 2.9176 

2.8738 

4.9 

4.9 
- 

28627.4 

46658.4 

8 16279.5 

862937.8 34 

34 
~~ 

9-J u n-93 5-Jan-74 

1033 8-Jun-94 5-Jan-74 7459 I 2.9016 39753.9 902691.8 4.9 

34 7838 I 3.1426 26645.6 929337.5 4.9 



DEVELOPMENT OF TRAINING DATABASE FOR THE NEURAL NETWORK MODEL 

There are 16 GPS-2 sites used for the development of this database. Three GPS-1 
sites are also incorporated into a portion of the database for the later experiments. 
Each site had from three to eight IRI values available. Consequently, there are 101 
data points in the database and 11 8 with the additional GPS-1 sites. There is one 
target IRI vector for each data point and three different input vectors for each data point. 
Thus, there are I 18 target vectors and 354 input vectors. These are the dimensions for 
the models developed at the first stage. Later models use more input vectors. These 
addition4 input vectors are the A's and initial IRI values discussed in the previous 
section and are the only variants of the original 354-vector database (i.e. change in 
time, change in ESAL, etc.). This database is located in Appendix B . 
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MODEL DEVELOPMENT AND RESULTS 

MODEL DEVELOPMENT 

We employ two types of approaches for developing pavement deterioration models, 
namely neural networks and multiple linear regression. This project developed four 
different basic models and these models differ by the type of variables used in 
developing them. A portion of the available data is not included in developing the models 
so that it can be used later to test the developed models. The portion of data that is 
removed for testing purposes is described under each experiment's description. 

Our main goal is to develop a model of the following form: 

Y = f(X1,X~ I . . . . . .  X") 

Where, Y = The dependant variable to be estimated 

X, = The independent variables eniployed for estimating Y 

Table 11 describes all the dependant and independent variables used in the 
development of the models. The following section illustrates each of these four models. 
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Table 11. Description of variables 

VARIABLE 

AGE 

Cumulative 
ESALs 

St ru ct u ra I 
Number 

Delta Time 

lelta ESALs 

Initial IRI(1) 

Initial IRl(2) 

DESCRIPTION 

Measured in thousands of days from the date of 
construction to the day of the IRI reading. 

The number of ESALs the pavement experienced 
from construction to the day of the IRI reading. 
(Millions of ESALs) 

The structural number recorded closest to the day 
of the IRI reading. Most values are from back- 
calculations of falling weight deflection readings. 

The difference in time between the initial IRI reading 
and the target IRI. Measured in years. 

The ESALs experienced by the pavement between 
the initial IRI and the target IRI. (Measured in 
hundreds of thousands ESALs) 

Uses the IRI of the previous reading and the next 
IRI. 

Uses only the first recorded IRI as the initial IRI. 

RANGE 

1.2 - 16.5 

0.2 - 20 

2.85 - 6.6 

0.4 - 3.0 
0.1 - 8.0 

0.7 - 2.9 

0.7 - 2.7 

BASIC MODEL #7 This model’s dependant variable is IRI, in units of m/km. The 
independent variables used in this model are as follows: 

IRI = f [age, cumulative ESALs and Structural Numbers] 

BASIC MODEL #2 This model’s dependant variable is IRI, in units of m/km. This model 
uses an initial IRI value to estimate the target IRI value. The 
independent variables used in this mode! are as follows: 

IRI = f [initial IRI, age, delta time, structural number and delta ESALs] 

BASIC MODEL #3 This model is a simplified version of basic model #2. It is the same 
model in all ways except ESALs that is not considered. The 
independent variables used in this mode/ are as follows: 

IRI = f [initial IRI, age, delta time, and structural number] 
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BASIC MODEL #4 This model is the same as Basic Model #2 but with a different initial 
IRI value and different delta values. The input vectors used in this 
model are as follows: 

IRI = f[initial IRI, age, delta time, structural number and delta ESALs] 

Sub-Model l a  Basic model #I is used for this sub-model. Six individual data points 
are randomly removed from the data set for the purpose of testing. 
These test points are consisted of only GPS 2 sites data. 

Sub-Model 2a Basic model #2 is used for this sub-model. Six individual data points 
are randomly removed from the data set for the purpose of testing. 
These test points are consisted of only GPS 2 sites data. 

Sub-Model 3a Basic model #3 is used for this sub-model. Six individual data points 
are randomly removed from the data set for the purpose of testing. 
These test points are consisted of only GPS 2 sites data. 

Sub-Model 4a This is exactly the same as Sub-Model 2a except that basic model #4 
is used instead of basic model #2. 

Sub-Model I b  This is exactly the same as Sub-Model l a  but instead of six points 
being removed for the creation of an evaluation data set, all the points 
from two sites are removed. Eleven points in all are removed for 
testing. 

Sub-Model 2b This is exactly the same as sub-model 2a but instead of six points 
being removed for the creation of an evaluation data set, all the points 
from two sites are removed. Eleven points in all are removed for 
testing . 

Sub-Model 3b This is exactly the same as sub-model 3a but instead of six points 
being removed for the creation of an evaluation data set, all the points 
from two sites are removed. Eleven points in all are removed for 
testing. 

Sub-Model 4b This is exactly the same as sub-model 4a but instead of six points 
being removed for the creation of an evaluation data set, all the points 
from two sites are removed. Eleven points in all are removed for 
testing. 

It should be mentioned that the points removed from the data set are not used in 
planning the NN or developing the linear regression equations. They are used only to 
test the models after they are trained. Table 12 gives a brief summary of the models 
developed in terms of variables employed. 
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Table 12. Summary of Sub-Models variables 

1 

2 

3 

4 

I I I 

1 a&b YES 

2a&b YES 

3a&b YES 

4a&b YES 

MODELS AGE 1 MODEL 1 1 
YES 

YES 

YES 

YES 

YES 

LINEAR REGRESSION MODELS 

I I I 

YES I YES I I I l l  
I 

Linear regression models are developed to test the efficiency of the NN models and to 
use as a guide for developing them. After using the same variables for both types of 
models, the results are compared. Testing of the linear regression models is performed 
by using the same points employed to test the NN models. Tables 13 and 14 show the 
results of regression models. Developed multiple linear regression models are in the 
following form: 

Y = B ,  + B J ,  +B,X,  +.-+B,X, ~ 4 1  

Where, Y = Dependant variable 
X, = Independent variables 
B, = Estimated Parameters 

We employed two different techniques for developing multiple linear regression models; 
Step-wise regression and Standard linear regression. 

Table 13 shows the results of a stepwise regression procedure. 

Table 14 shows the same results as that of table 13 but this time standard linear 
regression is used. As indicated by the coefficient of correlation, R2, the difference 
between the two types of regression models shows very similar results based on the 
modeler's understanding of the process that's being modeled. 

The significance of the variables and coefficients of the model is not apparent by looking 
at table 13. In table 14, sub-models 2, 3 and 4 have negative intercepts for both "a"and 
'%"series. A negative intercept at first seems to be impossible because this means that 
at time zero the IRI is negative. This is due to the use of the initial IRI variables. Thus, 
the IRI intercept at time zero should be either (Bo + BIX~) for Sub-models 2 and 3 or (Bo 
+ B2X2) for sub-model 4. 
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Sub-Model l a  
Sub-Model 2a 
I I I I I I I 1 I I 

BI Bz B3 B4 B5 B6 B7 RZ 
* * * 0.3192 0.9956 * 0.0638 ,0516 ** 

-0.1782 1.0642 * 0.0113 * ** 0.0833 .0117 0.9639 

BO 

Sub-Model 3a -0.1543 1.0662 * 0.0083 * ** 0.0967 * 0.9608 
Sub-Model 4a -0.1574 * 1.0339 0.0304 * ** ** 0.2131 0.9124 
Sub-Model 1 b 0.9605 * 0.0690 0.0558 ** * 0.3465 
,Sub-Model 2b -0.1887 1.0594 * 0.0109 * ** 0.0941 0.0131 0.9685 

* * 

ISub-Model3b I -0.1695 I 1.0702 I * I 0.0071 I * I ** IO.1101 I * I .9632 I 

Sub-Model l a  

Sub-Model 4b I -0.0228 I * I 1.0515 I 0.0266 I * I -0.0298 I ** I 0.2265 10.9223 I 
* Variable is not used in the model 

B1 B2 B3 I B4 I B5 I B6 B7 I R2 
* * 10.3277 * 0.0687 I 0.0488 I 0.0513 1 * 

Bo 
0.7289 

Negligible ** 

BO BI Bz B3 B4 B5 

* Sub-Model l a  2.7282 * 4.0097 4.8267 1.0696 
Sub-Model 2a -2.2534 39.6824 * 2.3417 * 0.1440 

t- 
B6 B7 Table 

(0.90) 
* * 1.658 

2.9551 2.9428 1.671 

ISub-Model2a I -0.1877 I 1.0638 I * I 0.0115 I * 1 0.0049 10.0838 I0.0115 10.9639 I 

Sub-Model 4a 
Sub-Model I b  
Sub-Model 2b 
Sub-Model 3b 
Sub-Model 4b 

ISub-Model3a I -0.1845 I 1.0636 I * I 0.0089 I * 1 0.0060 10.0978 I * I0.9609I 

-0.6490 * 21.6151 3.3973 * -1.0584 0.5475 8.8786 1. 671 
* 2.1695 * 3.7090 4.6999 0.9808 * * 1.658 

-2.0371 41.3676 * 2.0978 * -0.3812 3.0858 3.3848 1. 671 
-2.1807 38.9688 * 1.4386 * 0.2846 3.4682 * 1.671 
-0.5887 * 22.1653 1.1281 * -1.5057 9.1880 3.0148 1.671 

ISub-Model4a I -0.0779 I * I 1.0504 I 0.0267 I * I -0.0210 10.0066 10.2110 10.9142 I 
hb-Model  I b  I 0.6773 I * I * I 0.0745 I 0.0533 I 0.0530 I * I * 10.35531 
(Sub-Model 2b I -0.1648 1 1.0611 1 * 1 0.0104 1 * I -0.0047 10.0931 10.0134 10.9685 I 
ISub-Model3b I -0.1886 I 1.0687 I * I 0.0076 I * I 0.0037 I0.1106 I * I ,9632 I 
Sub-Model4b I -0.0698 1 * I 1.0653 I 0.0239 I * I -0.0289 10.0138 10.2152 10.9237 I 
* Variable is not used in the model 

Table 15. T values for the Standard Linear Regression presented in table 13 

ISub-Model3a I -2.1929 139.1095 I * I 1.7533 I * I 0.4592 13.3465 I * I 1.671 I 
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LINEAR MODELS 

Model 1 
Model 2 
Model 3 
Modal 4 

Y(IRI) = 
Y(IRI) = 
Y(IRI) = 
Y(IRI) = 

BO + B3X3 + B4X4 + BsX5 
BO + BIXI + B3X3 + BsX5 + Bd(6 + B7X7 
BO + BIXI + B3X3 + B5X5 + Bd(6 
BO + BZXZ + B3X3 + BSX5 + Bd(6 + B7X7 

Where, 

Sub-Models l a  8 I b  

Sub-Models 2a 8 2b 

Sub-Models 3a 8 3b 

Sub-Models 4a 8 4b 

Bo = 
x, = 
x* = 
XJ = 
x 4 =  
x5 = 
xs = 
x7 = 

Intercept 
IRI(1) (m/km) 
IRl(2) (m/km) 
Age (Thousands of days) 
Millions of ESALs 
Structural number 
Delta time (years) 
Delta ESALs (100,000) 

The coefficients ( B , )  are displayed in tables 13 and 14. The t-values for each 
parameter are shown in table 15. 

In table 16 testing results are shown for sub-models 1 b-4b. Table 17 shows the SSE 
and RMSE of the results for each model. Tables 16 and 17 only include the results for 
the “b” series. The main reason for this elimination, to prevent any biased outcome from 
the series “a” in the neural network, since the test data points originated from the same 
set that used to train the neural network, whereas the “b” series test data points come 
from the two sets. Another reason is to simplify the already exorbitant amount of data 
and results. The D values in table 16 and subsequent tables represent which data point 
is tested. For example D7 through D77 represent the eleven test data points in the ‘b’ 
series. This is just the nomenclature used to distinguish among the individual test data 
points. This same system is applied later in the paper to other test data points, in which 
case the numbering is just increased sequentially (072, 013, etc.). 
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Table 16. Linear Regression Sub-Model Testing Results 

D1 

1.0959 

1.3745 

Test Data D2 D3 D4 D5 D6 D7 D8 

1.1266 1 . I  573 1.2027 1.2562 1.3043 1.4163 1.2434 

1.3649 1.4129 1.4503 1.4943 1.5309 1.7652 1.0932 

Sub-Model I b  

Sub-Model2b 

Sub-Model3b 

Sub-Model4b 

1.387 

Actual 

1.3751 1.4209 1.4364 1.4612 1.514 1.7079 1.1159 

1.6667 

1.3486 

I I I I I I I 

1.6642 1.7045 2.1143 2.4365 2.2004 3.268 1.1404 

1.3914 1.3838 1.4022 1.4446 1.4722 1.486 1.1462 

1.278 1.3292 1.3568 I I  
1.1956 1.2018 1.245 I 1  
1.22 1 1.2326 1 1.2537 

1.1613 1.2277 1.336 



ul 
0 

Test Data D1 

Table 17. Sum Squared Errors and standard error for the test results of table 4-6 

D2 0 3  0 4  

I I I I I 

Sub-Model 1 b 0.0639 0.0701 0.051 3 0.0398 I+ Sub-Model 2b 0.0007 0.0007 0.0008 0.0023 

I I 

Sub-Model 3b I 0.0015 I 0.0003 I 0.0014 1 0.0012 
Sub-Model 4b 0.1012 0.0744 0.1028 0.5071 0.9839 

Overall RMSE 1 S.S.E. 
0 5  1 D6 I 0 7  I D8 I D9 1 D10 1 D11 1 

0.5303 3.1755 0.0000 0.0047 0.0004 0.0046 5.4850 0.7410 

0.0355 0.0282 0.0049 0.0094 0.0344 0.0145 0.0079 0.3599 0.1900 I 1 I 1 l l I l  
0.0025 0.0034 0.0780 0.0028 0.0107 0.0000 0.0005 0.1024 0.1010 I I I I I I I I  
0.0003 0.0017 0.0492 0.0009 0.0163 0.0006 0.0002 0.0735 0.0860 l l I l l / l l  



NEURAL NETWORK (NN) 

The NN used in the experiments employs feed-forward backpropagation training. Each 
experiment used at least a three-layered network with the first layer having a number of 
nodes equal to the number of input variables used in each individual experiment. The 
second or hidden layer consists of a varying number of nodes and the last layer has one 
output node. The first two transfer functions vary between tan-sigmoid functions and 
log-sigmoid functions. The output, unlike the other two layers, is determined by a linear 
transfer function. Matlab NN Toolbox is used to train and to test the NN developed in 
this project (3). 

Determination Of The Optimal Number Of Lavers And Nodes In The NN 

A NN should have both an optimal number of layers and an optimal number of nodes in 
each layer. This section discusses the determination of the optimal number of hidden 
layers and number of nodes in each layer. First, the optimal number of nodes is 
investigated and then the optimal number of layers. The optimization of the number of 
nodes starts with using only one hidden layer. 

The optimal number of nodes is determined by simply running the Matlab NN training 
program with varied number of nodes in the hidden layer. This means that a single 
hidden layer is used and the number of nodes starts at one. It is then increased by one 
node for each consecutive run until the NN is trained for 'n' nodes. 'n' is the number of 
nodes in the hidden layer. The NN reaches a point where the number of nodes 
becomes too high. This phenomena is called diverging of the NN. Divergence is 
apparent when all the test points return the same value. To test the results of this 
section the same eleven test data points are used from sub-models 1 b, 2b, 3b and 4b. 
The optimal number of nodes is determined by comparing the sum-squared error (SSE) 
for the eleven test points. 

net = newff(L0 5 ; O  18;2 7 ; O  3 ; O . l  2 0 1 , [ 5  n l],('tansig' 'tansig' 'purelin')); 

The line above represents the Matlab command that creates the desired NN 
architecture. The vector [ 5 n 13 describes the architecture of the NN. The first 
variable, 5, represents the number of nodes in the input layer. 'n' represents the 
number of nodes in the hidden layer that will be determined in this section. It is the 
number of nodes in the first hidden layer. The last number represents the nodes in the 
output layer, namely one. 

Figure 12 is a flowchart demonstrating the process used to find the optimal number of 
nodes and hidden layers for the NNs used in this section. This process is preformed for 
all the sub-models in the b series only (see previous for explanation). On an average, 
seventeen different NN programs are created for determining the optimal number of 
nodes and layers for each sub-model. Sub-model 2b results are used in this section for 
the purpose of demonstrating this research process. Figure 13 shows the SSE for sub- 
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model 2b as the number of nodes in the hidden layer increase. Thus, for this sub- 
model, three nodes in the hidden layer are found to be the optimal number. 

Table 18 shows the actual values of the S.S.E. for the number of nodes in the first 
hidden layer. Figure 14 shows the plot of the measured IRI versus the IRI predicted by 
the NN. Series 1 on the chart shows the linear interpretation of the data, if the NN were 
to predict the data perfectly (45-degree line). Equation [29] shows the equation of the fit 

y = 1.2417~ - 0.3261 R2 = 0.8559 1291 
for the predicted IRI vs. measured IRI of figure 14. The correlation coefficient (R2) is 
shown for equation [29], this illustrates how well sub-model 2b estimates IRI. The 
predicted IRI has a fairly good correlation value and is close to the 45-degree line. The 
equation would have an intercept of zero along with a slope of one, if it were to predict 
the data perfectly. 

After the optimal number of nodes is determined for one hidden layer, the next thing that 
must be optimized is the number of layers. The number of nodes first remains constant 
at the optimal number of three for each hidden layer. Then the number of nodes will 
vary for each additional hidden layer. Table 19 shows the results of introducing 
additional hidden layers. After three hidden layers, the NN started diverging. In other 
words, it is not training properly at this point. 
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NL = Number of nodes in the Lth layer 
Layers 

Start: 

L = Number of Hidden 

Did the first node of the layer give 
the same results for all the test 
points? 

I Train NN and Test NN with test points k- 

No 
b NL keep 

fixed 

Are all test points giving 
the same results? 

Yes 
L = L + 1  

Figure 12. Flowchart for determining the optimal NN architecture 
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S.S.E. Vs. Number of Hidden Layers 

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.2!5 2.50 2.75 3.00 3.25 

S.S.E. 

Figure 13. Sum squared error of NN with respect to the inumber of nodes in the hidden 
layer in sub-model 2b. 

Table 18. Sum Squared Error for different number d nodes in sub-model 2b 

Number of nodes 

0.2435 0.0916 0.05701 0.1495 3.1046 
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Figure 14. Correlation of the Predicted IRI Vs. the Actual IRI 

Different NN architectures are identified as a result of the optimization process 
described in Figure 12. The NN architecture in this report is represented as follows; 'H' 
followed by a number represents the number of hidden layers and the numbers that 
follow after that (-33 is the number of nodes in each layer. Example H4-3-3-3-3 has 
four hidden layers (H4) and each layer contains 3 nodes (-3-3-3-3). The Matlab 
command would be changed in to the following: 

n e t  = newff([O 5;0 18;2 7;O 3 ; O . l  2 0 1 , [ 5  3 3 3 3 11, 
( ' t a n s i g " l o g s i g " l o g s i g " l o g s i g " l o g s i g " p u r e 1 i n ' ) ) ;  

The "3's" represent hidden layers which can be seen between the "5" node input layer 
and the "1" node output layer, [ 5  3 3 3 3 11 . Figures 15 and 16 show the graphic 
representation of the summed squared error as the number of layers increases. 

Next, the number of nodes is varied within each of the layers to determine the optimal 
configuration of nodes and layers. Table 20 shows the results for the optimal 
configuration for each hidden layer that is determined by trial and error. The way to read 
the architecture is the same as in table 19 and it shows that the number of nodes in the 
hidden layers is different for each trial. 
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The conclusion is that one hidden layer with three nodes is the optimal configuration for 
sub-model 2b. This process is used to determine the optimal configuration for each 
model. Table 21 shows the optimal configuration determined by this procedure for each 
NN sub-model in the b series. 

Table 19. Sum Squared Error as Number of Hidden Layers Increase for Sub-model 2b 

1 Architecture 1 HI-3 1 H2-3-3 I H3-3-3-3 I H4-3-3-3-3 I 
I S.S.E. I 0.057 I 1.7477 1 14.462 I 0.4243 I 

Figure 15. S.S.E. of NN with respect to the number of nodes in the first hidden layers for 
Sub-model 2b 

I Summed Squared Error Vs. Number of Nodes 

4 

1 
z o 3  
v 

(c . 0 

$ 2  
a 
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1 

0 2 4 6 8 10 12 14 

S.S.E 

Figure 16. Figure 15 magnified 

Sumned Squared Error Vs. Number of Nodes 

bar extends 
beyond this 

l z h .  1 4 

1 
P 3  

$ 2  s 

0 

(c 

0 

2 

1 

0 0.25 0.5 0.75 1 
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Table 20. Optimized Sum Squared Error as Hidden Layers Increase for Sub-model 2b 

S.S.E. 

I Architecture I HI-3 I H2-3-1 I H3-3-2-2 I H4-4-3-2-1 I 
0.057 0.0641 0.1678 0.131 1 

Sub-model I b  

Sub-model 2b 

Sub-model 3b 

Sub-model 4b 

Table 21 Optimal configurations of the NN sub-models shown in chapter 4 

Numbers of layers 

3 

3 

3 

3 

Numbers of nodes in 
hidden layer 

1 

3 

1 

1 

SUMMARY OF NN TESTING RESULTS 

The optimal NN architecture, determined in the previous section, is used for each sub- 
model as described earlier in this chapter. Tables 22 and 23 summarize the testing 
results of the NN models. All the models in a series use the same six test data points 
and those in the b series all use the same eleven data points to test each sub-model. 
Table 23 gives the SSE and RMSE for each sub-model's output compared to actual IRI. 
Note that D7 through D77 each represents a test data point as indicated by the sub- 
model's description in the first section of this chapter. 
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Table 22. NN model predictions for their respective test points 

1.3972 

1.3486 

Test Data 

Sub-model l a  

Sub-model 2a 

Sub-model 3a 

Sub-model 4a 

Actual 

Sub-model I b  

Sub-model 2b 

Sub-model 3b 

Sub-model 4b 1.4765 1 S353 1.5301 1.4264 1.4785 1.9294 1.0195 1.0705 1 .I506 1.2028 

1.3914 1.3838 1.4022 1.4446 1.4722 1.486 1.1462 1.0924 1.2086 1.268 I Actual 

I I 
1.6253 1.5392 1.118 1.0051 1.491 0.9124 

1.5454 1.6201 0.8658 1.0478 1.481 3 0.8972 

1.6165 1.664 1.151 1.0872 14318 0.7973 

1.5782 15143 1.0814 10403 1.4025 1.0444 

1.5484 1.5944 1.0782 1.0178 1.4446 0.9058 

1.0234 1.0512 1.0826 1.1504 1.2586 1.3526 1.5966 1.0656 1.0745 1.0884 1.104 

1.2956 I 1.2913 I 1.3515 I 1.4235 I 1.4829 I 1.5615 I 1.6161 I 1.0629 I 1.1469 I 1.1459 I 1.2179 

1 

1.4326 1 1.4305 1 1.4686 1 1.4704 I 1.4894 1 1.5325 I 1.4613 1 1.1092 I 1.2147 1 1.1644 I 1.2746 I 



Table 23. Sum Squared Errors for results presented in table 22 

D2 

0.003 

0.0007 

0.0048 

0.0064 

Sub-model 3a 0.0046 I 

D3 

0.0016 

0.0451 

0.0053 

0.0000 Sub-model 4a 0.0009 I 

D4 

Sub-model 4b 0.0024 1 

D5 D6 D7 D8 D9 D10 D11 S.S.E. RMSE 

0.0005 

0.0047 

0.0015 0.008 0.0169 0.0069 0.003 0.0039 0.0025 0.057 0.075 

0.002 0.0036 0.0006 0.0014 0.015 0.002 0.0000 0.045 0.067 

1 
1 

1 
1 

1 
1 

0.0634 1 0.0346 I 0 0143 1 0.0122 1 0.0065 0.0003 0.0144 0.0269 I 0.4849 I 0.22 
I 1 1 1 

0.0164 I 0.0003 I 0.0000 I 0.1966 I 0.0161 1 0.0005 I 0.0034 1 0.0043 I 0.27 I 0.164 



RESULTS OF SUB-MODELS 

Sub-Models in the ‘a’ series show that NN trained with data from any site can produce 
excellent results for the same site. Unfortunately this is not applicable to a real situation, 
because a model should be able to be used without having three or four years worth of 
data available. For that reason the rest of this report will focus on the later sub-models 
which contain less bias (i.e. the ‘b’ series). This bias is explained earlier in this chapter. 

In sub-models 2b, 3b and 4b, a lower SSE is produced by the NN models compared to 
the linear regression models (compare results in table 23 to those in 16), while in sub- 
model 1 b, the linear regression produced lower SSE than the NN model. Both the linear 
regression and the NN models have SSE’s that are relatively close in value, except for 
sub-model 4b, which produced poor results when linear regression is used. This may 
be possible because in sub-model 4b the initial IRI used is not a linear function, but is 
constant for the whole site over a length of time. The NN experiment, which has more 
input vectors, performed better than sub-model 1 b, which only has three input vectors. 
NN models should improve in accuracy if trained with additional data. 

ADDITIONAL DATA 

With more data, it is expected that the NN models can perform better than they do in the 
previous sub-models. Thus, three more sub-models are created using the same 
parameters as the previous models but include additional data. The new series is called 
the ‘c’ series. The data included was from three new GPS 1 sites. 

To test how these models performed with additional data three new sub-models are 
developed. These sub-models used the additional data from three GPS I sites. 

Sub-Model I c  This is the same as Sub-Model 1 b with the exception of the three 
GPS 1 sites added to the training set. 

Sub-Model 2c This is the same as Sub-Model 2b with the exception of the three 
GPS 1 sites added to the training set. 

Sub-Model 3c This is the same as Sub-Model 3b with the exception of the three 
GPS 1 sites added to the training set. 

Table 24 shows the test results of the NN models and table 25 gives the sum-squared 
errors of estimated values in table 24 compared to the actual values. 
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Test Data D2 

0.9307 Sub-Model I c  

Sub-model 2c 

D3 D4 D5 D6 D7 D8 

0.9816 1.1 1.2949 1.4815 1.6281 1.1014 

Sub-Model 3c 

1.3914 Actual 1.3838 1.4022 1.4446 1.4722 1.486 1.1462 

Table 24. Neural Network Models Predicted Results Using Additional Data 

D1 

0.9006 

1.3888 

1.3737 

1.3486 

1.3912 1.4254 1.4339 1.4564 1.4775 1.6587 1.0832 1 
D9 

1.1798 

1.1631 

1.385 

1.0924 

D10 

1.2787 

1.109 

1.213 
~~ - 

1.2086 

1.3985 

1.2563 

1.268 
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The linear regression models are also developed using the same additional data that is 
used to train the NNs sub-models in the ‘c’ series. Because the stepwise and standard 
multiple linear regression are very similar, only the standard multiple linear regression is 
used in this section with the additional data. Table 24 shows the test results of the 
regression models and table 25 gives the sum-squared error of table 24. 
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Table 26. Linear Regression Sub-model Results with Additional Data 

Test Data 

Sub-Model I c  

Sub-model 2c 

Sub-Model3c 

Actual 

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 

1.1040 1.1340 1.1650 1.2100 1.2630 1.3110 1.4230 1.2560 1.2910 1.3430 1.3700 

1.381 0 1.3760 1.4250 1.4570 1.501 0 1.5360 1.7270 1.0980 1.1970 1.1850 1.2580 

1.5320 1.5270 1.5730 1.5830 1.6070 1.6590 1.8020 1.2610 1.3620 1.3540 1.4100 

1.3486 1.3914 1.3838 1.4022 1.4446 1.4722 1.4860 1 .I462 1.0924 1.2086 1.2680 
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Sub-Model Ic ,  which has only three types of input vectors, performed worse for the NN, 
and gives relatively unchanged results for linear regression when compared to sub- 
model 1 b. Sub-Model 2c gives the best results for both NN and linear regression. The 
sum-squared errors for both are lower than those for the sub-models in the ‘b’ series. 
This improvement in the model is due to having more input vectors than sub-model Ic .  
Generally the more input vectors, the more data is needed to train a NN. With this 
additional data, better results were obtained. 

On the other hand, sub-model 3c produced larger errors for both linear regression and 
NN than the ‘b’ series. An explanation of this could be that Model #3 does not use 
ESAL data. Therefore it may not be able to explain the variations the ESALs component 
in the IRI data. 

GENERAL REGRESSION NEURAL NEWORKS 

In some of the models, linear regression performed as well as the backpropagation NN 
models; so, general !egression neural cetworks (GRNN) are also tested to see if GRNN 
produced better results than backpropagation NN. Specht states that GRNN could be a 
better alternative to backpropagation for certain cases.(4) GRNN trains faster because it 
uses a one-pass training algorithm while backpropagation uses many passes or training 
epochs. Regression uses a dependant variable, V, and independent variables, X,. 
There are also unknown parameters, ai. The GRNN training algorithm uses a 
probabilistic density function to determine the ai values from the input vectors. This form 
of training can be used to determine linear and non-linear functions. 

The ‘b’ series and the ‘c’ series are both tested using a GRNN. The results of training 
are given in table 28. The results indicate that GRNN did not perform as well as the 
standard linear regression or the backpropagation NN. There are a few drawbacks to 
GRNN networks, which help to explain these results. The estimate is controlled by the 
bounds of the minimum and maximum observations. An accurate estimate cannot be 
produced for cases that has not been seen. 

Unfortunately, the test data is all within the bounds of what is being used for training. 
This does not account for the difference in error. Since this is a function approximation, 
it tends to smooth functions and thus will not converge to local max and minimum. This 
is probably not the case for pavements because they do not behave erratic enough to 
cause these local peaks. Another reason for the GRNN’s poor performance compared 
to the backpropagation NN may be due to the type of training adopted by GRNN. The 
small data sets and multiple epoch training adopted by backpropagation algorithm may 
be more suitable for our database which has a limited number of data points. 
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Table 28. Testing Results of GRNN estimation using the test data 

1 Sub-Model 1 b 

1 Sub-Model2b 

I Sub-Model3b 

1 Sub-Model I c  

Sub-Model2c 

Sub-Model3c 

TE 0.807969 0.284248 

0.581686 1 0.241 182 

0.896429 10.299404 

0.838612 10.289588 

0.534082 I 0.231 102 

0.691628 10.262988 
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RUTGERS’ PAVEMENT DETERIORATION ESTIMATION MODELS 

4 

0.0822 

-0.0747 

-0.2387 

-5.3858 

-2.4529 

RUTGERS’ MODELS 

5 

0.0282 

0.1173 

-0.1166 

-2.1901 

-0.9398 

This section selects the best pavement deterioration prediction models from all the 
models developed and presents them in detail. The goal of this section is to allow the 
reader to observe and understand more closely the best models developed using both 
multiple linear regression and backpropagation NN’s. 

For the purpose of comparing models and identifying the best NN and linear regression 
models, each was given a name. The best NN model is selected to be Basic Model 2. 
It exhibits the second best results in sub-model b, as well as the best results with the 
additional data in Sub-model 2c. The NN Basic Model 2 tested in the ‘b’ and ‘c’ series is 
called the RlTS NN Model. 

In order to be able to reproduce this model and to understand the NN model better, a 
longhand calculation is performed. You can refer figure 3 for the visual representation 
of the NN architecture. Tables 29 through 30 contain the weights and biases for the 
RlTS NN model. 

Table 29. WEIGHTS FOR THE INPUT LAYER OF THE RlTS NN MODEL 

Weight’s 
Target 
Node 

WEIGHT’S ORIGIN 
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Layer Node 1 

1 2.262 

2 5.9256 

3 1.5698 

Table 31. WEIGHTS FOR THE HIDDEN LAYER OF THE RITS NN MODEL 

Node 2 Node 3 Node 4 Node5 

1.472 -1.33 -2.26 -0.521 

0.7037 3.5716 - - 

- - - - 

Weight’s 
Target 
Node 

1 

2 

3 

WEIGHT’S ORIGIN 

1 2 3 4 5 

-3.1957 2.3895 7.7277 5.6957 0.9123 

-3.6448 -0.5572 2.5455 0.9412 -0.0447 

5.1541 -4.3272 0.2448 0.307 0.8164 

1 

Table 32. WEIGHTS FOR THE OUTPUT LAYER CIF THE RlTS NN MODEL 

2 3 

Weight’s 
Target 
Node 

I 

WEIGHT’S ORIGIN 

1.2285 -2.2312 1.0732 
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r 
1.2111 

-5.9494 

2.8307 

1.1258 

4.8948 
\ 

Tansig 

r 

-2.262 

1.472 

-1.330 

-2.260 = 

-0.521 
'\ / 

Weights in input layer 

0.0200 -0.0161 0.0822 

0.0990 1.7012 -0.0747 0.1173 

0.0522 -0.7862 -0.2387 -0.1 166 

-2.3302 1.01 54 -5.3858 -2.1 901 

-0.5412 1.2339 -2.4529 -0.9398 

Layer output 

Y r -0.531 f0.492 

1.444 0.895 

I = I -0.895 
-1.394 

-9.616) [I .OOO 

6.585 1 .ooo 
/ c 

Weights in first hidden layer 

\ 

-3.1957 2.3895 7.7277 5.6957 0.9123 

-3.6448 -0.5572 2.5455 0.9412 -0.0447 

5.1541 -4.3272 0.2448 0.3070 0.8164 
/ 

Input 

r - 
1.345 

1.903 

4.5 

0.964 

1.704 
c - 

* 

+ 

Biases in 
first layer 

F 
-0.539 

1.444 

-1.394 

-9.616 

6.585 
L 

Transfer Function: 

n = a numeric output of a node 

Input from 
in put layer - 

- 
0.492 

0.895 

-0.895 

-1 .ooo 

- 
- '' I":":] 3.5716 - 

- 
-1.980 

-1.238 

-2.542 
d 
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Logsig * 

f - I  .980 

-1.238 

-2.542 

Transfer Function: 

Logsig(n) = (u 1 + exp(-n) ) 

n = a numeric output of a node 

Input from 
hidden layer 

Bias in the 
output layer Weights in output layer ( 0.1213 1 

The output of the NN model using the same architecture gives the IRI value of 1.2956. 
The hand calculations give a value of 1.2955. The 0.0001 difference is the result of the 
rounding error by the Matlab Code. The above hand calculations show the procedure 
using the NN weight and biases that can be used to calculate the IRI of a site without 
using the Matlab NN training program. The best linear regression model is also 
determined by the results of the additional data experiments. Even though Model 3 
gives better results than Model 2 in the ‘a’ and ‘b’ series, Model 2 is chosen as the basis 
of RlTS model. This is because of better performance of Sub-model 2c with the 
additional data. The linear regression model 2 used in sub-model 2b and 2c is called 
the RlTS LR Model. 

RlTS LR MODEL 

Y(IRI) = Bo + BIX~ + B a s +  B&+ B& + B7X7 

Y(IR1) = -0.056 + 1.066 xi + 0.0018 x3 - 0.006 x5 + 0.027 x6 + 0.014 x7 
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Table 33. EXCEL IMPLEMENTATION OF NN 
CALCULATIONS 

0.8 

2.1918 
7.85 

1.1232 

nput Layer 
nput lweights IProduct lSum Bias Sum Tran. Func. 

0.02 0.016 

0.082 0.1802 
-0.016 -0.1264 

0.028 0.0317 1.331 -2.26 -0.93 -0.731 

JODEI I I I 
1.01541 1.21 1 I 1.22971 

lODE 2 
1.0154 -5.949 -6.041 

0.8 
7.85 

2.1918 
1.1232 

0.099 0.0792 
1.701 13.354 

-0.075 -0.1637 
0.117 0.1317 7.361 1.473 8.834 1 

JODE 3 I I I 
1.01541 2.8311 2.87431 

0.8 
7.85 

2.1918 
1.1232 

iODE 4 
1.0154 

7.85 
0.8 

2.1918 
1.1232 

IODE 5 
1.0154 

7.85 
0.8 

2.191 8 
1.1232 

0.052 0.041€ 
-0.786 -6.1717 
-0.239 -0.5234 
-0.117 -0.131 

1.126 1.1431 

1.015 7.9706 
-2.33 -1.8644 

-5.386 -11.804 
-2.19 -2.4596 

4.895 4.9701 

1.234 9.6861 
-0.541 -0.432 

-2.453 -5.3762 
-0.94 -1.055E 

-3.91 -1.33 -5.24 -0.999 

-7.01 -2.26 -9.28 -1.00 

7.791 -0.52 7.27 1.000 

Hidden Layer 
llnput lweights IProduct ]Sum Bias Sum Tran. Func. 

IODE 1 
-0.731 

1 
-0.9996 

-1 
1 

IODE 2 
-0.731 

1 
-0,9999 

-1 
1 

1 
-0.9999 

-1 
1 

butput Layer 
iput Weigts Product Sum Bias Sum 

INN CALCULATED IRI 1.02001 



PAVEMENT DETERIORATION MODELS 

There are a few existing models as discussed in the literature review that can be used 
for comparison with the RlTS Models selected in the previous section. To conduct a fair 
comparison, these existing models are tested using the same eleven test points that are 
used in testing the models developed in this project. In some cases the feasibility of the 
models for use in a Highway Pavement Management systems, HPMS, is further 
discussed. 

FHWA MODEL (I2) 

The FWHA model is investigated using the data received from the LTPP IMS database, 
more specifically using the eleven test points previously used to test the RlTS models. 
The data obtained from the FHWA database had to be complimented with additional 
data of the model’s input variables to be able to apply this model. The first drawback is 
that only one of the eleven test points could be estimated due the unavailability of data 
in the original FHWA database. A large amount of environmental data is not currently 
available for the most recent years. Only data up to 1990 is currently recorded in their 
relative environmental fields of the database. Since the test data entries start in the 
year 1990 the data points available for the test are immediately reduced to two points. 
The second site’s data entries in the database are missing the gradations for its layers, 
thus only one point remains for comparing the results. Table 35 shows this missing 
information. 

The second drawback is that this model requires many variables that are difficult to 
obtain for many sites. Because of the amount of data required, this model is 
complicated and costly to implement into a Pavement Management System. The 
environmental data in this model takes time to obtain and process. For this reason, the 
model could not be fully tested in this case. Even after approximately eight years of 
data collection the data has not been completely processed and entered into the LTPP 
database. Because of the length of time to enter data into a federal database, it is 
assumed that it will also take an equal amount of time for a state agency to process the 
same data. More practical models should be derived without using environmental data. 

Another problem is that a few of these variables are difficult to predict. This makes this 
model only applicable for present validation of values. For example, trying to predict the 
annual precipitation in the next five to ten years and the days below 32 degrees in each 
year is quite difficult. Weather forecasters have a difficult time predicting what will 
happen in the next week. The next several years would be even more difficult to 
forecast. Traffic is another factor that is difficult to prefigure, however, it can be 
predicted easier and more accurate than the weather. 

Conversations with the developers of the Federal models, addressed the concerns 
about the missing climatic data. The annual precipitation and the days under 32 
degrees could be taken as an average of the historical data. (25’ These values are taken 
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from the DataPave97 data that has already calculated those values. The traffic data, 
KESALs/ r, which is used in the model, are estimated using an exponential growth type 
model. (' Table 35 gives the total variables used to validate the FHWA report's model 
and the missing gradation values. 

Y 

Table 36 shows the data obtained from the developers. This data is used to develop 
the FHWA model for these two sites. This data is directly taken from the developers of 
that model, and is not directly obtained from the LTPP database. The reason for using 
data obtained from the developers is the unavailability of data when the model was 
originally developed. It would be unfair to compare this model to other models without 
first knowing the differences in the data. 

There are two factors that can cause differences between the two sets of data. First, 
there is only four years of data available for the FHWA model when it was first 
developed, so any data after that time might have been collected using a different data 
collection procedure. This is the case where the allowable standard deviation of profile 
runs is changed from 3% to 2% at the beginning of the LTPP program. This can 
definitely affect the models. Second, much of the data has not yet undergone the 
statistical processing. Therefore, some values could have been changed or deleted 
from the database after further statistical processing. Information in the database can 
be different or missing from the data that the developers have used to develop those 
models. 

Finally the results of the FHWA model are compared to the RITS Models. Tables 37 and 
38 compare the results of those models. The results shown in this table indicate the 
FHWA model that produces higher Squared Error. The FHWA model has more input 
parameters, and is more complicated. The simpler models (RITS Model), in terms of 
input variables, provide better results and would be easier to implement into a pavement 
management system. 
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Table 34. Data retrieved from the ITPP database for validation of FHWA model (26) 

SHRP 
ID 

STATE RUN NO-4 Annual 
CODE DATE PASSING Percip. 

1034 I 34 I 17-Nov-90 1 97 I 169 

3101 

; 1 07-Sep-91 1 1034 1 99 1 NIA 

1034 20- J u 11-92 NIA 

1034 11-Jun-93 NIA 

47 10-Apr-95 NIA 

1034 I 34 I 10-Jun-94 I 

NIA I 3.8 I 4.8 I NIA 

I NIA 

4.36 15.282 

1034 1 34 1 24-Jun-95 I 

1034 

3101 

1 NIA 

34 09-Dec-97 

44.23 86.17 2 I :", I 4 6 7  I :r6 I :2211 47 17-Jun-91 NIA 52.52 86.27 3.8 

1034 I 34 I 09-Dec-97 I 

3101 

3101 

I NIA 

47 27-Aug-92 NIA 52.52 86.27 3.8 I I :: 1 4.36 I 12.663 

47 10-Jun-94 52.52 86.27 3.8 4.36 14.449 

17-Jun-91 

3101 10-Jun-94 NIA 

TOTAL 

57.78 5.2137 

NIA I 2 I 10 I 215 I 4.5 I 6.0192 I 

NIA I 2 I 10 I NIA I 4.5 1 8.7781 I 
NIA 1 2 1 10 I NIA 1 4.5 1 9.8164 1 
N I  2 I 10 I NIA I 4.5 I 12.279 1 

4.8 

Table 35. Partial data used for validation of FHWA model PR '') 

TOTAL 

17-NOV-90 5.2137 

1034 99 

1034 1 34 1 20-Jun-92 1 1 44.23 1 86.17 1 2 1 10 1 243 I 4.5 1 6.8055 

1034 I 34 I 11-Jun-93 I I 44.23 86.17 I 2 I 10 I 279.372 I 4.5 I 7.7808 

1034 I 34 I 10-Jun-94 I I 44.23 86.17 I 2 I 10 I 317.0872 I 4.5 I 8.7781 

1034 I 34 I 24-Jun-95 I I 44.23 86.17 I 2 I 10 I 359.894 I 4.5 I 9.8164 

3101 I 47 I 10-Apr-95 1 1 52.52 86.27 I 3.8 I 4.8 I 52 1 4.36 I 15.282 
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Table 36. Data used for validation of FHWPI model f25) 
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PAVEMENT DETERIORATION MODEL BY LEE (I4) 

A recent Transportation Research Record (TRR) by Lee describes the need for 
simplified models that can predict future trends of the pavements with a minimal amount 
of data.(14) Unlike the other model that predicted IRI, the model by Lee is developed to 
calculate Present Serviceability Rating, PSR. In this report there are models using five 
basic types of pavements namely, flexible, composite, jointed plain cement eavements 
(JPCP), jointed reinforced concrete eavements (JRCP), and continuous reinforced 
- concrete eavement (CRCP). The data used to develop these models come from the 
Highway Performance Monitoring system HPMS) and is supplemented with data from 
the Illinois Department of Transportation (I ). The flexible model is used to predict the 
PSR for the types of pavements that the RlTS models developed to predict. 

5 - 

These models by Lee are also tested with the eleven test data points used to test the 
RlTS models. The model [15] with the adjustment factors also used the equations [ I 5  & 
161 to predict the age and the CESALs. Those equations are only used to predict age 
and CESALS for the first data point and then adjusted by the known change in time and 
ESALs for later data points. This procedure was adopted from the explanation of how 
the data was prepared in Lee et. aI.(l4). Since Lee used only the roughness indicators of 
PSR, the output in table 39 has to be converted into IRI using equation 13 that 
correlates IRI and PSR. (I8) The correlation between IRI and PSR is given by: 

PSR = 5 * (-0.0026*IRI) ti31 

This above formula gives an IRI value in terms of cm/km. The results of the conversion 
are shown in table 41. Table 42 gives the standard error for the results of this model 
using the actual data from the LTPP database. 

The error is higher than all the other models investigated so far. This fact is also 
pointed out in Lee et. aI.(l4) The R2 value of 0.52 from the report, means that it can only 
explain about half the variation in the data. In addition this model used all AC 
pavements and did not separate them into categories, GPS-1, GPS-2, GPS-6 ( table 1). 
Figure 17 shows the Lee model compared to the perfect fit (45 degree line). 
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Table 39. PSR Predicted for the eleven 
test points using the Lee 
Mode I (I4) 

Driginal 

Table 40. IHI converted from the 
PSR values in table 39 

With 
Adjustment 

Factor 

3.136669 

2.962869 

2.794196 

2.528377 

2.223608 

1.984971 

3.01 5301 

2.789777 

2.743146 

2.3791 17 

2.139788 

2.372318 

1034 1.793226 

1034 

- 
1034 

- 
1 O M  

- 
1034 

2.01 2469 

2.237906 

2.622393 

3.116419 

1034 3.553061 

34 

47 

47 

47 

47 

1034 

3101 

3101 

3101 

3101 

1.47421 3 

2.8921 11 

2.786978 

2.643436 

2.50001 6 

2.087751 

3.425283 

3.421431 

3.438719 

2.887399 

1034 4.69721 4 

PSR (predicted) STATE 
CODE ID 

Original With 
Adjustment 

Factor 

34 1.9450 'T 
1034 

2.1619 34 

34 

34 

34 

2.2753 

2.521 1 

34 I lo34 

2.7999 

34 1 1034 34 3.0008 

34 3.7624 

1.4547 47 

47 

47 

41 

1.5974 

1.7190 

1.7831 
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Table 41. Sum squared errors for the lee model (I4) 

AF 
Model 
output 

-r 3.5531 4.6972 

1.945 2.1619 2.521 1 2.7999 

Original 
model 0.1977 0.3858 0.7295 

D4 I D5 Test I D I  1 D2 Data D8 D9 D10 D3 D l  1 

2.665 output Model 1 I 7932 12.0125 2.2379 2.6224 3.1 164 2.1054 2.2479 2.45 1 

1.719 

! I I 

2.2753 1.4547 I .5974 1.783 

1.4022 1.4446 -c Actual 11.3486 11.3914 1.3838 1 .I462 1.0924 1.208 1.268 

I Sum Squared Errors Overall 

S.S.E. I 
~ 

1.4889 0.9201 1.3352 1.544 1.953 I l l  25.9918 

0.3557 0.5937 0.7948 model R F l  I 1  1.251 9 0.0952 0.255 0.260 0.265 I l l  13.2276 



5 

................................ ~. 
Original Lee Model 

3 Optimal fit (45 degrees) 

.......... ~ ....... 4 ........ .................... ............................. 

1 1.1 1.2 1.3 1.4 1.5 

Actual IRI 

Figure 17. Results of the Lee model (14) 

DEFAULT PAVEMENT MANAGEMENT SYSTEM MODELS (17) 

Using eleven test points the default model is also tested. The results are given in both 
table 42 and figure 18. The default model is only intended for use as a benchmark for 
deterioration. 
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Default Model's Predicted Points 
Actual Measured Predicted Points 

a a 
I- + 

0 2 4 6 8 10 12 14 16 

Age (Years) 

Figure 18. Predicted vs. actual roughness for the eleven random test data points using 
the default Pavement Management Model 
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CONCLUSIONS 

There is potential for using the RITS models in a pavement management system as 
default models for predicting future roadway roughness.The need for a further validation 
of these models using actual data, is apparent. There is a prospect that models of 
rehabilitated pavements can be improved and incorporated into the models developed 
here. 

Tables 43 & 44 and figure 19 summarize all the models from this section along with the 
RlTS models. Those tables show that the RlTS models outperform the other models by 
at least a factor of 10. Figure 19 shows the actual measured IRI values as to compare 
visually the accuracy of each model. 
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Table 43. Summarized test results of all the models 

Test Data 
~ 

RlTS NN Model 

RlTS LR Model 

FHWA Model 

Lee Model 

NJDOT HPMS 
Model 

Actual 

D7 0 2  03  04 D5 D6 

1.31 37 I 1.453 * 
1.42571.4339 
I 

1.425 1 1.457 

1.0731 11.1219 
I 

2.7999 13.0008 

1.9144 1 2.0844 
I 
1.4446 I 1.4722 

~ 

1.6587 1.0832 

1.727 1.098 

1.2523 1.051 8 

3.7624 1.4547 

2.4844 2.3525 

D9 D70 D71 

1.1631 1.109 1.24 

1.197 1.185 1.258 

1.105 1.1921 1.236 

1.5974 1.719 1.7831 

2.5466 2.8364 2.972 
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Figure 19. Plot of all pavement models' result 
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COMPARING RUTGERS MODELS WITH EXISTING PAVEMENT DETERIORATION 
MODELS 

NEW JERSEY PAVEMENT MANAGEMENT SYSTEM DATA 

More data is needed for further validation of the RlTS models. The New Jersey 
Department of Transportation's Pavement Management System provided this data. 
The acquired data enables us to test those models that were developed. We can also 
confirm the feasibility of using the RlTS models in this Pavement Management System. 
Roughness measurements for seventeen different roadway sections in New Jersey 
were requested and received. 

After reviewing the initial data from these sections, the SN and the traffic data is 
then requested. The NJDOT permitted researchers from Rutgers, under their 
supervision, access to the pavement Management System. The as-built portion of the 
Pavement Management Database contains the existing layer structures of the 
pavements. It shows the thickness, the material type, and the date the pavement is 
constructed. Unfortunately, there are several holes in the database. Large sections of 
roadway are missing. Many of the existing roads have unknown structures (i.e. 
historical data is missing) and many rehabilitation of pavements have not yet been 
entered into the database. 

The interstate highways have better potentials of providing the information for the RlTS 
models, but even the data for those roadways were not completely entered in the 
database. Some of the required traffic data is taken from the pavement design 
parameters also in the as-built database. The remaining traffic data is taken from traffic 
count data on the NJDOT webpage. (28) After reviewing the seventeen initial sites, three 
of the sites had sufficient data for the RlTS models. 

The three sites, for which appropriate data can be obtained, are considered relatively 
new construction. Still two sites are classified as being rehabilitated, while the third is a 
new construction. The RlTS models are applied using pavements with original 
pavement structures. None of the sites used for development of the RlTS Models 
contained rehabilitated structures. It is uncertain that how the RlTS model will behave 
with rehabilitated sites. The following sections present the performance of RlTS 
Models with data from those sites. 

INITIAL IRI OR IRI INDICES 

This section discusses the viability of employing a measured initial IRI input variable 
instead of the estimated or calculated IRI values.. 

This reasoning is explained by the fact that initial pavement conditions, such as 
temperature of the pavement during compaction, construction techniques and practices 
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control the initial roughness of a pavement and play a role in the overall life of a 
pave men t 

Employing RlTS models validates using a measured IRI over an estimated one. A 
Calculated IRI usually gives one IRI value for one site, whereas the measured IRI can 
give a different IRI values for 0.2 mile segment of a site. Table 45 shows the results of 
the deviation in new pavement roughness for sites where IRI is measured every 0.2 
miles. The 0.2 miles section is used since the NJPMS contains roughness data at this 
interval. It is shown that for the same pavement, constructed at the same time, using 
the same material, the initial roughness has a large variation. This comparison proves 
that the IRI indices used in the RlTS models are needed to account for this initial 
variation. 
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Table 45. Deviation of initial IRI in new pavements in New Jersey 

Directions Route Average Standard % Variation 
IRI deviation 

Mile Post 

Begin End 

3 5 8 

17 23.4 26.4 

31 34 39 

(m/km) 

E & W  1.226933 0.291 989 23.79831 

N & S  1.385406 0.265091 19.13457 

N 0.992396 0.13827 13.93293 

3.8 4.8 N & S  0.954082 0.316446 33.16758 

I 6 [ 9.6 [ E&W [ 0.964188 I 0.12017 1 12.46339 I 78 

I 80 I 7.6 1 12.8 I E&W 1 0.872591 1 0.125294 1 14.35888 

1 295 1 62.4 I 68 I N & S  I 0.918638 1 0.249926 1 27.20615 



RESULTS USING NJDOT PAVEMENT MANAGEMENT DATA 

The pavement management data was used to test the RlTS LR and the RlTS NN 
models. As stated earlier there are some data limitations on the sites used for testing 
these models. Fortunately three stretches of highway could be tested. The first section 
of highway is on Interstate 78 (1-78). The pavement at this site is a new asphalt 
pavement (GPS 2 classification). The other two sections are rehabilitated sections on 
Interstate 80 (1-80). One of these rehabilitated sections is a new asphalt concrete layer 
on an existing concrete pavement (GPS 7 classification) and the other is a new asphalt 
concrete layer on an existing asphalt concrete pavement (GPS 6 classification). 

The three stretches of highway have multiple sections that are tested by each model. 
The 1-78 site has 92 sections that are tested, the 1-80 asphalt on asphalt has 41 
sections that are tested and the 1-80 asphalt on concrete has 26 sections to use for 
testing the models. Each stretch of highway is a true test for each model because it 
tests multiple sections and not just a few points. This give reasons for significant 
deviations in table 46. 

Figure 20 shows the results from 1-78. Figure 21 shows the results of the models' 
prediction versus the actual roughness for the asphalt on asphalt pavement sections of 
1-80. Figure 22 shows the asphalt on concrete pavement's results. The results of these 
figures are shown as a ratio of IRI actual to that predicted by the individual models. The 
45" slope of the Actual IRI on these figures represent the measured IRI. This line is the 
target for all the models. In figures 20, 21 and 22, the closer the other model's points to 
that line, the better the model predicts the IRI. Table 46 summarizes the results of 
these three sites and it shows the standard error of each model. 
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Figure 20. Plot of Actual IRI Vs. Predicted IRI for 1-78 
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Table 46. Summary of RMSE (iri m/km) for actual IRI vs. predicted IRI 

0.5705 

Interstate 80 

0.4273 

Interstate 80 

RlTS LR Model 

Interstate 78 

0.6300 0.3732 0.2582 

I I (Asphalt on Concrete) I (Asphalt on Asphalt) I (New Pavement) 

1 RlTS NN Model 

I Default Model 

0.5325 0.3460 1 0.3265 

0.5199 



SUMMARY OF RESULTS 

The results of the tests in this section show that the RlTS models can be valuable tool 
for estimating pavement roughness. Table 46 gives the summary of the resulting 
standard errors. The predicted results for 1-78 are the best overall for all the sections 
tested. The RlTS LR model preformed the best for this section. The default model 
produced over 100% more standard error for this section then the RlTS LR Model, while 
the RlTS NN model produced only 26% more standard error. The two RlTS models are 
specifically developed for the type of pavement that makes up this section of 1-78. Thus 
the accuracy of these models are expected to be superior. 

The other two sections are not the same type of pavements that were used to develop 
the RlTS models. The rehabilitated pavement section on 1-80 with asphalt pavement 
overlay on an existing asphalt pavement still produced acceptable results using the 
RlTS Models when compared to the default model. Both the RlTS models give better 
standard error than the default model produced. The RlTS NN model produced the 
overall best results for this section and the RlTS LR model produced only 8% more 
error than the RlTS NN Model. The default model produced about 37% more error than 
the RlTS NN model. 

The section of 1-80 with asphalt pavement overlay on a Portland cement concrete 
pavement is the worst case scenario. Not only was concrete pavements not used to 
develop the RlTS models but also concrete has different failure mechanisms than 
asphalt. Also this type of rehabilitation is known to deteriorate faster than other types of 
rehabilitation. The RlTS models produce mixed results for this section. The RlTS NN 
model gives the best results. The RlTS LR model produced 18% more error than the 
RlTS NN model, while the default model only produced 7% more. Even though the 
percentage difference between the models is low, the standard error for the RlTS NN is 
54% higher than for the other section of 1-80. This means all the models are predicting 
this type of pavement less accurately. 

Figure 23 shows a graphical representation of the RMSE. The RlTS LR model 
predicted the roughness of pavement type that it is trained to predict. The further the 
pavement type deviates from the original type of pavement, the worse the results 
become. The RlTS NN on the other hand does not predict the original pavement as 
well as the linear regression model does, but is the best model for the other two 
sections. The NN results are referred to as surfaces and is not at all linear. This non- 
linear surface of results could be the reason it is able to predict the other sections better 
than the other models. 

As seen in figures 20 through 22, all the models under-estimate the pavement 
roughness. Some of the points predicted for the section of 1-78 are slightly over- 
estimated but overall they are under-estimated. A trend is also noted regarding this 
under-estimation; the further the pavement deviates from the new pavement, the more 
the models under-estimate the roughness. This shows that rehabilitated pavements 
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deteriorate faster than new pavements and asphalt paved over concrete pavements 
deteriorates faster than asphalt paved over asphalt pavements. 

Summary of RMSE 

W 
v) z 0.3 

0.1 

1-1 0 

Figure 23. Summary of Model RMSE 

98 



CONCLUSIONS AND FUTURE RESEARCH 

estimations: 

+ 
+ 
+ 
+ 
+ 

The RlTS Models performed better than any other pavement deterioration model 
studied in this report. The following shows the root mean square errors of model 

RlTS NN Model RMSE 0.0701 

RlTS LR Model RMSE 0.0879 

FHWA Model RMSE 0.2986 

Lee Model RMSE 1.0966 

Pavement Management Default model RMSE 0.9946 

In brief, this project has generated promising results in developing pavement 
deterioration prediction models using NN and linear regression. The models 
developed in this research are specifically developed for new pavements. The 
NN models have shown potential for predicting deterioration in other types of 
pavements as demonstrated by the results of earlier presented section. Further 
research with NN could possibly lead to the development of better models that 
could predict the deterioration of all types of pavements. 

Another possible area for future research would be to test how well the ESALs 
are estimated in New Jersey. This is one possible reason for the models 
underestimating the roughness. Because if the trucks using the roadways are 
heavier than estimated for the ESAL data the roughness would have been 
underestimated. If weigh-station data is used, or even weigh in motion 
equipment installed then ESALs can be estimated more accurately. A weigh- 
station is located near the site on 1-78 that is discussed in the previous section. 
A better understanding of the traffic that uses the pavement at a site can lead to 
a better model. 

Summary of the future research needs are: 

+ More data for more training 

+ More test data 

+ Evaluation using IRI form newly constructed pavement sites 

+ Testing and developing other pavement types 

99 



APPENDIX A 

The following are excepts from the IMS database field descriptions file. Only 
those fields that were used primary in this report are given below due to the large 
size of the original file. The original field descriptions is over 5000 pages when 
opened in MS Word. 

S H  RP-I D Table: ALL 

SHRP SECTION IDENTIFICATION. 

Data Type:VARCHAR2(4) Protocol: 

Units: Validation: 

QC Required:No QC Range: 

Source: Item Number: 

STATE-CODE Table: ALL 

CODE IDENTIFYING THE STATE OR PROVINCE. 

Data Type:NUMBER(2,0) Protocol: 

Units: Validation: STATE-PROVINCE 

QC Required:No QC Range: 

Source:INVENTORY Sheet item Number: 

1 

CONSTRUCTION-NO Table: INV-LAYER 

EVENT NUMBER INDICATING PAVEMENT LAYER CHANGES IN A SECTION. SET TO 1 
WHEN A SECTION IS CHOSEN FOR INCLUSION IN THE LTPP STUDY AND INCREMENTED 
AFTER EACH PAVEMENT LAYER CHANGE. IT IS ALL TABLES THAT RELATE TO A SECTION 
AT A SPECIFIC TIME. 

Data Type:NUMBER(2,0) Protocol: 

Units: Validation: 

QC Required:No QC Range: 

Source:INVENTORY Sheet Item Number: 

3 

CN-ASS IGN-DATE Table: EXPERIMENT-SECTION 
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A VALID DATE THAT INDICATES THE DATE THE CONSTRUCTION EVENT WAS ASSIGNED. 
FOR INVENTORY, IT WILL BE THE DATE THE SECTION IS CHOSEN FOR THE LTPP STUDIES. 
FOR ALL OTHER CONSTRUCTION EVENTS, IT WILL BE THE IDATE THE LAYER STRUCTURE 
CHANGED. 

Data Type:DATE Protocol: 

Units: Validation: 

QC Required:No QC Range: 

Source:NIMS/L05B Item Number: 

GPS-SPS Table: EXPERIMENT-SECTION 

A code indicating if the section is a GPS (G) or SPS (S) section. 

Data Type:CHAR( 1) Protocol: 

Units: Validation: 

QC Required:No QC Range: 

Source:NIMS/L05B Item Number: 

EXPERIMENT-NO Table: EXPERIMENT-SEC:TION 

The GPS or SPS experiment designation to which the section is assigned. 

Data Type:CHAR(3) Protocol: 

Units: Validation: 

QC Required:No QC Range: 

Source:NIMS/L05B Item Number: 

STATUS Table: EXPERIMENT-SECTION 

A code indicating the status (null is approved, 0 is out of study, and R is released) of a section for a 
given construction event. An experiment number (i.e., 6B, 78, etc.), indicates the section is planned 
for the specified experiment. 

Data Type:CHAR(2) Protocol: 

Units: Validation: 

QC Required:No QC Range: 

Source:NIMS/L05B Item Number: 
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ASSIGN-DATE Table: EXPERIMENT-SECTION 

Date representing when the section was chosen for the LTPP study or when the pavement was 
modified so that the section was assigned to the given experiment. 

Data Type:DATE Protocol: 

Units: Validation: 

QC Required:No QC Range: 

Source: N IMS/L05B Item Number: 

DEASS I GN-DATE Table: EXPERIMENT-SECTION 

Date representing when the section was removed from the LTPP study or when the pavement was 
modified so that the section was no longer assigned to the given experiment. 

Data Type: DATE Protocol: 

Units: Validation: 

QC Required:No QC Range: 

Source:NIMS/L05B Item Number: 

SEAS-ID Table: EXPERIMENT-SECTION 

State specific seasonal identification code 

Data Type:CHAR(l) Protocol: 

Units: Validation: 

QC Required:No QC Range: 

Source:NIMS/L05B Item Number: 

RECORD-STATU S Table: EXPERIMENT-SECTION 

A code indicating the general quality of the data as outlined based on the level of QC checks 
described in the Data User's Guide. 

Data Type:VARCHAR2(1) Protocol: 

Units: Validation: 

QC Required:No QC Range: 

Source:NIMS/L05B Item Number: 
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CONSTRUCTION-DATE Table: INV-AGE 

Date of latest (re)construction. The date is entered as month and year only. QC applies to GPS, 
see QC Manual for SPS. 

Data Type:DATE Protocol: 

Units: Validation: 

QC Required:Yes QC Range: 

Source:INVENTORY Sheet Item Number 

TRAFFIC-OPEN-DATE Table: INV-AGE 

Date when pavement was originally opened to traffic. The date is entered as a month and year 
only. QC applies to GPS, see QC Manual for SPS. 

Data Type:DATE Protocol: 

Units: Validation: 

QC Required:Yes QC Range: 

Source:INVENTORY Sheet Item Number: 

4 

PROF1 LE-DATE 

The date of the profilometer run. 

Table: MON-P ROF I LE-DATA 

Data Type:DATE Protocol: 

Units: Validation: 

QC Required:No QC Range: 

Source:Profilometer Item Number: 

Data File 

PROFILE-TIME Table: MON-PROFILE-DATA 

The time of the profilometer run. 

Data Type:CHAR(8) Protocol: 

Units: Validation: 

QC Required:No QC Range: 

Source:Profilometer Item Number: 

Data File 
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RUN-NUMBER Table: MON-PROFILE-DATA 

A number indicating the position of the run in the series. 

Data Type:CHAR(l) Protocol: 

Units: Validation: 

QC Required:No QC Range: 

Source:Profilometer Item Number: 

I RI-LEFT-W H EEL-PATH 

IRI value for left wheel path. 

Table: MON-PROFILE-MASTER 

Data Type:NUMBER(5,3) Protocol: 

Units:m/km Validation: 

QC Required:Yes QC Range: 0.4 - 4.8 

Source:Profilometer Item Number: 

Data File 

I RI-RI GHT-W HEEL-PATH Table: MON-PROFILE-MASTER 

IRI value for right wheel path. 

Data Type:NUMBER(5,3) Protocol: 

Units:m/km Validation: 

QC Required:Yes QC Range: 0.4 - 4.8 

Source:Profilometer Item Number: 

Data File 

I RI-AVERAG E Table: MON-PROFILE-MASTER 

Average IRI value. 

Data Type:NUMBER(5,3) Protocol: 

Units:m/km Validation: 

QC Required:Yes QC Range: 0.4 - 4.8 

Source:Profilometer Item Number: 
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Data File 

M 0 D I F I CAT1 0 N-N 0 Table: TRF-EST-ANL-TC)T-LTPP- 

A sequential number indicating the number of modifications made to the 
estimates. 

Data Type:NUMBER(2,0) Protocol: 

Units: Validation: 

QC Required:No QC Range: 

Source: Item Number: 

BEGIN-DATE 

First day of the year to which estimate applies. 

Table: TRF-EST-AN L-TOT-L TP P- 

Data Type:DATE Protocol: 

Units: Validation: 

QC Required:No QC Range: 

Source: Item Number: 

END-DATE Table: TRF-EST-ANL-TOT-LTPP- 

Last day of year to which estimate applies 

Data Type: DATE Protocol: 

Units: Validation: 

QC Required:No QC Range: 

Source: Item Number: 

KESAL-18K-SAMPLE-SIZE Table: TRF-EST-ANL,-TOT-LTPP- 

The weighted sample size used for computing the average annual traffic load. 

Data Type:NUMBER(5,0) Protocol: 

Units: Validation: 

QC Required:No QC Range: 
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APPENDIX B 

This is the first data base developed from the GPS 2 sites in the LTPP. 
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This is the database that contains the IRI indicators and delta values. This is a variation 
of the above database. 

34 
34 

1.2432 1.0082 0.0807 
1.3074 0.8959 0.0768 
1.3558 1.4329 0.1290 
1.3928 0.9178 0.0803 
1.4482 2.8904 0.2624 
0.7772 0.4027 0.5000 
0.8622 1.2301 1.6403 

1638 1902.00 0.9446 0 7189 5.30 0.8798 0.9616 1.7402 
1638 2197.00 0.9638 0 8833 5.30 0.9446 0.8082 1.6442 

1.3385 0.8612 0.9808 1.4604 
1.5005 0.8592 0.9863 1.6201 
1.7704 5.17 0.9058 1.4630 2.6989 
2.1127 5.17 0.9166 I .5151 3.4229 
2.2336 5.17 1.0140 0.5178 1.2085 

5.68 0.8670 
5.68 

24 2401 1197.00 0.8714 0.1891 
24 2401 1501.00 0.8670 0.2325 
24 2401 1827.00 0.8602 0.2792 
24 2401 2184.00 0.9022 0.3310 

0.9022 0.9836 0.5260 
2.7430 0.7671 0.3307 
2.7874 0.7836 0.2863 
2.9176 0.9753 0.4666 
2.8738 0.9973 0.3975 
2.9016 1.0384 0.2665 
1 ,3454 0.9644 1.7402 
1.3486 0.8055 1.6442 

1.9079 1.4022 
2.281 7 4.50 1.4446 

0.9638 
0.9348 

34 1638 2484.00 0.9348 1.0583 
34 1638 2840.00 0.9414 1.3174 
34 1638 3204.00 1.0178 1.8774 5.30 0.9414 

1.0178 1.0384 2.4974 
1.0594 2.4630 3.9702 
1.3246 0.7918 9.8569 
1.4757 0.8630 13.1905 
1.5100 1.2247 2.9104 
1.8066 1.1836 3.1831 
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I 89 I 2011 [ 6254.00 I 1.1658 I 0.9391 I 6.60 I 1.1692 I 0.9836 I 0.7311 
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These are the additional data points added later to the above database. 
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APPENDIX C 

Sub-Model 7b 
Figure A-I  Matlab NN Pronrani 

P = { [4.13;0.5737; 6.61 [4.40;0.6356; 6.61 [4.79;0.7013; 6.61 [5.20;0.7481; 6.61 [5.90;0.8660; 6.61 
[6.25;0.9391;6.61 [1.16;0.2240;41 [1.45;1.4784;41 [1.85;2.2794;41 [2.24;2.3361;41 [2.58;2.4104;41 
[2.93;2.4933;4] [3.29;2.5678;41 [4.01;2.7355;4] [3.28;1.7245;6.781 [3.58;2.0168;6.78] [3.98;2.2531;6.78] 

[3.79;0.3940;3.231 [4.49;0.4869;3.231 [5.17;0.5319;3.231 [5.58;0.6166;3.231 [3.79;0.3940;4.36] 
[4.19;0.4352;4.361 [4.62;0.4735;4.361 [5.27;0.5240;4.361 [5.58;0.6161;4.361 [2.78;0.3765;4.791 
[3.48;0.5721;4.791 [4.17;0.9472;4.79] [4.82;2.4749;4.791 [2.44;0.5991;4.231 [3.18;0.7793;4.23] 
[3.83;1.0104;4.231 [4.63;1.3761;4.231 [3.31;0.3768;3.41 [3.60;0.4280;3.4] [3.76;0.4579;3.41 
[4.36;0.5370; 3.41 [4.79;0.5534;3.41 [5.08;0.5661; 3.41 [5.45;0.5597;3.41 [5.76;0.6057;3.41 

[4.38;2.4959; 6.781 [4.71;2.7569; 6.781 [5.06; 3.0695; 6.781 [5.42;:,.3602; 6.781 [ 6.14;3.9927;6.78] 

[1.55;0.5449;5.31 [1.90;0.7189;5.3] [2.20;0.8833;5.3] [2.48;1.05783;5.3] [2.84;1.3174;5.3] 
[3.20;1.8774;5.31 [3.58;2.1272;5.3] [4.48;2.5242;5.3] [6.06;0.75746;4.9] [6.34;0.7877;4.91 
[6.62;0.8163;4.91 [6.98;0.8629;4.91 [7.34;0.9027;4.91 [7.72;0.9293;4.93 [0.89;0.1490;5.681 
[1.20;0.1891;5.681 [1.50;0.2325;5.68] [1.83;0.2792;5.68] [2.18;C1.3310;5.681 [2.54;0.3836;5.68] 
[1.50;0.9784;5.171 [1.65;1.0284;5.17] [2.10;1.1925;5.171 [2.46;1.3385;5.171 [2.82;1.5005;5.171 
[3.35;1.7704;5.17] [3.90;2.1127;5.171 [4.09;2.2336;5.17] [13.90;0.1847;3.521 [14.26;0.1927;3.52] 
[14.59;0.2004;3.521 [15.11;0.2133;3.52] [ 15.45;0.2214;3.52] [16.50;0.2476;3.521 [3.56;11.8106;7.22] 
[4.10;13.7340;7.221 [4.27;14.3896;7.22] [4.66;15.1872;7.22] [5.15;15.3971;7.221}; 
T = {1.1358 1.1320 1.1610 1.1810 1.1692 1.1658 1.2512 1.3994 1.4988 1.5456 1.5818 1.5484 1.6106 1.8740 
1.4974 1.5622 1.4848 1.3520 1.4396 1.5944 1.6640 2.1566 1.5066 1.5792 1.8448 1.9234 1.0632 1.1462 1.0924 
1.2086 1.2680 0.7061 0.7281 0.7502 0.9032 1.2090 1.3414 1.3632 1.4520 0.9482 0.9694 0.9466 0.9892 1.0618 
1.0782 1.0926 1.1942 0.8798 0.9446 0.9638 0.9348 0.9414 1.0178 1.0594 1.0622 2.7430 2.7874 2.9176 2.8738 
2.9016 3.1426 0.8300 0.8714 0.8670 0.8602 0.9022 0.9664 0.7772 C.8622 0.8612 0.8592 0.9058 0.9166 1.0140 
0.9846 1.2432 1.3074 1.3558 1.3928 1.4482 2.2294 1.8198 2.2590 :!.4399 2.7530 2.79331; 
net = newff(L0.5 17;O 20;2 71,[3 1 l],{'logsig' 'tansig' 'purelin')); 
net.trainParam.goa1 = le-100; 
net.trainParam.epochs = 500; 
net.trainParam.mu = .01; 
net.trainParam.mu-inc = 10; 
net.trainParam.mudec = .5; 
net.trainParam.mu-max = le90; 
net = train (net, P, T) ; 

Table A-I  Weights for the input layer 
I Weight's I Weight's Origin(i) 

Target 

3 
I 1 I 0.0044 I -0.337 1 0.4178 

I 2 I 0.164 I 0.9666 I -5.5199 
I 3 I 0.9303 I -1.4499 I 8.4575 

Table A-2 Biases for all the 
I Laver 1 Node I I Node2 
I 1 1 -0.9570 I 28.2244 I -47.8449 I 
I 2 I -24.2128 I I 1 

3 I 1.9188 I 

Table A-3 Weights for the hidden layer 
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Weight’s 
Target 
Node 

Weight’s Origin(i) 

Weight’s Weight’s Origin(i) 
Target Node 

I I 1 
I 1 I 1.0257 
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Sub-Model 26 

Figure A-2 Matlab NN Program 

4 

P = { [ 1 . 1 3 5 8 ; 4 . 4 0 3 0 ; 6 . 6 0 0 0 ; 0 . 7 4 7 9 ; 0 . 6 1 9 4 ]  [1.1320;4.7900;6.6000;1.0603;0.6566] 
[1.1610;5.2010;6.6000;1.1260;0.4683] [1.1810;5.8950;6.6000;1.9014;1.1~'95] [1 .1692;6.2540;6.6000;0.9836;0.73111 
[1.2512;1.4540;4.0000;0.8192;12.54381 [1.3994;1.8470;4.0000;1.0767;8.00981 
[ 1 . 4 5 8 8 ; 2 . 2 4 3 0 ; 4 . 0 0 0 0 ; 1 . 0 8 4 9 ; 0 . 5 6 7 2 1  [ 1 .5456 ;2 .5760 ;4 .0000 ;0 .9123 ;0 .7L31 ]  [1.5818;2.9300;4.0000;0.9699;0.82901 
[1 .5484 ;3 .2910 ;4 .0000 ;0 .9890 ;0 .7449 ]  [1.6106;4.0120;4.0000;1.9753;1.6774] [1.4974;3.5820;6.7800;0.8164;2.92361 
[ 1 . 5 6 2 2 ; 3 . 9 7 5 0 ; 6 . 7 8 0 0 ; 1 . 0 7 6 7 ; 2 . 3 6 2 7 ]  [1.4848;4.3750;6.7800;1.0959;2.4~:83] [1 .3520;4.7090;6.7800;0.9151;2.61001 
[1.4396;5.0580;6.7800;0.9562;3.1260] [1.5944;5.4180;6.7800;0.9863;2.9C~72] [1.6640;6.1400;6.7800;1.9781;6.32431 
[ 1 . 5 0 6 6 ; 4 . 4 9 3 0 ; 3 . 2 3 0 0 ; 1 . 9 3 1 5 ; 0 . 9 2 9 2 ]  [ 1 . 5 7 9 2 ; 5 . 1 6 9 0 ; 3 . 2 3 0 0 ; 1 . 8 5 2 1 ; 0 . 4 4 9 6 ]  [ 1 . 8 4 4 8 ; 5 . 5 7 8 0 ; 3 . 2 3 0 0 ; 1 . 1 2 0 5 ; 0 . 8 4 7 3 1  
[ 0 . 7 0 6 1 ; 3 . 4 8 4 0 ; 4 . 7 9 0 0 ; 1 . 9 3 9 7 ; 1 . 9 5 6 1 ]  [0.7281;4.1650;4.7900;1.8658;3.7~~l2] 
[0.7502;4.8150;4.7900;1.7808;15.27681 [1.2090;3.1790;4.2300;2.0192;1.€0271 
[ 1 . 3 4 1 4 ; 3 . 8 3 3 0 ; 4 . 2 3 0 0 ; 1 . 7 9 1 8 ; 2 . 3 1 0 4 ]  [ 1 . 3 6 3 2 ; 4 . 6 2 7 0 ; 4 . 2 3 0 0 ; 2 . 1 7 5 3 ; 3 . 6 5 7 3 ]  [0 .9482;3 .5960;3 .4000;0 .7863;0 .5111]  
[ 0 . 5 6 5 4 ; 3 . 7 6 4 0 ; 3 . 4 0 0 0 ; 0 . 4 6 0 3 ; 0 . 2 9 9 2 ]  [ 0 . 9 4 6 6 ; 4 . 3 5 8 0 ; 3 . 4 0 0 0 ; 1 . 6 2 7 4 ; 0 . 7 9 1 7 ]  [0 .9892;4 .7910;3 .4000;1 .1863;0 .16331 
[ 1 . 0 6 1 8 ; 5 . 0 8 0 0 ; 3 . 4 0 0 0 ; 0 . 7 9 1 8 ; 0 . 1 2 7 2 ]  [1.0782;5.4520;3.4000;1.0192;0.1~60] [1 .0926;5 .7600;3 .4000;0 .8438;0 .26051 
[ 1 . 3 2 4 6 ; 4 . 4 2 1 0 ; 4 . 6 0 0 0 ; 0 . 7 9 1 8 ; 9 . 8 5 6 9 ]  [ 1 . 4 7 5 7 ; 4 . 7 3 6 0 ; 4 . 6 0 0 0 ; 0 . 8 6 3 0 ; 1 3 . 1 9 0 5 ]  
[ 1 . 5 1 0 0 ; 5 . 1 8 3 0 ; 4 . 6 0 0 0 ; 1 . 2 2 4 7 ; 2 . 9 1 0 4 ]  [1.8066;5.6150;4.6000;1.1836;3.1~31] [2.1176;5.9020;4.6000;0.7863;4.20931 
[2.6080;6.2740;4.6000;1.0192;3.0588] [0 .8798;1.9020;5.3000;0.9616;1.7402]  [0 .9446;2.1970;5.3000;0.8082;1.64421 
[ 0 . 9 6 3 8 ; 2 . 4 8 4 0 ; 5 . 3 0 0 0 ; 0 . 7 8 6 3 ; 1 . 7 4 9 3 ]  [ 0 . 9 3 4 8 ; 2 . 8 4 0 0 ; 5 . 3 0 0 0 ; 0 . 9 7 5 3 ; 2 . 5 5 1 6 ]  [0 .9414;3.2040;5.3000;0.9973;5.60001 
[ 1 . 0 1 7 8 ; 3 . 5 8 3 0 ; 5 . 3 0 0 0 ; 1 . 0 3 8 4 ; 2 . 4 9 7 4 1  [ 1 . 0 5 9 4 ; 4 . 4 8 2 0 ; 5 . 3 0 0 0 ; 2 . 4 6 3 0 ; 3 . 9 7 0 2 ]  [ 2 . 7 4 3 0 ; 6 . 3 3 7 0 ; 4 . 9 0 0 0 ; 0 . 7 6 7 1 ; 0 . 3 3 0 7 1  
[2.7874;6.6230;4.9000;0.7836;0.28631 [2.9176;6.9790;4.9000;0.9753;0.4€66] [2 .8738;7 .3430;4 .9000;0 .9973;0 .39751 
[ 2 . 5 0 1 6 ; 7 . 7 2 2 0 ; 4 . 9 0 0 0 ; 1 . 0 3 8 4 ; 0 . 2 6 6 5 ]  [ 0 .8300 ;1 .1970 ;5 .6800 ;0 .8493 ;0 .4009 ]  [0 .8714;1 .5010;5 .6800;0 .8329;0 .43381 
[0.8670;1.8270;5.6800;0.8932;0.46751 [0.8602;2.1840;5.6800;0.9781;0.51821 [0.9022;2.5430;5.6800;0.9836;0.52601 
[0.7772;1.6500;5.1700;0.4027;0.5000] [ 0 . 8 6 2 2 ; 2 . 0 9 9 0 ; 5 . 1 7 0 0 ; 1 . 2 3 0 1 ; 1 . 6 4 0 3 ]  [0 .8612;2.4570;5.1700;0.9808;1.46041 
[0.8552;2.8170;5.1700;0.9863;1.6201] [ 0 . 9 0 5 8 ; 3 . 3 5 1 0 ; 5 . 1 7 0 0 ; 1 . 4 6 3 0 ; 2 . 6 9 8 9 ]  [0.9166;3.9040;5.1700;1.5151;3.42291 
[ 1 . 0 1 4 0 ; 4 . 0 5 3 0 ; 5 . 1 7 0 0 ; 0 . 5 1 7 8 ; 1 . 2 0 8 5 ]  [ 1 . 2 4 3 2 ; 1 4 . 2 6 3 0 ; 3 . 5 2 0 0 ; 1 . 0 0 8 2 ; 0 . 0 8 0 7 1  
[ 1 . 3 0 7 4 ; 1 4 . 5 5 0 0 ; 3 . 5 2 0 0 ; 0 . 8 9 5 9 ; 0 . 0 7 6 8 ]  [ 1 . 3 5 5 8 ; 1 5 . 1 1 3 0 ; 3 . 5 2 0 0 ; 1 . 4 3 2 9 ; 0 . 1 2 9 0 1  
[ 1 . 3 9 2 8 ; 1 5 . 4 4 8 0 ; 3 . 5 2 0 0 ; 0 . 9 1 7 8 ; 0 . 0 8 0 3 ]  [1.4482;16.5030;3.5200;2.8904;0.26241 
[1.8198;4.1010;7.2200;1.4712;19.2334] [ 2 . 2 5 9 0 ; 4 . 2 7 1 0 ; 7 . 2 2 0 0 ; 0 . 4 6 5 8 ; 6 . 5 5 6 5 1  
[ 2 . 4 3 9 5 ; 4 . 6 5 8 0 ; 7 . 2 2 0 0 ; 1 . 0 6 0 3 ; 7 . 9 7 6 0 ]  [ 2 . 7 5 3 0 ; 5 . 1 4 5 0 ; 7 . 2 2 0 0 ; 1 . 3 3 4 2 ; 2 . 0 9 8 9 ] ) ;  
T = (1.1320 1.1610 1.1810 1.1692 1.1658 1.3994 1.4988 1.5456 1.5818 1.5484 1.6106 1.8740 1.5622 1.4848 1.3520 
1.4396 1.5944 1.6640 2.1566 1.5792 1.8448 1.9234 0.7281 0.7502 0.9032 1.3414 1.3632 1.4520 0.9694 0.9466 
0.9892 1.0618 1.0782 1.0926 1.1942 1.4757 1.5100 1.8066 2.1176 2.6080 2.8008 0.9446 0.9638 0.9348 0.9414 
1.0178 1.0594 1.0622 2.7874 2.5176 2.8738 2.9016 3.1426 0.8714 0.8670 0.8602 0.9022 0.9664 0.8622 0.8612 
0.8592 0.9058 0.9166 1.0140 0.9846 1.3074 1.3558 1.3928 1.4482 2.2294 2.2590 2.4399 2.7530 2.7933); 
net = newff([O 5;O 18;2 7;O 3;O.l 20],[5 3 ll,{'tansig' 'logsig' 'purelin')); 
net.trainParam.goa1 = le-100; 
net.trainParam.epochs = 500; 
net.trainParam.mu = .01; 
net.trainParam.mu-inc = 10; 
net.trainParam.mu-dec = .5; 
net.trainParam.mumax = le90; 
net = train(net,P,T); 

1.1258 -2.3302 1.0154 -5.3858 -2.1901 

Table A-5 Weights for the input layer 
Weight's Origin(i) 

5 4.8948 

2 -5.9494 0.099 1.7012 -0.0747 0.1173 
2.8307 0.0522 -0.7862 -0.2387 -0.1 166 

-0.5412 1.2339 -2.4529 -0.9398 
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Table A-6 Biases for all the Layers 
1 Layer I Node I I Node 2 I Node3 I Node4 I Node5 

I 
2 
3 

2.262 1.472 -2.26 -0.521 
5.9256 0.7037 3.5716 
1.5698 - 

Weight’s 
Target 
Node 

ti) 
1 
2 
3 

Table A-8 Weights for the output la er 
1 Weight’s 1 Weight’s Origin(i)-[ 

Weight’s Origin(i) 

1 2 3 4 5 
-3.1957 2.3895 7.7277 5.6957 0.9123 
-3.6448 -0.5572 2.5455 0.9412 -0.0447 
5.1541 -4.3272 0.2448 0.307 0.8164 

ti. 
1 
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Sub-Model 3b 
Figure A-3 Matlab NN Program 

Layer 

2 -33.191 7 

P = ~ [ 1 . 1 3 5 8 ; 4 . 4 0 3 0 ; 6 . 6 0 0 0 ; 0 . 7 4 7 9 1  [1.1320;4.7900;6.6000;1.06031 [1.1610;5.2010;6.6000;1.1260] 
[ 1 . 1 8 1 0 ; 5 . 8 9 5 0 ; 6 . 6 0 0 0 ; 1 . 9 0 1 4 1  [ 1 . 1 6 9 2 ; 6 . 2 5 4 0 ; 6 . 6 0 0 0 ; 0 . 9 8 3 6 ]  [1 .2512;1 .4540;4 .0000;0 .8192]  
[ 1 . 3 9 9 4 ; 1 . 8 4 7 0 ; 4 . 0 0 0 0 ; 1 . 0 7 6 7 1  [ 1 . 4 9 8 8 ; 2 . 2 4 3 0 ; 4 . 0 0 0 0 ; 1 . 0 8 4 9 ]  [ 1 . 5 4 5 6 ; 2 . 5 7 6 0 ; 4 . 0 0 0 0 ; 0 . 9 1 2 3 ]  
[1 .5818;2.9300;4.0000;0.96991 [1 .5484;3.2910;4.0000;0.9890]  [1 .6106;4.0120;4.0000;1.9753]  
[ 1 . 4 9 7 4 ; 3 . 5 8 2 0 ; 6 . 7 8 0 0 ; 0 . 8 1 6 4 ]  [ 1 . 5 6 2 2 ; 3 . 9 7 5 0 ; 6 . 7 8 0 0 ; 1 . 0 7 6 7 ]  [ 1 . 4 8 4 8 ; 4 . 3 7 5 0 ; 6 . 7 8 0 0 ; 1 . 0 9 5 9 ]  
[ 1 . 3 5 2 0 ; 4 . 7 0 9 0 ; 6 . 7 8 0 0 ; 0 . 9 1 5 1 1  [ 1 . 4 3 9 6 ; 5 . 0 5 8 0 ; 6 . 7 8 0 0 ; 0 . 9 5 6 2 1  [1 .5944;5.4180;6.7800;0.9863]  
~ 1 . 6 6 4 0 ; 6 . 1 4 0 0 ; 6 . 7 8 0 0 ; 1 . 9 7 8 1 1  [ 1 . 5 0 6 6 ; 4 . 4 9 3 0 ; 3 . 2 3 0 0 ; 1 . 9 3 1 5 ]  [1 .5792;5.1690;3.2300;1.8521]  
[ 1 . 8 4 4 8 ; 5 . 5 7 8 0 ; 3 . 2 3 0 0 ; 1 . 1 2 0 5 ]  [ 0 . 7 0 6 1 ; 3 . 4 8 4 0 ; 4 . 7 9 0 0 ; 1 . 9 3 9 7 ]  [0 .7281;4.1650;4.7900;1.8658]  
[ 0 . 7 5 0 2 ; 4 . 8 1 5 0 ; 4 . 7 9 0 0 ; 1 . 7 8 0 8 ]  [ 1 . 2 0 9 0 ; 3 . 1 7 9 0 ; 4 . 2 3 0 0 ; 2 . 0 1 9 2 ]  [1 .3414;3 .8330;4 .2300;1 .7918]  
[ 1 . 3 6 3 2 ; 4 . 6 2 7 0 ; 4 . 2 3 0 0 ; 2 . 1 7 5 3 1  [ 0 . 9 4 8 2 ; 3 . 5 9 6 0 ; 3 . 4 0 0 0 ; 0 . 7 8 6 3 ]  [0 .9694;3.7640;3.4000;0.46031 
[ 0 . 9 4 6 6 ; 4 . 3 5 8 0 ; 3 . 4 0 0 0 ; 1 . 6 2 7 4 1  [ 0 . 9 8 9 2 ; 4 . 7 9 1 0 ; 3 . 4 0 0 0 ; 1 . 1 8 6 3 ]  [1 .0618;5.0800;3.4000;0.79181 
[ 1 . 0 7 8 2 ; 5 . 4 5 2 0 ; 3 . 4 0 0 0 ; 1 . 0 1 9 2 ]  [ 1 . 0 9 2 6 ; 5 . 7 6 0 0 ; 3 . 4 0 0 0 ; 0 . 8 4 3 8 ]  [1.3246;4.4210;4.6000;0.7918] 
[ 1 . 4 7 5 7 ; 4 . 7 3 6 0 ; 4 . 6 0 0 0 ; 0 . 8 6 3 0 ]  [ 1 . 5 1 0 0 ; 5 . 1 8 3 0 ; 4 . 6 0 0 0 ; 1 . 2 2 4 7 ]  [1.8066;5.6150;4.6000;1.18361 
[ 2 . 1 1 7 6 ; 5 . 9 0 2 0 ; 4 . 6 0 0 0 ; 0 . 7 8 6 3 ]  [ 2 .6080 ;6 .2740 ;4 .6000 ;1 .0192 ]  [0 .8738;1.9020;5.3000;0.96161 
[ 0 . 9 4 4 6 ; 2 . 1 9 7 0 ; 5 . 3 0 0 0 ; 0 . 8 0 8 2 1  [ 0 . 9 6 3 8 ; 2 . 4 8 4 0 ; 5 . 3 0 0 0 ; 0 . 7 8 6 3 ]  [0 .9318;2 .8400;5 .3000;0 .97531 
[ 0 . 9 4 1 4 ; 3 . 2 0 4 0 ; 5 . 3 0 0 0 ; 0 . 9 9 7 3 1  [ 1 . 0 1 7 8 ; 3 . 5 8 3 0 ; 5 . 3 0 0 0 ; 1 . 0 3 8 4 ]  [1 .0534;4.4820;5.3000;2.46301 
[ 2 . 7 4 3 0 ; 6 . 3 3 7 0 ; 4 . 9 0 0 0 ; 0 . 7 6 7 1 ]  [ 2 . 7 8 7 4 ; 6 . 6 2 3 0 ; 4 . 9 0 0 0 ; 0 . 7 8 3 6 ]  [2.9176;6.9790;4.9000;0.9753] 
[ 2 . 8 7 3 8 ; 7 . 3 4 3 0 ; 4 . 9 0 0 0 ; 0 . 9 9 7 3 ]  [ 2 . 9 0 1 6 ; 7 . 7 2 2 0 ; 4 . 9 0 0 0 ; 1 . 0 3 8 4 ]  [0.83S0;1.1970;5.6800;0.8493] 
[ 0 . 8 7 1 4 ; 1 . 5 0 1 0 ; 5 . 6 8 0 0 ; 0 . 8 3 2 9 ]  [0.8670;1.8270;5.6800;0.8932] [0.86S2;2.1840;5.6800;0.97811 
[ 0 . 9 0 2 2 ; 2 . 5 4 3 0 ; 5 . 6 8 0 0 ; 0 . 9 8 3 6 1  [ 0 . 7 7 7 2 ; 1 . 6 5 0 0 ; 5 . 1 7 0 0 ; 0 . 4 0 2 7 ]  [0.8622;2.0990;5.1700;1.23011 
[0.8612;2.4570;5.1700;0.98081 [0 .8592;2.8170;5.1700;0.9863]  [0 .9058;3 .3510;5 .1700;1 .46301 
[ 0 . 9 1 6 6 ; 3 . 9 0 4 0 ; 5 . 1 7 0 0 ; 1 . 5 1 5 1 ]  [1.0140;4.0930;5.1700;0.5178] [1 .2432;14.2630;3.5200;1.00821 
[ 1 . 3 0 7 4 ; 1 4 . 5 9 0 0 ; 3 . 5 2 0 0 ; 0 . 8 9 5 9 ]  [1 .3558;15 .1130;3 .5200;1 .43291 [1 .3928;15.4480;3.5200;0.91781 
[ 1 . 4 4 8 2 ; 1 6 . 5 0 3 0 ; 3 . 5 2 0 0 ; 2 . 8 9 0 4 ]  [ l . 8 l 9 8 ; 4 . l O l O ; 7 . 2 2 0 0 ; 1 . 4 7 1 2 ]  [ 2 . 2 5 9 0 ; 4 . 2 7 1 0 ; 7 . 2 2 0 0 ; 0 . 4 6 5 8 1  
[ 2 . 4 3 9 9 ; 4 . 6 5 8 0 ; 7 . 2 2 0 0 ; 1 . 0 6 0 3 ]  [ 2 . 7 5 3 0 ; 5 . 1 4 5 0 ; 7 . 2 2 0 0 ; 1 . 3 3 4 2 ] ) ;  

T = ( 1 . 1 3 2 0  1 . 1 6 1 0  1 .1810 1 . 1 6 9 2  1.1658 1 . 3 9 9 4  1 .4988  1 . 5 4 5 6  1.5818 1 . 5 4 8 4  1 . 6 1 0 6  1 . 8 7 4 0  1 . 5 6 2 2  1 . 4 8 4 8  
1 . 3 5 2 0  1 . 4 3 9 6  1 . 5 9 4 4  1 . 6 6 4 0  2 . 1 5 6 6  1 . 5 7 9 2  1 . 8 4 4 8  1 . 9 2 3 4  0 . 7 2 8 1  0 .7502  0 .9032  1 .3414  1 . 3 6 3 2  1 . 4 5 2 0  0 .9694  
0 . 9 4 6 6  0 . 9 8 9 2  1 . 0 6 1 8  1 . 0 7 8 2  1 . 0 9 2 6  1 . 1 9 4 2  1 . 4 7 5 7  1 . 5 1 0 0  1 . 8 0 6 6  2 . 1 1 7 6  2 . 6 0 8 0  2 .8008  0 . 9 4 4 6  0 .9638  0 .9348  
0 . 9 4 1 4  1 . 0 1 7 8  1 . 0 5 9 4  1 . 0 6 2 2  2 .7874  2 . 9 1 7 6  2 .8738  2 . 9 0 1 6  3 . 1 4 2 6  0 .3714  0 . 8 6 7 0  0 . 8 6 0 2  0 .9022  0 .9664  0 .8622  
0 . 8 6 1 2  0 .8592  0 . 9 0 5 8  0 . 9 1 6 6  1 . 0 1 4 0  0 . 9 8 4 6  1 . 3 0 7 4  1 . 3 5 5 8  1 . 3 9 2 8  1 . 4 4 8 2  2 . 2 2 9 4  2 . 2 5 9 0  2 . 4 3 9 9  2 . 7 5 3 0  
2 . 7 9 3 3 ) ;  
net = newff([O 5;O 1 8 ; 2  7;O 3 ] , [ 4  1 ll,{'logsig' 'tansig' 'purelin'}); 
net.trainParam.goa1 = le-100; 
net.trainParam.epochs = 500 ;  
net.trainParam.mu = .01; 
net.trainParam.mu-inc = 10; 
net.trainParam.mu-dec = . 5 ;  
net.trainParam.mu-max = le90; 
net = train (net, P, T) ; 

Node 3 Node 4 

Table A-9 Weights for the input layer 
I Weight's I Weight's Originfi) 

5.4544 0.1439 0.4710 1.271 1 

- I 3 I 64.9048 I I I I - - 



Weight’s 
Target 
Node 
0) 
1 

Weight’s Target Weight’s 
Origin (0 

Weight’s Origin(i) 

1 2 3 4 
34.2096 5.6532 35.6650 0.9821 

1 -64.1458 
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Sub-Model 4b 

Figure A-4 Matlab NN Program 

P = ( [ 1 . 1 3 5 8 ;  0 .7479 ;  6 . 6 0 0 0 ; 0 . 0 6 1 9 ;  4 .40301 [ 1 . 1 3 5 8 ;  1 .8082 ;  6 .6000 ;0 .1276 ;4 .79001  
[ 1 . 1 3 5 8 ; 2 . 9 3 4 2 ; 6 . 6 0 0 0 ; 0 . 1 7 4 4 ; 5 . 2 0 1 0 1  [1 .1358;4.8356;6.6000;0.2924;5.89501 
[ 1 . 1 3 5 8 ; 5 . 8 1 9 2 ; 6 . 6 0 0 0 ; 0 . 3 6 5 5 ; 6 . 2 5 4 0 1  
[1.2512;1.8959;4.0000;2.0554;1.8470~ 
[ 1 . 2 5 1 2 ; 3 . 8 9 3 2 ; 4 . 0 0 0 0 ; 2 . 1 8 6 4 ; 2 . 5 7 6 0 1  
[ 1 . 2 5 1 2 ; 5 . 8 5 2 1 ; 4 . 0 0 0 0 ; 2 . 3 4 3 8 ; 3 . 2 9 1 0 1  
[1 .4974;0.8164;6.7800;0.2924;3.58201 
[ 1 . 4 9 7 4 ; 2 . 9 8 9 0 ; 6 . 7 8 0 0 ; 0 . 7 7 1 5 ; 4 . 3 7 5 0 1  
[l. 4974; 4 .8603 ;  6 .7800 ;  1 .3451 ;5 .05801  
[1.4974;7.8247;6.7800;2.2682;6.14001 

1.2512;0.8192;4.0000;1.2544;1.45401 
1.2512;2.9808;4.0000;2.1121;2.24301 
1.2512;4.8630;4.0000;2.2693;2.93001 
1.2512;7.8274;4.0000;2.5115;4.0120] 
1.4974;1.8932;6.7800;0.5286;3.97501 
1 . 4 9 7 4 ; 3 . 9 0 4 1 ; 6 . 7 8 0 0 ; 1 . 0 3 2 5 ; 4 . 7 0 9 0 ]  
1.4974;5.8466;6.7800;1.6358;5.41801 
1.5066;1 .9315;3 .2300;0 .0929;4 .49301 

[ 1 . 5 0 6 6 ; 3 . 7 8 3 6 ; 3 . 2 3 0 0 ; 0 . 1 3 7 9 ; 5 . 1 6 9 0 1  [1 .5066;4.9041;3.2300;0.2226;5.5780]  
[ 0 . 7 0 6 1 ; 1 . 9 3 9 7 ; 4 . 7 9 0 0 ; 0 . 1 9 5 6 ; 3 . 4 8 4 0 1  [0 .7061;3 .8055;4 .7900;0 .5707;4 .1650]  
[ 0 . 7 0 6 1 ; 5 . 5 8 6 3 ; 4 . 7 9 0 0 ; 2 . 0 9 8 4 ; 4 . 8 1 5 0 1  [1.2090;2.0192;4.2300;0.1803;3.17901 
[ 1 . 2 0 9 0 ; 3 . 8 1 1 0 ; 4 . 2 3 0 0 ; 0 . 4 1 1 3 ; 3 . 8 3 3 0 1  [1 .2090;5.9863;4.2300;0.7770;4.6270]  
[0 .9482;0 .7863;3 .4000;0 .0511;3 .59601 [0.9482;1.2466;3.4000;0.0810;3.7640] 
[ 0 . 9 4 8 2 ; 2 . 8 7 4 0 ; 3 . 4 0 0 0 ; 0 . 1 6 0 2 ; 4 . 3 5 8 0 1  [0 .9482;4.0603;3.4000;0.1765;4.79101 
[0.9482;4.8521;3.4000;0.1892;5.08001 [0 .9482;5.8712;3.4000;0.2328;5.4520]  
[ 0 . 9 4 8 2 ; 6 . 7 1 5 1 ; 3 . 4 0 0 0 ; 0 . 2 2 8 9 ; 5 . 7 6 0 0 1  [ 1 . 3 2 4 6 ; 0 . 7 9 1 8 ; 4 . 6 0 0 0 ; 0 . 9 9 5 7 ; 4 . 4 2 1 0 1  
[ 1 . 3 2 4 6 ; 1 . 6 5 4 8 ; 4 . 6 0 0 0 ; 2 . 3 0 4 7 ; 4 . 7 3 6 0 1  [ 1 . 3 2 4 6 ; 2 . 8 7 9 5 ; 4 . 6 0 0 0 ; 2 . 5 9 5 8 ; 5 . 1 8 3 0 1  
[ 1 . 3 2 4 6 ; 4 . 0 6 3 0 ; 4 . 6 0 0 0 ; 2 . 9 1 4 1 ; 5 . 6 1 5 0 1  [1 .3246;4.8493;4.6000;3.3350;5.9020]  
[1.3246;5.8685;4.6000;3.6409;6.27401 [0 .8798;0.9616;5.3000;0.1740;1.9020]  
[ 0 . 8 7 9 8 ; 1 . 7 6 9 9 ; 5 . 3 0 0 0 ; 0 . 3 3 8 4 ; 2 . 1 9 7 0 1  [0 .8798;2.5562;5.3000;0.5134;2.4840]  
[0 .8798;3 .5315;5 .3000;0 .7725;2 .84001 [ 0 . 8 7 9 8 ; 4 . 5 2 8 8 ; 5 . 3 0 0 0 ; 1 . ~ 3 2 5 ; 3 . 2 0 4 0 1  
[0 .8798;5 .5671;5 .3000;1 .5823;3 .58301 [0 .8798;8.0301;5.3000;1.9793;4.48201 
[ 2 . 7 4 3 0 ; 0 . 7 6 7 1 ; 4 . 9 0 0 0 ; 0 . 0 3 3 1 ; 6 . 3 3 7 0 1  [ 2 . 7 4 3 0 ; 1 . 5 5 0 7 ; 4 . 9 0 0 0 ; 0 . 0 6 1 7 ; 6 . 6 2 3 0 1  
[2.7430;2.5260;4.9000;0.1084;6.9J901 [ 2 . 7 4 3 0 ; 3 . 5 2 3 3 ; 4 . 9 0 0 0 ; 0 . 1 4 8 1 ; 7 . 3 4 3 0 1  
[2.7430;4.5616;4.9000;0.1748;7.7220] [0 .8300;0.8493;5.6800;0.0401;1.1970]  
[ 0 . 8 3 0 0 ; 1 . 6 8 2 2 ; 5 . 6 8 0 0 ; 0 . 0 8 3 5 ; 1 . 5 0 1 0 1  [ 0 . 8 3 0 0 ; 2 . 5 7 5 3 ; 5 . 6 8 0 0 ; 0 . 1 3 0 2 ; 1 . 8 2 7 0 ]  
[ 0 . 8 3 0 0 ; 3 . 5 5 3 4 ; 5 . 6 8 0 0 ; 0 . 1 8 2 0 ; 2 . 1 8 4 0 1  [ 0 . 8 3 0 0 ; 4 . 5 3 7 0 ; 5 . 6 8 0 0 ; 0 . 2 3 4 6 ; 2 . 5 4 3 0 ]  
[ 0 . 7 7 7 2 ; 0 . 4 0 2 7 ; 5 . 1 7 0 0 ; 0 . 0 5 0 0 ; 1 . 6 5 0 0 ]  [0 .7772;1.6329;5.1700;0.2140;2.0990]  
[ 0 . 7 7 7 2 ; 2 . 6 1 3 7 ; 5 . 1 7 0 0 ; 0 . 3 6 0 1 ; 2 . 4 5 7 0 1  [ 0 . 7 7 7 2 ; 3 . 6 0 0 0 ; 5 . 1 7 0 0 ; 0 . 5 2 2 1 ; 2 . 8 1 7 0 ]  
[ 0 . 7 7 7 2 ; 5 . 0 6 3 0 ; 5 . 1 7 0 0 ; 0 . 7 9 2 0 ; 3 . 3 5 1 0 1  [ 0 . 7 7 7 2 ; 6 . 5 7 8 1 ; 5 . 1 7 0 0 ; 1 . 1 3 4 3 ; 3 . 9 0 4 0 ]  
[ 0 . 7 7 7 2 ; 7 . 0 9 5 9 ; 5 . 1 7 0 0 ; 1 . 2 5 5 1 ; 4 . 0 9 3 0 1  [1 .2432;1.0082;3.5200;0.0081;14.26301 
[ 1 . 2 4 3 2 ; 1 . 9 0 4 1 ; 3 . 5 2 0 0 ; 0 . 0 1 5 7 ; 1 4 . 5 9 0 0 1  [1 .2432;3 .3370;3 .5200;0 .0286;15 .11301 
[ 1 . 2 4 3 2 ; 4 . 2 5 4 8 ; 3 . 5 2 0 0 ; 0 . 0 3 6 7 ; 1 5 . 4 4 8 0 1  [1.8198;1.4712;7.2200;1.9233;4.10101 
[ 1 . 8 1 9 8 ; 1 . 9 3 7 0 ; 7 . 2 2 0 0 ; 2 . 5 7 9 0 ; 4 . 2 7 1 0 1  [1 .8198;2.9973;7.2200;3.3766;4.65801 
[ 1 . 8 1 9 8 ; 4 . 3 3 1 5 ; 7 . 2 2 0 0 ; 3 . 5 8 6 5 ; 5 . 1 4 5 0 1 } ;  
T = ( 1 . 1 3 2 0  1 . 1 6 1 0  1 . 1 8 1 0  1 . 1 6 9 2  1 . 1 6 5 8  1 . 3 9 9 4  1 . 4 9 8 8  1 . 5 4 5 6  1 .5818 1 . 5 4 8 4  1 . 6 1 0 6  1 . 8 7 4 0  1 . 5 6 2 2  
1 . 4 8 4 8  1 . 3 5 2 0  1 . 4 3 9 6  1 . 5 9 4 4  1 . 6 6 4 0  2 1566  1 . 5 7 9 2  1 . 8 4 4 8  1 .9234  0 . 7 2 8 1  0 . 7 5 0 2  0 .9032  1 . 3 4 1 4  1 . 3 6 3 2  
1 . 4 5 2 0  0 . 9 6 9 4  0 . 9 4 6 6  0 . 9 8 9 2  1 . 0 6 1 8  1 
0 . 9 4 4 6  0 . 9 6 3 8  0 . 9 3 4 8  0 . 9 4 1 4  1 . 0 1 7 8  1 
0 .8602  0 . 9 0 2 2  0 .9664  0 . 8 6 2 2  0 .8612  0 
2 . 2 5 9 0  2 . 4 3 9 9  2 . 7 5 3 0  2 . 7 9 3 3 ) ;  
net = newff([O 5 ; O  1 8 ; 2  7;O 3 ; O . l  20 
net.trainParam.goa1 = le-100; 
net.trainParam.epochs = 500;  
net.trainParam.mu = .01; 
net.trainParam.mu-inc = 10; 
net.trainParam.mu-dec = .5;  
net.trainParam.mu-max = le90; 
net = train(net,P,T); 

0782 1 . 0 9 2 6  1 . 1 9 4 2  1 . 4 7 5 7  1 .5100 1 . 8 0 6 6  2 . 1 1 7 6  2 . 6 0 8 0  2 .8008  
0594 1 . 0 6 2 2  2 .7874  2 .9176  2 . 8 7 3 8  2 . 9 0 1 6  3 . 1 4 2 6  0.8714 0 .8670  
8592 0 .9058  0 .9166  1 . 0 1 4 0  0 .9846  1 . 3 0 7 4  1 . 3 5 5 8  1 . 3 9 2 8  1 . 4 4 8 2  

, [ 5  1 11, { 'tansig' 'tansig' 'purelin' ) )  ; 
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Table A-I3 Weights for the input layer 
1 Weight’s I Weight’s Originfi) 

4 
5 

2.0509 0.1527 0.3554 1.408 0.0384 

~ ~ 

0.1421 0.0049 0.0019 0.0297 0.0005 
-1.2195 0.5035 -1.6419 -1.9977 -1.4773 

I 3 1 -0.8833 I -1.3167 I -1.883!5 1 3.0791 I -0.5122 I 

ti) 
1 

1 2 
-0.4077 -0.3762 -0.0021 10.733 -1.5516 

Table A-15 Weights for the hidden layer 
I Weight’s I Weight’s Originfi) 

Weight’s Target 
Node 

ti) 
1 

I Target Node I 

Weight’s Origin@) 

1 
1.2816 
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Sub-Model l c  

Figure A-5 Matlab NN Program 

1 

P = t L4.13; 0 .5737 ;6 .61  [ 4 . 4 0 ; 0 . 6 3 5 6 ;  6 .61 [4 .79 ;0 .7013 ;  6 .61  L5.20; 0 .7481 ;  6 .61 [ 5 . 9 0 ; 0 . 8 6 6 0 ;  6 .61 
[ 6 . 2 5 ; 0 . 9 3 9 1 ;  6 .61 [ 1 . 1 6 ;  0 . 2 2 4 0 ;  41 [1. 45; 1 . 4 7 8 4 ; 4 ]  [ 1 . 8 5 ; 2 . 2 7 9 4 ; 4 ]  [ 2 . 2 4 ; 2 . 3 3 6 1 ; 4 ]  [2 .58 ;2 .4104 ;41  
[ 2 . 9 3 ; 2 . 4 9 3 3 ; 4 ]  [ 3 . 2 9 ; 2 . 5 6 7 8 ; 4 ]  [ 4 . 0 1 ; 2 . 7 3 5 5 ; 4 ]  [ 3 . 2 8 ; 1 . 7 2 4 5 ; 6 . 7 8 ]  [ 3 . 5 8 ; 2 . 0 1 6 8 ; 6 . 7 8 ]  [ 3 . 9 8 ; 2 . 2 5 3 1 ; 6 . 7 8 ]  
[ 4 . 3 8 ; 2 . 4 9 5 9 ; 6 . 7 8 ]  [ 4 . 7 1 ; 2 . 7 5 6 9 ; 6 . 7 8 ]  [ 5 . 0 6 ; 3 . 0 6 9 5 ; 6 . 7 8 1  [ 5 . 4 2 ; 3 . 3 6 0 2 ; 6 . 7 8 1  [ 6 . 1 4 ; 3 . 9 9 2 7 ; 6 . 7 8 ]  
r3 .79 ;  0 . 3 9 4 0 ; 3 . 2 3 ]  [ 4 . 4 9 ; 0 . 4 8 6 9 ; 3 . 2 3 1  [ 5 . 1 7 ; 0 . 5 3 1 9 ; 3 . 2 3 1  [ 5 . 5 8 ; 0 . 6 1 6 6 ; 3 . 2 3 1  [ 3 . 7 9 ; 0 . 3 9 4 0 ; 4 . 3 6 ]  
[ 4 . 1 9 ; 0 . 4 3 5 2 ; 4 . 3 6 1  [ 4 . 6 2 ; 0 . 4 7 3 5 ; 4 . 3 6 1  [ 5 . 2 7 ; 0 . 5 2 4 0 ; 4 . 3 6 1  [ 5 . 5 8 ; 0 . 6 1 6 1 ; 4 . 3 6 1  [2 .78 ;0 .3765 ;4 .791  
[ 3 . 4 8 ; 0 . 5 7 2 1 ; 4 . 7 9 1  [ 4 . 1 7 ; 0 . 9 4 7 2 ; 4 . 7 9 1  [ 4 . 8 2 ; 2 . 4 7 4 9 ; 4 . 7 9 1  [ 2 . 4 4 ; 0 . 5 9 9 1 ; 4 . 2 3 1  [ 3 . 1 8 ; 0 . 7 7 9 3 ; 4 . 2 3 1  
[ 3 . 8 3 ; 1 . 0 1 0 4 ; 4 . 2 3 1  [ 4 . 6 3 ; 1 . 3 7 6 1 ; 4 . 2 3 1  [ 3 . 3 1 ; 0 . 3 7 6 8 ; 3 . 4 1  [ 3 . 6 0 ; 0 . 4 2 8 0 ; 3 . 4 1  [ 3 . 7 6 ; 0 . 4 5 7 9 ; 3 . 4 1  
[ 4 . 3 6 ; 0 . 5 3 7 0 ; 3 . 4 1  [ 4 . 7 9 ; 0 . 5 5 3 4 ; 3 . 4 1  [ 5 . 0 8 ;  0 .5661 ;3 .41  [ 5 . 4 5 ; 0 . 5 7 9 7 ; 3 . 4 1  [ 5 . 7 6 ; 0 . 6 0 5 7 ; 3 . 4 1  
[ 1 . 5 5 ; 0 . 5 4 4 9 ; 5 . 3 1  [ 1 . 9 0 ; 0 . 7 1 8 9 ; 5 . 3 1  L2.20; 0 . 8 8 3 3 ; 5 .  31 [ 2 . 4 8 ; 1 . 0 5 8 3 ; 5 . 3 1  [ 2 . 8 4 ; 1 . 3 1 7 4 ; 5 . 3 1  
[ 3 . 2 0 ; 1 . 8 7 7 4 ; 5 . 3 1  [ 3 . 5 8 ; 2 . 1 2 7 2 ; 5 . 3 1  [ 4 . 4 8 ; 2 . 5 2 4 2 ; 5 . 3 ]  [ 6 . 0 6 ; 0 . 7 5 4 6 ; 4 . 9 1  [ 6 . 3 4 ; 0 . 7 8 7 7 ; 4 . 9 1  
[ 6 . 6 2 ; 0 . 8 1 6 3 ; 4 . 9 1  [ 6 . 9 8 ; 0 . 8 6 2 9 ; 4 . 9 1  [ 7 . 3 4 ; 0 . 9 0 2 7 ; 4 . 9 1  [ 7 . 7 2 ; 0 . 9 2 9 3 ; 4 . 9 1  [ 0 . 8 9 ; 0 . 1 4 9 0 ; 5 . 6 8 1  
[ 1 . 2 0 ; 0 . 1 8 9 1 ; 5 . 6 8 ]  [ 1 . 5 0 ; 0 . 2 3 2 5 ; 5 . 6 8 1  [ 1 . 8 3 ; 0 . 2 7 9 2 ; 5 . 6 8 1  [ 2 . 1 8 ; 0 . 3 3 1 0 ; 5 . 6 8 1  [ 2 . 5 4 ; 0 . 3 8 3 6 ; 5 . 6 8 1  
[ 1 . 5 0 ; 0 . 9 7 8 4 ; 5 . 1 7 1  [ 1 . 6 5 ; 1 . 0 2 8 4 ; 5 . 1 7 1  [ 2 . 1 0 ; 1 . 1 9 2 5 ; 5 . 1 7 1  [ 2 . 4 6 ; 1 . 3 3 8 5 ; 5 . 1 7 1  [ 2 . 8 2 ; 1 . 5 0 0 5 ; 5 . 1 7 1  
[ 3 . 3 5 ; 1 . 7 7 0 4 ; 5 . 1 7 1  [ 3 . 9 0 ; 2 . 1 1 2 7 ; 5 . 1 7 1  [ 4 . 0 9 ; 2 . 2 3 3 6 ; 5 . 1 7 1  [ 1 3 . 9 0 ; 0 . 1 8 4 7 ; 3 . 5 2 1  [ 1 4 . 2 6 ; 0 . 1 9 2 7 ; 3 . 5 2 1  
[ 1 4 . 5 9 ; 0 . 2 0 0 4 ; 3 . 5 2 ]  [ 1 5 . 1 1 ; 0 . 2 1 3 3 ; 3 . 5 2 ]  [ 1 5 . 4 5 ; 0 . 2 2 1 4 ; 3 . 5 2 ]  [ 1 6 . 5 1 3 ; 0 . 2 4 7 6 ; 3 . 5 2 ]  [3 .56 ;11 .8106 ;7 .221  
[ 4 . 1 0 ; 1 3 . 7 3 4 0 ; 7 . 2 2 1  [ 4 . 2 7 ; 1 4 . 3 8 9 6 ; 7 . 2 2 1  [ 4 . 6 6 ; 1 5 . 1 8 7 2 ; 7 . 2 2 1  [ 5 . 1 5 ; 1 5 . 3 9 7 1 ; 7 . 2 2 1  [ 1 . 7 8 5 ; 0 . 6 8 9 ; 3 . 6 1  
[ 2 . 0 5 7 ; 0 . 7 4 4 2 ; 3 . 6 1  [ 2 . 1 5 5 ; 0 . 7 6 4 3 ; 3 . 6 1  [ 2 . 7 7 5 ; 0 . 9 0 4 8 ; 3 . 6 1  [ 3 . 1 1 6 ; 0 . 9 9 2 ; 3 . 6 ]  [ 3 . 4 7 8 ; 1 . 0 8 9 5 ; 3 . 6 1  
[ 0 . 9 4 1 ; 1 . 6 7 8 8 ; 4 . 5 4 1  [ 1 . 0 8 6 ; 1 . 8 6 1 1 ; 4 . 5 4 1  [ 1 . 8 6 5 ; 2 . 8 4 ; 4 . 5 4 1  [ 2 . 4 3 1 ; 3 . 5 5 ; 4 . 5 4 1  [ 3 . 2 9 7 ; 4 . 6 3 8 2 ; 4 . 5 4 1 } ;  

T = 1 1 . 1 3 5 8  1 . 1 3 2 0  1 .1610 1 . 1 8 1 0  1 . 1 6 9 2  1 . 1 6 5 8  1 . 2 5 1 2  1 . 3 9 9 4  1.49:38 1 . 5 4 5 6  1 . 5 8 1 8  1 .5484  1 .  6106 
1 . 4 9 7 4  1 . 5 6 2 2  1 . 4 8 4 8  1 . 3 5 2 0  1 . 4 3 9 6  1 . 5 9 4 4  1 . 6 6 4 0  2 . 1 5 6 6  1 . 5 0 6 6  1 . 5 7 9 2  1 . 8 4 4 8  1 .9234  1 . 0 6 3 2  1 . 1 4 6 2  1 .0924  
1 . 2 0 8 6  1 . 2 6 8 0  0 . 7 0 6 1  0 . 7 2 8 1  0 .7502  0 .9032  1 . 2 0 9 0  1 . 3 4 1 4  1 . 3 6 3 2  1 .1520  0 . 9 4 8 2  0 . 9 6 9 4  0 . 9 4 6 6  0 .9892  1 . 0 6 1 8  
1 . 0 7 8 2  1 . 0 9 2 6  1 . 1 9 4 2  0 . 8 7 9 8  0 . 9 4 4 6  0 . 9 6 3 8  0 . 9 3 4 8  0 .9414  1 . 0 1 7 8  1 .0594  1 . 0 6 2 2  2 . 7 4 3 0  2 . 7 8 7 4  2 . 9 1 7 6  2 .8738  
2 . 9 0 1 6  3 . 1 4 2 6  0 .8300  0 . 8 7 1 4  0 .8670  0 . 8 6 0 2  0 .9022  0 .9664  0 .7772  0.13622 0 .8612  0 . 8 5 9 2  0 . 9 0 5 8  0 . 9 1 6 6  1 . 0 1 4 0  

1 . 4 6 4 0  1 . 6 0 8 6  1 . 7 6 2 2  0 . 5 9 3 8  0 .5940  0 .6458  0 . 7 0 5 6  0 .79681 ;  
net = newff(L0.5 17;O 20;2 7 1 , [ 3  1 l l , { ' l o g s i g '  'tansig' 'purelin')); 
net.trainParam.goa1 = le-100; 
net.trainParam.epochs = 500;  
net.trainParam.mu = .01; 
net.trainParam.mu-inc = 10; 
net.trainParam.mu-dec = . 5 ;  
net.trainParam.mu-max = le90; 
net = train(net,P,T); 

1 . 8 7 4 0  

0 . 9 8 4 6  1 . 2 4 3 2  1 . 3 0 7 4  1 . 3 5 5 8  1 . 3 9 2 8  1 . 4 4 8 2  2 .2294  1 . 8 1 9 8  2 . 2 5 9 0  2. ,1399 2 . 7 5 3 0  2 . 7 9 3 3 1 . 4 6 0 8  1 . 4 8 2 0  1 . 5 0 9 8  

6.0435 -3.831 3 

Table A-I7 Weights for the 
Weight's Origin (i) 

2 1.9036 0.5316 
3 

Table A-I8 Biases for all the La ers x F i  
4.1 1 1  -0.2141 
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Weight’s Weight’s Origin (i) 
Target 

Weight’s Target 
Node 
0) 
1 

1 
1 -0.1605 I 0.2997 

Weight’s Origin (i) 

1 
3.7689 

121 



Sub-Model 2c 

Figure A-6 Matlab NN program 
P = I ~ 1 . 1 3 5 8 ; 4 . 4 0 3 0 ; 6 . 6 0 0 0 ; 0 . 7 4 7 9 ; 0 . 6 1 9 4 1  11.1320;4.7900;6.6000;1.0603;0.65661 
[ 1 . 1 6 1 0 ; 5 . 2 0 1 0 ;  6 . 6 0 0 0 ;  1 . 1 2 6 0 ; 0 . 4 6 8 3 ]  
[ 1 . 1 6 9 2 ; 6 . 2 5 4 0 ; 6 . 6 0 0 0 ; 0 . 9 8 3 6 ; 0 . 7 3 1 1 ]  
[1.3994;1.6470;4.0000;1.0767;8.00981 
[ 1 . 5 4 5 6 ; 2 . 5 7 6 0 ; 4 . 0 0 0 0 ; 0 . 9 1 2 3 ; 0 . 7 4 3 1 ]  
[ 1 . 5 4 8 4 ; 3 . 2 9 1 0 ; 4 . 0 0 0 0 ; 0 . 9 8 9 0 ; 0 . 7 4 4 9 ]  
[1.4974;3.5820;6.7800;0.8164;2.9236] 
[ 1 . 4 8 4 8 ; 4 . 3 7 5 0 ; 6 . 7 8 0 0 ; 1 . 0 9 5 9 ; 2 . 4 2 8 3 ]  
[l. 4396 ;5 .0580 ;  6 .7800 ;O.  9562 ;3 .1260]  
[ 1 . 6 6 4 0 ; 6 . 1 4 0 0 ; 6 . 7 8 0 0 ; 1 . 9 7 8 1 ; 6 . 3 2 4 3 1  
[ 1 . 5 7 9 2 ; 5 . 1 6 9 0 ; 3 . 2 3 0 0 ; 1 . 8 5 2 1 ; 0 . 4 4 9 6 ]  
~ 0 . 7 0 6 1 ; 3 . 4 8 4 0 ; 4 . 7 9 0 0 ; 1 . 9 3 9 7 ; 1 . 9 5 6 1 1  
[ 0 . 7 5 0 2 ; 4 . 8 1 5 0 ; 4 . 7 9 0 0 ; 1 . 7 8 0 8 ; 1 5 . 2 7 6 8  
[ 1 . 3 4 1 4 ; 3 . 8 3 3 0 ; 4 . 2 3 0 0 ; 1 . 7 9 1 8 ; 2 . 3 1 0 4 ]  
[ 0 . 9 4 8 2 ; 3 . 5 9 6 0 ; 3 . 4 0 0 0 ; 0 . 7 8 6 3 ; 0 . 5 1 1 1 ]  
[ 0 . 9 4 6 6 ; 4 . 3 5 8 0 ; 3 . 4 0 0 0 ; 1 . 6 2 7 4 ; 0 . 7 9 1 7 ]  
[ 1 . 0 6 1 8 ; 5 . 0 8 0 0 ; 3 . 4 0 0 0 ; 0 . 7 9 1 8 ; 0 . 1 2 7 2 ]  
~ 1 . 0 9 2 6 ; 5 . 7 6 0 0 ; 3 . 4 0 0 0 ; 0 . 8 4 3 8 ; 0 . 2 6 0 5 1  
[ 1 . 4 7 5 7 ; 4 . 7 3 6 0 ; 4 . 6 0 0 0 ; 0 . 8 6 3 0 ; 1 3 . 1 9 0 5  
[ 1 . 8 0 6 6 ; 5 . 6 1 5 0 ; 4 . 6 0 0 0 ; 1 . 1 8 3 6 ; 3 . 1 8 3 1 ]  
[ 2 . 6 0 8 0 ; 6 . 2 7 4 0 ; 4 . 6 0 0 0 ; 1 . 0 1 9 2 ; 3 . 0 5 8 8 1  
~ 0 . 9 4 4 6 ; 2 . 1 9 7 0 ; 5 . 3 0 0 0 ; 0 . 8 0 8 2 ; 1 . 6 4 4 2 ]  
[ 0 . 9 3 4 8 ; 2 . 8 4 0 0 ; 5 . 3 0 0 0 ; 0 . 9 7 5 3 ; 2 . 5 9 1 6 1  
[1 .0178;3 .5830;5 .3000;1 .0384;2 .49741 
[ 2 . 7 4 3 0 ; 6 . 3 3 7 0 ; 4 . 9 0 0 0 ; 0 . 7 6 7 1 ; 0 . 3 3 0 7 ]  
[2 .9176;6.9790;4.9000;0.9753;0.46661 
[2 .9016;7.7220;4.9000;1.0384;0.2665]  
[ 0 . 8 7 1 4 ; 1 . 5 0 1 0 ; 5 . 6 8 0 0 ; 0 . 8 3 2 9 ; 0 . 4 3 3 8 ]  
[0.8602;2.1840;5.6800;0.9781;0.5182] 
[ 0 . 7 7 7 2 ; 1 . 6 5 0 0 ; 5 . 1 7 0 0 ; 0 . 4 0 2 7 ; 0 . 5 0 0 0 1  
[0.8612;2.4570;5.1700;0.9808;1.4604] 
[ 0 . 9 0 5 8 ; 3 . 3 5 1 0 ; 5 . 1 7 0 0 ; 1 . 4 6 3 0 ; 2 . 6 9 8 9 ]  
[1.0140;4.0930;5.1700;0.5178;1.2085] 

[1.1810;5.8950;6.6000;1.9014;1.1795] 
[1.2512;1.4540;4.0000;0.8192;12.5438] 
[1.4988;2.2430;4.0000;1.0849;0.5672] 
[1.5818;2.9300;4.0000;0.9699;0.8290] 
[1.6106;4.0120;4.0000;1.9753;1.6774] 
~ 1 . 5 6 2 2 ; 3 . 9 7 5 0 ; 6 . 7 8 0 0 ; 1 . 0 7 6 7 ; 2 . 3 6 2 7 ]  
[1 .3520 ;4 .7090 ;6 .7800 ;0 .9151 ;2 .61001  
[1.5944;5.4180;6.7800;0.9863;2.9072] 
[ 1 . 5 0 6 6 ; 4 . 4 9 3 0 ; 3 . 2 3 0 0 ; 1 . 9 3 1 5 ; 0 . 9 2 9 2 ]  
[ 1 . 8 4 4 8 ; 5 . 5 7 8 0 ; 3 . 2 3 0 0 ; 1 . 1 2 0 5 ; 0 . 8 4 7 3 ]  
[ 0 . 7 2 8 1 ; 4 . 1 6 5 0 ; 4 . 7 9 0 0 ; 1 . 8 6 5 8 ; 3 . 7 5 1 2 ]  

[1 .3632;4 .6270;4 .2300;2 .1753;3 .65731 
[0 .9694;3.7640;3.4000;0.46C~3;0.2992]  
[ 0 . 9 8 9 2 ; 4 . 7 9 1 0 ; 3 . 4 0 0 0 ; 1 . 1 8 6 3 ; 0 . 1 6 3 3 ]  
[ 1 . 0 7 8 2 ; 5 . 4 5 2 0 ; 3 . 4 0 0 0 ; 1 . 0 1 9 2 ; 0 . 1 3 6 0 ]  
[l. 3246;4.4210;4.6000;0.7918;9.8569] 
[1.5100;5.1830;4.6000;1.2~47;2.9104] 

[ 1 . 2 0 9 0 ; 3 . 1 7 9 0 ; 4 . 2 3 0 0 ; 2 . 0 1 9 2 ; 1 . 8 0 2 7 ]  

~ 2 . 1 1 7 6 ; 5 . 9 0 2 0 ; 4 . 6 0 0 0 ; 0 . 7 8 6 3 ; 4 . 2 0 9 3 ]  

[ 0 . 9 6 3 8 ; 2 . 4 8 4 0 ; 5 . 3 0 0 0 ; 0 . 7 8 6 3 ; 1 . 7 4 9 3 ]  
[0 .8798;1.9020;5.3000;0.9616;1.7402]  

[0 .9414;3.2040;5.3000;0.99i3;5.6000]  
~ 1 . 0 5 9 4 ; 4 . 4 8 2 0 ; 5 . 3 0 0 0 ; 2 . 4 6 : 0 ; 3 . 9 7 0 2 1  
[ 2 . 7 8 7 4 ; 6 . 6 2 3 0 ; 4 . 9 0 0 0 ; 0 . 7 8 ~ 6 ; 0 . 2 8 6 3 1  
[ 2 . 8 7 3 8 ; 7 . 3 4 3 0 ; 4 . 9 0 0 0 ; 0 . 9 9 7 3 ; 0 . 3 9 7 5 1  

[0 .8300;1.1970;5.6800;0.8493;0.4009]  
[ 0 . 8 6 7 0 ; 1 . 8 2 7 0 ; 5 . 6 8 0 0 ; 0 . 8 9 3 2 ; 0 . 4 6 7 5 ]  

[0.9022;2.5430;5.6800;0.98:6;0.5260] 
[0.8622;2.0990;5.1700;1.23C1;1.64031 

[0.9166;3.9040;5.1700;1.51~1;3.4229] 
[1 .2432 ;14 .2630 ;3 .5200 ;1 .0C82 ;0 .08071  

[0 .8592;2 .8170;5 .1700;0 .9863;1 .6201]  

[ 1 . 3 0 7 4 ; 1 4 . 5 9 0 0 ; 3 . 5 2 0 0 ; 0 . 8 9 5 9 ; 0 . 0 7 6 8 ]  [ 1 . 3 5 5 8 ; 1 5 . 1 1 3 0 ; 3 . 5 2 0 0 ; 1 . 4 3 2 9 ; 0 . 1 2 9 0 ]  
[ 1 . 3 9 2 8 ; 1 5 . 4 4 8 0 ; 3 . 5 2 0 0 ; 0 . 9 1 7 8 ; 0 . 0 8 0 3 ]  [1 .4482;16.5030;3.5200;2.E904;0.2624]  
[ 1 . 8 1 9 8 ; 4 . 1 0 1 0 ; 7 . 2 2 0 0 ; 1 . 4 7 1 2 ; 1 9 . 2 3 3 4 ]  [ 2 . 2 5 9 0 ; 4 . 2 7 1 0 ; 7 . 2 2 0 0 ; 0 . 4 6 5 8 ; 6 . 5 5 6 5 ]  
[ 2 . 4 3 9 9 ; 4 . 6 5 8 0 ; 7 . 2 2 0 0 ; 1 . 0 6 0 3 ; 7 . 9 7 6 0 ]  [ 2 . 7 5 3 0 ; 5 . 1 4 5 0 ; 7 . 2 2 0 0 ; 1 . 3 3 4 2 ; 2 . 0 9 8 9 ]  
[ 1 . 4 6 0 8 ; 2 . 0 5 7 ; 3 . 6 ; 0 . 7 4 5 2 0 5 ; 0 . 0 5 5 1 4 5 ]  [1 .482;2.155;3.6;0.268493;C.020099]  
[ 1 . 5 0 9 8 ; 2 . 7 7 5 ; 3 . 6 ; 1 . 6 9 8 6 3 ; 0 . 1 4 0 5 7 1  [ 1 . 4 6 4 ; 3 . 1 1 6 ; 3 . 6 ; 0 . 9 3 4 2 4 7 ; 0 . C 8 7 2 1 2 1  
[ 1 . 6 0 8 6 ; 3 . 4 7 8 ; 3 . 6 ; 0 . 9 9 1 7 8 1 ; 0 . 0 9 7 4 8 ]  [ 1 . 0 5 9 6 ; 1 . 7 6 6 ; 2 . 8 5 ; 0 . 3 8 9 0 4 1 ; 0 . 0 5 9 5 2 3 ]  
[ 1 . 1 2 4 8 ; 2 . 5 4 4 ; 2 . 8 5 ; 2 . 1 3 1 5 0 7 ; 0 . 3 2 9 3 0 5 ]  [1.1066;3.178;2.85;1.736986;0.287083 
I1.1176;4.082;2.85;2.476712;0.447504] [0 .593778;1 .086;4 .54;0 .39726;0 .18221 
[ 0 . 5 9 4 ; 1 . 8 6 5 ; 4 . 5 4 ; 2 . 1 3 4 2 4 7 ; 0 . 9 7 8 9 0 8 ]  [0 .6458;2 .431;4 .54;1 .550685;0 .7099911 
[ 0 . 7 0 5 6 ; 3 . 2 9 7 ; 4 . 5 4 ; 2 . 3 7 2 6 0 3 ; 1 . 0 8 8 2 3 5 ]  } ;  

T = { 1 . 1 3 2 0  1 . 1 6 1 0  1 . 1 8 1 0  1 . 1 6 9 2  1 . 1 6 5 8  1 . 3 9 9 4  1 . 4 9 8 8  1 . 5 4 5 6  1 .5818 1 . 5 4 8 4  1 . 6 1 0 6  1 . 8 7 4 0  1 . 5 6 2 2  1 . 4 8 4 8  
1 . 3 5 2 0  1 . 4 3 9 6  1 . 5 9 4 4  1 . 6 6 4 0  2 . 1 5 6 6  1 . 5 7 9 2  1 . 8 4 4 8  1 . 9 2 3 4  0 . 7 2 8 1  0 .7502  0 . 9 0 3 2  1 . 3 4 1 4  1 . 3 6 3 2  1 . 4 5 2 0  
0 .9694  0 . 9 4 6 6  0 .9892  1 . 0 6 1 8  1 . 0 7 8 2  1 . 0 9 2 6  1 . 1 9 4 2  1 . 4 7 5 7  1 . 5 1 0 0  1.8066 2 . 1 1 7 6  2 .6080  2.8008 0 . 9 4 4 6  
0 .9636  0 . 9 3 4 8  0 .9414  1 . 0 1 7 8  1 . 0 5 9 4  1 . 0 6 2 2  2 .7874  2 . 9 1 7 6  2 . 8 7 3 8  2 . 9 0 1 6  3 . 1 4 2 6  0 .8714  0 .8670  0 .8602 
0 .9022  0 .9664  0.8622 0 . 8 6 1 2  0 .8592  0 .9058  0 . 9 1 6 6  1 . 0 1 4 0  0 . 9 8 4 6  1 . 3 0 7 4  1 . 3 5 5 8  1 . 3 9 2 8  1 . 4 4 8 2  2 .2294  
2 .2590  2 . 4 3 9 9  2 . 7 5 3 0  2 . 7 9 3 3  1 . 4 8 2  1 . 5 0 9 8  1 . 4 6 4  1.6086 1 . 7 6 2 2  1 . 1 2 4 8  1 . 1 0 6 6  1 . 1 1 7 6  1 . 1 8 9 2  0 .594  0 .6458  
0 . 7 0 5 6  0 .79681 ;  
net = newff([O 5;O 18;2 7;O 3 ; O . l  2 0 ] , [ 5  3 1 l],{'tansig' 'logsig' 'logsig' 'purelin')); 
net.trainParam.goa1 = le-100; 
net.trainParam.epochs = 500 ;  
net.trainParam.mu = .01; 
net.trainParam.mu-inc = 10; 
net.trainParam.mu-dec = . 5 ;  
net.trainParam.mu-max = le90; 
net = train1nPt.P.T): 

122 



Table A-21 Weights for the input layer 
I Weight’s I Weight’s Origin ((1 

ti) 
1 
2 

1 2 3 
-2.9398 -5.5444 -5.0563 

-1.9047 0.0952 -1.7833 

I 3 I -10.2404 I -7.0474 I 6.4027 I 3.9701 I 5.6018 I 
4 -4.9464 -0.0558 -0.3084 -0.983 -0.041 1 

Layer 
1 
2 
3 
4 

Node 4 Node5 
14.1146 -1.8147 

- 
- 

Node 1 Node 2 Node 3 
-3.9338 -1.1644 -2.8237 

3.7965 -2.1073 5.033 

0.2705 
-4.2629 

Weight’s Weight’s Origin (i) 

Weight’s 
Target 
Node 
ti) 

1 
2 
3 

I 1 I 13.1202 I -12.51 I 0.6376 I 

Weight’s Origin (0 

1 2 3 4 5 
-3.0208 -2.8189 0.8574 -7.6968 2.7748 

0.8061 -3.1505 0.9124 1.6547 2.5761 

-1.4026 -1.9401 1.5259 1.4104 0.8474 

Table A-25 Weights for the output layer 
Weight’s Target I Weight’s Origin (i) 

I Node I 
I I 1 
I 1 I 7.1527 
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Sub-Model 3c 

Weight's 
Target 
Node 

Figure A-7 Matlab NN program 
P = t[1.1358;4.4030;6.6000;0.7479] [1.1320;4.7900;6.6000;1.06031 [1.1610;5.2010;6.6000;1.12601 
[1.1810;5.8950;6.6000;1.9014] [1.1692;6.2540;6.6000;0.98361 [1.~512;1.4540;4.0000;0.81921 
[1.3594;1.8470;4.0000;1.0767] [1,4988;2.2430;4.0000;1.0849] [1.~~456;2.5760;4.0000;0.9123] 
[1.5818;2.9300;4.0000;0.9699] [1.5484;3.2910;4.0000;0.9890] [1.6106;4.0120;4.0000;1.9753] 
[1.4974;3.5820;6.7800;0.81641 [ 1 . 5 6 2 2 ; 3 . 9 7 5 0 ; 6 . 7 8 0 0 ; 1 . 0 7 6 7 1  [1 .4848;4 .3750;6 .7800;1 .09591 
[ 1 . 3 5 2 0 ; 4 . 7 0 9 0 ; 6 . 7 8 0 0 ; 0 . 9 1 5 1 ]  [ 1 . 4 3 9 6 ; 5 . 0 5 8 0 ; 6 . 7 8 0 0 ; 0 . 9 5 6 2 1  [ 1 .5~944 ;5 .4180 ;6 .7800 ;0 .9863 ]  
[1.6640;6.1400;6.7800;1.97811 [ 1 . 5 0 6 6 ; 4 . 4 9 3 0 ; 3 . 2 3 0 0 ; 1 . 9 3 1 5 1  [1.E792;5.1690;3.2300;1.85211 
[1.8448;5.5780;3.2300;1.1205] [ 0 . 7 0 6 1 ; 3 . 4 8 4 0 ; 4 . 7 9 0 0 ; 1 . 9 3 9 7 1  [0.5281;4.1650;4.7900;1.86581 
[0.7502;4.8150;4.7900;1.78081 [1.2090;3.1790;4.2300;2.01921 [ l . S 4 1 4 ; 3 . 8 3 3 0 ; 4 . 2 3 0 0 ; 1 . 7 9 1 8 1  
[ 1 . 3 6 3 2 ; 4 . 6 2 7 0 ; 4 . 2 3 0 0 ; 2 . 1 7 5 3 1  [ 0 . 9 4 8 2 ; 3 . 5 9 6 0 ; 3 . 4 0 0 0 ; 0 . 7 8 6 3 1  [0 .9694;3.7640;3.4000;0.46031 
[0.9466;4.3580;3.4000;1.6274] [0.9892;4.7910;3.4000;1.1863] [1.C618;5.0800;3.4000;0.7918] 
[1.0782;5.4520;3.4000;1.0192] [ 1 . 0 9 2 6 ; 5 . 7 6 0 0 ; 3 . 4 0 0 0 ; 0 . 8 4 3 8 1  [1.~246;4.4210;4.6000;0.79181 
[ 1 . 4 7 5 7 ; 4 . 7 3 6 0 ; 4 . 6 0 0 0 ; 0 . 8 6 3 0 ]  [1.5100;5.l830;4.6000;1.2247] [1.8066;5.6150;4.6000;1.1836] 
[2.1176;5.9020;4.6000;0.7863] [2.6080;6.2740;4.6000;1.01921 [0 .8798;1.9020;5.3000;0.9616]  
[0.5446;2.1970;5.3000;0.8082] [ 0 . 9 6 3 8 ; 2 . 4 8 4 0 ; 5 . 3 0 0 0 ; 0 . 7 8 6 3 1  [0 .S~348;2 .8400;5 .3000;0 .97531 
[ 0 . 9 4 1 4 ; 3 . 2 0 4 0 ; 5 . 3 0 0 0 ; 0 . 9 9 7 3 1  [1 .0178;3 .5830;5 .3000;1 .03841 [1 .C594;4.4820;5.3000;2.46301 
E2.7430; 6.3370;4.9000;0.76711 12.7874; 6.6230;4.9000;0.7836] [2 .$'176; 6.9790;4.9000;0.97531 
[ 2 . 8 7 3 8 ; 7 . 3 4 3 0 ; 4 . 9 0 0 0 ; 0 . 9 9 7 3 ]  [2.9016;7.7220;4.9000;1.03841 [0 .8300;1 .1970;5 .6800;0 .84931 
[0 .8714;1 .5010;5 .6800;0 .83291 [0.8670;1.8270;5.6800;0.89321 [0 .8602;2.1840;5.6800;0.97811 
[0 .5022 ;2 .5430 ;5 .6800 ;0 .9836 ]  [ 0 . 7 7 7 2 ; 1 . 6 5 0 0 ; 5 . 1 7 0 0 ; 0 . 4 0 2 7 ]  [0.8622;2.0990;5.1700;1.2301] 
[0.8612;2.4570;5.1700;0.9808] [0.8592;2.8170;5.1700;0.98631 [0 .9058;3 .3510;5 .1700;1 .4630]  
[0.9166;3.9040;5.1700;1.51511 [1.0140;4.0930;5.1700;0.51781 [1 .2432 ;14 .2630 ;3 .5200 ;1 .00821  
[ 1 . 3 0 7 4 ; 1 4 . 5 5 0 0 ; 3 . 5 2 0 0 ; 0 . 8 9 5 9  [1.3558;15.1130;3.5200;1.43291 [1 .3928;15.4480;3.5200;0.9178]  
[1.4482;16.5030;3.5200;2.8904 [1.8198;4.1010;7.2200;1.4712] [ 2 . 2 5 9 0 ; 4 . 2 7 1 0 ; 7 . 2 2 0 0 ; 0 . 4 6 5 8 ]  
[ 2 . 4 3 9 9 ; 4 . 6 5 8 0 ; 7 . 2 2 0 0 ; 1 . 0 6 0 3 1  [ 2 . 7 5 3 0 ; 5 . 1 4 5 0 ; 7 . 2 2 0 0 ; 1 . 3 3 4 2 1  [1 .4608;2 .0570;3 .6000;0 .74521 
[1.4820;2.1550;3.6000;0.2685] [1 .5058;2 .7750;3 .6000;1 .69861 [1.4640;3.1160;3.6000;0.9342] 
[1.6086;3.4780;3.6000;0.9918] [1.0596;1.7660;2.8500;0.38901 [1 .1248;2 .5440;2 .8500;2 .13151 
[1.1066;3.1780;2.8500;1.7370] [1.1176;4.0820;2.8500;2.47671 [0 .5938;1 .0860;4 .5400;0 .39731 
[0.5940;1.8650;4.5400;2.1342] [ 0 . 6 4 5 8 ; 2 . 4 3 1 0 ; 4 . 5 4 0 0 ; 1 . 5 5 0 7 1  [ 0 . 7 0 5 6 ; 3 . 2 9 7 0 ; 4 . 5 4 0 0 ; 2 . 3 7 2 6 1 } ;  
T = (1.1320 1.1610 1.1810 1.1692 1.1658 1.3994 1.4588 1.5456 1.5818 1.5484 1.6106 1.8740 1.5622 1.4848 
1.3520 1.4396 1.5944 1.6640 2.1566 1.5792 1.8448 1.9234 0.7281 0.7502 0.9032 1.3414 1.3632 1.4520 
0.5694 0.9466 0.9892 1.0618 1.0782 1.0926 1.1942 1.4757 1.5100 1.8066 2.1176 2.6080 2.8008 0.9446 
0.9638 0.9348 0.9414 1.0178 1.0594 1.0622 2.7874 2.9176 2.8738 2.9016 3.1426 0.8714 0.8670 0.8602 
0.5022 0.5664 0.8622 0.8612 0.8592 0.9058 0.9166 1.0140 0.9846 1.3074 1.3558 1.3928 1.4482 2.2294 
2.2590 2.4359 2.7530 2.7933 1.482 1.5098 1.464 1.6086 1.7622 1.1248 1.1066 1.1176 1.1892 0.594 0.6458 
0.7056 0.7968); 
net = newff([O 5 ;O 18;2 7;O 31,[4 1 11,t'logsig' 'tansig' 'purelin')); 
net.trainParam.goa.1 = le-100; 
net.trainParam.epochs = 500; 
net.trainParam.mu = .01; 
net.trainParam.mu-inc = 10; 
net.trainParam.mu-dec = .5; 
net.trainParam.mu-max = le90; 
net = train(net,P,T); 

Weight's Origin (i) 

0) 
1 
2 
3 
4 

-12.268 -6.8246 

1 2 
-0.7775 -0.014 

-16.8961 -0.3985 
22.7923 1.6488 

-1.681 -1.3998 
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-9.2356 
-4.9507 

1 
8.4304 

Target I Node 

2 
0.2078 I 1 

rable A-28 Weights for the first hidden layer 
Weight’s Origin (i) 

Table A-29 Weights for the output 
Weight’s Target Weight’s Origin (i) 

Node 



APPENDIX D 

I 
I 

This is data from NJDOT’s Pavement Management System. These are the sites 
that were used to test the models in chapter 7. 

78 E 06/20/89 1989 7.8 8 54.4 0.1 4 
78 E 05/24/90 1990 7.8 8 51.3 0 4.05 
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0.15 
3.94 
4.03 

0.1 3.96 
3.76 

0.2 I 3.68 1 

4.05 

-1 
0.1 4.05 

0.16 2.31 

0.2 I 3.84 1 
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I W I  107/12/91 I 1991 I 6.4 I 6.6 I 65.6 I 0.2 I 3.82 
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I Undivided I 

Type INumberl Aux I I Date I Year I I Depth I 
I I  I 6120194 I 1994 1 7.60 I 7.80 1 64.30 1 0.20 3.84 

I Mile Post I 

I 
I 
I 
I 
I 80 E E 
I 80 E 
I 80 E E 

80 
80 E 6/20/94 1994 10.80 11.00 42.50 0.10 4.20 
80 E E 8/28/96 1996 10.80 11.00 
80 E 6/20/94 1994 11.00 11.20 44.20 0.20 4.17 

E E 8/28/96 1996 10.60 1 10.80 1 1::; I 1::; I 1:;: 1 
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I 80 W 
I 80 W 
I 80 W 
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I l l  80 I I W I  W I 8/28/96 I 1996 124.20 I 24.40 I 0.00 I 0.07 I 3.80 I 
I 80 W 
I 80 W 
I 80 W 
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I 1  80 1 ( w ]  W I 8/28/96 I 1996 
I I  80 I I W I  

I 
I 

-. 

I 80 W 
I 80 W 

80 W 
80 W 

I l l  80 1 I W I  w i 8/28/96 i 1996 i 29.2- 

I 
I 

6120194 1994 
W 8/28/96 1996 

I 80 W 
I 80 W 

6120194 1994 
W 8/28/96 1996 

80 W 
80 W 

I l l  l w l  i 6120194 i 1994 i 29.6- 

I 
I 
I 

I 80 W 
I 80 W 
I 80 W 

80 W 
80 W 
80 W 

80 I I W I  i 6120194 i 1994 i 31.2- 

I 
I 
I 

\ -. 

I 80 I w  W 8/28/96 I 1996 
I 80 I w  

80 W 
80 W 
80 W 

I l l  80 I I W I  W i 8/28/96 i 1996 i 31.4- 
I 80 W 
I 80 W 
I 80 W 
I 80 W 
I 80 W 

I l l  80 I I W I  W i 8/28/96 i 1996 32.2- 
I I I I I I 

I 1  80 1 ( W I  
I I  ao I I W I  W 
I 80 W 6120194 1994 
I 80 W W 8/28/96 1996 

I l l  80 I I W I  i 6120194 i 1994 i 32.8- 

I l l  80 l w l  w i 8/28/96 i 1996 i 33.0- 

I l l  80 1 I w l  i 6/20/94 i 1994 i 33.4i7hm 

I I 

-1 
76.70 
0.00 I 0.11 I 3.44 I 

49.50 1 0.30 I 4.08 1 
49.00 4.09 
0.00 1 0.11 I 3.86 1 

46.00 4.14 
0.00 3.86 
46.00 0.20 4.14 
0.00 0.12 3.76 

47.20 4.12 
0.00 
46.60 0.20 4.13 
0.00 0.13 3.63 
82.80 I 0.20 I 3.56 
0.00 1 0.16 3.13 \ 
43.60 I 0.20 I 4.18 
0.00 1 0.13 1 3.96 
43.60 I 0.20 I 4.18 

137 



138 



REFERENCES 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

National Cooperative Highway Research Program synthesis of highway 
practice 1 35, Pavement Management Practices, lransportation Research 
Board, Washington D.C. 1987 
Hagan, M.T., Demuth, H.B., and M. Beale. Neural Network Design. PWS 
Publishing Company, Boston, MA, 1996 
Dermuth, H., and M. Beale. Matlab: Neural Network Toolbox User‘s Guide. 
The Mathworks, Inc., Natick, M.A., 1997 
Specht, Donald F., “A General Regression Neural Network”, IEEE 
Transactions on Neural networks. Vol. 2, No. 6, November 1991 
Huang, Y.H. Pavement Analysis and Design. Prentice Hall, Englewood Cliffs, 
N.J. 1993 
Janoff, M.S., et al., Pavement Roughness and Rideabilify. National 
Cooperative Highway Reserch Program Report 275, , National Research 
Council, Washington, D.C., 1985 
Janoff, M.S., et al., Pavement Roughness and Rideabilify. National 
Cooperative Highway Reserch Program Report 308, , National Research 
Council, Washington, D.C., 1988 
Sayers, M.W., and S.M. Karamihas. The Little Book ofProfiling. manual for 
course at Road Profiler User Group meeting, October 1997 
Gillespie, T.D., et al., Calibration of response-Type Road Roughness 
Measuring Systems. National Cooperative Highway Research Program 
Report 228, National Research Council, Washington, D.C.,1980 

10. Quintus, H.V., and B. Killingsworth. Analyses Relation To Pavement Material 
Characterizations and Their Effects on Pavement Performance. Report 
FHWA-RD-97-085, FHWA, U.S. Department of Transportation, 1998 

1 1. Moody, E.D., Analysis of LTPP Profile Data for Jointed Concrete Pavement 
Sections. In Transportation Research Record 157Q TRB, National Research 
Council, Washington, D.C., 1996, pp. 70-77 

Pavement Roughness. Report FHWA-RD-97-147, FHWA, U.S. Department of 
Transportation, 1998 

13. Simpson,, A.L., Rauhut, J.B., Jordhal, P.R., Owusu-Antwi, E., Darter, M.I., 
Ahamad, R., Pendleton, O.J., and Y. Lee. Sensitivity Analysis for Selected 
Pavement Distresses, SHRP P-393, Strategic Highway Research Program, 
national Research Council, Washington, D.C., 1994, 341 p. 

14. Lee, Y.H., Mohseni, A., and M.I. Darter. Simplified Pavement Performance 
Models. In Transportation Research Record 1397, TRB, National Research 
Council, Washington, D.C., 1993, pp. 7-14 

15. Shekharan, A.R. Assessment of Relative Contribution of lnput Variables on 
Pavement Performance Prediction by Artificial Neural Networks. A paper 
prepared for presentation , Annual Meeting, Transportation Research Board, 
Washington, D.C., 1999 

16. Shekharan, A.R. Effects of noisy Data on pavement Performance Prediction 
by Artifical Neural Networks 

12.Perera, R.W., Byrum, C., and S.D. Kohn. lnvesfigation of Development of 

139 



17. Development of Default Performance Prediction Models. 3.1. D. 1 - 
Engineering Document, ITX Stanley limited 

18.Al-OmariI 6. and M.I. Darter. Effects of Pavement Deterioration Types on IRI 
and Rehabilitation. In Transportation Research Record 1505, TRB, National 
Research Council, Washington, D.C., 1995, pp. 5'7-65 

19. Pavement Management System Correlation Study. Report NJ-PMS 
Document 1 . I  .4.D.1, ITX Stanley Limited 

20. Turner-Fairbanks Highway Research Center, Long Term Pavement 
Performance lnformation Management System Data Users Reference 
Manual, Publication No. FHWA-RD-97-001 , McLean, Virgina 

21. Montgomery, Douglas C.; Peck, Elizabeth; lntroduction to Linear Regression 
Analysis, Second Edition, John Wiley & Sons, Inc. 1992 

22.AASHTO Guide for Pavement Structures, American Association of State 
Highway and Transportation Officials, Washington D.C. 1993 

23. Turner-Fairbanks Highway Research Center, Backcalculation of Layer Moduli 
of LTPP General Pavement Study (GPS) Sites, Publication No. FHWA-RD- 
97-086, McLean, Virgina 

24. Turner-Fairbanks Highway Research Center, Design Pamphlet for the 
Backcalculation of Pavement Moduli in Support of the 1993 AASH TO Guide 
for the Design of Pavement Structures, Publication No. FHWA-RD-97-076, 
McLean, Virgina 

Database, Federal Highway Administration 

Adminstration. 

lnvestigation of Development of Pavement Roughness. Report FHWA-RD-97- 
147, FHWA, U.S. Department of Transportation, 1998 

Available: http://w.state.ni.us/transDortation/. [Cktober 4,19991 

25. Long Term Pavement Management, Informational Management Systems 

26. DataPave 97, Software supporting LTPP Database, Federal Highway 

27.Database used to develop: Perera, R.W., Byrum, C., and S.D. Kohn. 

28. State of New Jersey Department of Transportatiori Web Page. [on line] 

140 


