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Chapter 1 

REVIEW OF AUTOMATED DISTRESS DETECTION 

1.0. Introduction 

The culture of road asset management requires immediate protection or preservation of road 

infrastructures once they are constructed or rehabilitated. Therefore, agencies are usually 

required to design and implement programs for pavement evaluation and performance 

measurement, maintenance, rehabilitation and reconstruction of the pavement structure. 

Acquiring precise information about road conditions is critical to accomplishing these tasks.  

Traditionally, distress surveys are carried out manually. Inspectors must look at all areas of the 

roadway to measure its distress elements. This method is expensive, however, and risky for 

personnel especially on roads with high traffic volume. It is also error-prone and inconsistent. 

Therefore, manual road surveys are not feasible especially for network–level pavement 

management. The introduction of an automated system to quantify the quality of road surfaces 

and assist in the prioritization and maintenance planning of road networks has therefore become 

essential. Over the years, enormous improvements have been made regarding digital crack 

detection systems. Beginning as a semi-automated system, an acquisition system was used to 

record or grab pavement distress images while distress identification and classification was 

posted to an offline process. This improved the safety of conducting surveys but was still 

dependent on manual distress detection (Kenneth, 2004). Later on, manual distress detection was 

almost completely eliminated by the introduction of digital image processing and analysis. In 

spite of this improvement, the automated systems were still plagued with challenges such as: 
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shadowing from road side objects, low crack resolution and low image quality.  More rapid 

advancement has occurred within the past five years, resulting in the development of shadow-

free image acquisition and real-time processing systems (Lee 2005, Wang 2007, and Kim 2009) 

which are capable of conducting road condition surveys at highway speeds. This system is 

therefore much safer and probably the most efficient, having the potential to provide higher 

objectivity, as well as improved data consistency and repeatability. 

The basic outputs from a pavement image analysis system include the following: distress 

location, distress type, distress severity and distress extent. Table 1.1 describes sample 

information useful for developing a road management plan.  

Table 1.1: Key outputs of a pavement image analysis system 

Distress Location Distress Type Distress Severity Distress Extent 

Road edges, central Longitudinal, 

Transverse, Alligator, 

block crack, etc. 

Low, Medium and 

High 

Occasional, Frequent 

and Extensive 

 

Pavement Inspection system consists of two important steps: Pavement Image Acquisition 

(image sensors such as video cameras and photo multiplier tubes) and Pavement Image Analysis 

(involves developing algorithms for denoising, enhancement and crack feature extraction).  
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1.1 Pavement Distress Data Acquisition 

Different methods exist for capturing pavement surface distresses, and can mainly be grouped 

into three: Manual, Analogue and Digital devices. The choice of an acquisition method depends 

on several factors such as: cost, safety, efficiency (image quality and storage flexibility), traffic 

volume, etc. Very few agencies employ manual approaches alone. Usually, they combine these 

with any of the analogue types. Automated analogue or digital approaches are used for high 

traffic volume roads where safety is an issue, while manual methods can be used for low traffic 

volume roads. 

Analogue approaches refer to a process where images are physically imposed on a film through 

chemical, mechanical or magnetic changes in the surface of the film. Although high quality 

images can be obtained from analogue approaches, they may introduce electronic noise during 

signal distribution and transmission which may degrade the quality of images acquired. Also, it 

is difficult to manipulate or integrate analogue results with other data types such as text and 

graphics. Analogue systems are slowly becoming extinct due to the above mentioned challenges. 

On the other hand, digital approaches capture images as streams of electronic bits storing them 

on an electronic medium. The digital bits can be read electronically for processing or 

reproduction purposes. Due to their ease of manipulation and image quality, the approach is fast 

becoming the most popular method. Survey vehicles using digital cameras can have one or two 

cameras capturing the pavement image while any number are used for other data required by the 

user. Special lighting may also be used to overcome shadowing problems. Digital acquisition 

methods can be grouped mainly in two categories: Area Scan and Line Scan. 
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Area Scan: This is when the captured image consisting of thousands of pixels depicts some 

defined pavement surface area. The area covered usually depends on factors such as: camera 

lens, angle, placement and vehicle speed. Image distortion can result if the camera is not 

perpendicular to the pavement surface. 

Line Scan:  Builds up a 2D image line by successive line; single line scans are produced while 

the object moves (perpendicularly) past the line of pixels in the image sensor. The scan lines are 

stitched together to form a continuous image. Shadowing is a key challenge to the line scan 

systems. They can render images useless (because it is impossible to extract meaningful crack 

information). 

Laser Technology: The introduction of laser technology has improved the quality of images 

acquired during surveys. It achieves a more accurate and efficient measurement, detecting cracks 

of 1 mm width. The quality of images acquired is very high. 

3D Laser Imaging: GIE Laser VISION: Uses four (4) laser sensors providing 3D measurements 

giving the system the potential for improved distress measurement. Nonetheless, it has too low 

resolution, 3 mm by 110 mm. 

Various attempts (Wang and Gong, 2002) have been made to compare the efficiency of these 

systems. It is challenging to compare because detection performance for the systems is highly 

dependent on the type or sets of roads being assessed. Second, systems present different survey 

widths making it harder to compare. Lastly, the road condition itself, the presence of non-

cracked elements and the different texture backgrounds faced in each case will be decisive. 
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It is worth noting that the key barriers to the use of automated systems today is not the collection 

of images, rather, the problem lies in reliable analysis, interpretation and evaluation of the data 

reflecting pavement condition. 

 

1.2 Digital Image Processing and Analysis 

In this section we discuss various attempts made by researchers to develop autonomous systems 

capable of producing a more consistent and accurate method for pavement distress detection 

using digital image processing and analysis. The authors’ various contributions will also be 

outlined clearly. The different methods for image processing have been grouped into two main 

categories: Spatial-Domain and Frequency domain methods. 

1.2.1 Spatial-Domain Processing Methods 

These methods manipulate or change the image pixels in space to enhance the image for a given 

application. One way in which images are processed is to look at the neighborhood around the 

pixel that one wishes to manipulate. The neighborhood around a given pixel is made up of the 

surrounding pixels depending on how one defines the pixel’s neighborhood. In general, the 

neighborhood of 𝑖  is the set of all 𝑗 such that 𝑗 is a neighbor of  𝑖  . The value of a pixel 𝑥𝑖, with 

a sum of all  𝑗 such that  𝑗 is in the neighborhood of 𝑖 (𝑁𝑖) is given by: 

𝑔(𝑥𝑖) =∑𝛼𝑗𝑥𝑗
𝑗

 

where 𝛼𝑗 is the weighting of a particular neighboring pixel or voxel and 𝑥𝑗 is the value of the 

neighboring pixel or voxel. Spatial-domain methods are commonly used for preprocessing and 

enhancement of the distress images. 
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Step 1 

Goal: filter the top left-most pixel 

Filter: Brown regions are not used in the first step of filtering 

Image: regions with aqua color shows pixels involved in the filtering process 

Spatial Filtering and results: linear combination of filter weights and pixel values. 

 

 

Step 2 

Goal: Filter the second pixel in the first row. 

Filter: Brown regions are not used in the first step of filtering 

Image: regions with aqua color shows pixels involved in the filtering process 

Spatial Filtering and results: linear combination of filter weights and pixel values. 
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Step 3 

 

 

Final Result 

 

 

1.2.1.1 Preprocessing and Enhancement 

Image preprocessing and enhancement are very important steps to developing an efficient 

distress detection system. Its primary goal is to ease the cracking detection process by both 

reducing image noise and enhancing the visibility of linear crack features to improve the quality 
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of information on the distress image.  Pavement surface roughness and non-uniform illumination 

are the key contributors to noise in pavement distress images. Basic operations or techniques 

used belong to median filtering methods, neighborhood averaging and histogram equalization. 

Some algorithms can simultaneously enhance and preprocess the image, while others are 

designed for either preprocessing or enhancement.  

Mraz et al. (2007) developed a statistical filtering method for enhancing crack images. A target 

grayscale image is captured under the same ambient temperature and lighting conditions as those 

of the crack imaging operation. The total noise in a given region of the images is calculated using 

the noise in the image of the grayscale wedge of corresponding intensity. This enhances the 

contrast between cracks and surrounding area (Mraz and Amarasin, 2007). In Subirat et al. 

(2004), a gray-scale morphological filter is used for the preprocessing and enhancement step. In 

grayscale morphology, a pixel is compared to those pixels surrounding it in order to keep the 

pixels whose values are the smallest (in the case of an erosion function) or the largest (in the case 

of a dilation function).These functions can be used to alter the shape of regions by expanding 

bright areas at the expense of dark areas and vice versa. They smoothen gradually varying 

patterns and increase the contrast in boundary areas. An alternative and probably more efficient 

method to gray-scale morphology is histogram or image equalization. This technique has been 

applied in Sy et al., 2008. It improves the contrast of the inspected image and helps thresholding. 

Histogram equalization might fail if the distress image is too noisy. This is because while it 

enhances the visibility of crack objects, it also amplifies image noise at the same time. Median 

approaches to preprocessing have also been introduced in Chambon et al., 2010.  
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1.2.1.2 Linear Spatial Filters 

In general, linear filtering yields a new image whose pixels are a weighted sum of the original 

pixel values, using the same set of weights at each point.  The output image is therefore a linear 

function of the input and also shift-invariant function of the input (i.e. shifting the image three 

pixels to the left, shifts the output also three pixels to the left). The averaging filter is a typical 

linear filter used mainly for image smoothing. It replaces the central pixel with the average pixel 

value of the neighborhood.       

 

 

Figure 1.1: a). 3 by 3 averaging filter b). Gaussian filter. c & d). surface plot and image of 

Gaussian weighting filter function. 

 

The Gaussian filter is another linear filter commonly used in practice. It uses a weighted average 

of pixels in the neighborhood to smoothen the image. Both the Gaussian and averaging filters are 

separable; hence it can be implemented with reduced computational cost. Separable filters can be 

generated using singular value decomposition of the 2D filter. For example: 

 Let g be a 5 by 5 gaussian filter. 

 [U, S, V]  =  svd(g); 

 G_x =  −(U(: ,1)  ∗  √(S(1,1))); 
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 G_y =  −(V(: ,1)′ ∗  √(S(1,1))); 

The Gaussian filtered image is obtained by convolving image 𝑔 with the 1D filter 𝐺_𝑥 in one 

direction and 𝐺_𝑦 in the other direction of the resulting image.  Figure 1.2 shows results of 

smoothing pavement texture information with Gaussian and averaging filter. The averaging filter 

appears to saturate faster than the Gaussian. Also, both filters erase fine crack width information. 

 

Figure 1.2: a). Original image b) filtered image with 5 by 5 Gaussian filter, 𝒔𝒊𝒈𝒎𝒂 = 𝟓 c). 

Filtered image with a 5 by 5 averaging filter. 

1.2.1.3 Median Filtering 

It is well known that using linear filters such as ordinary mean or weighted averaging methods 

for smoothening rough textures and unwanted stains and particles on road surfaces could 

produce serious blurring of images and introduce false crack edges. This can affect successive 

post-processing such as crack width estimation, crack type classification, etc. Although they are 

simple and easy to implement, they is sensitive to extreme values and may render poor results for 

certain types of noise. As a result of the limitations of linear filters, nonlinear filters are widely 
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exploited due to their efficiency in noise attenuation and sharp edge detail preservation. Median 

filters remain the most popular non-linear low pass filter in pavement distress image analysis. 

The filter works by replacing the value of each pixel by the median of nine values of the adjacent 

eight pixels and the pixel itself (assuming a 3 by 3 window median filter). This reduces its 

sensitivity to extreme values and noise. However, compared to neighborhood averaging and 

max-min operations, the median filter is time consuming. This makes it unsatisfactory for many 

speed-critical applications. “Separable median” filters are often used to overcome this challenge. 

Separable median works by separating 2D median operations into two 1-D operations - a row 

operation followed by a column operation, or a column operation followed by a row operation or 

two orthogonal diagonal operations. Such operations are true for other methods but not the 2D-

median algorithm. Let us consider for example the 3x3 matrix below; 

𝐴 = [
2 2 1
4 8 9
5 8 9

] 

 Row subsets (𝑅𝑆) = [2 2 1]; [4 8 9];  [5 8 9] 

 Median of Row subsets (𝑚𝑅𝑆) = [2 8 8];  

 Median of Row subsets Median (𝑚𝑅𝑠) = 8 

 𝑀𝑒𝑑𝑖𝑎𝑛 𝑜𝑓 𝐴 = [1 2 2 4 5 8 8 9 9] = 5; 

The results show that separable medians may not yield the same results as the 2D overall 

median. Conventional application of the median operation is based on two key assumptions: 

1. A noise-free image consists of locally smoothly varying areas separated by edges. 

2. A noisy pixel has a tendency for very high or very low gray value compared to its 

neighbors. 
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In most pavement distress images, cracked pixels have very low gray values. Assuming that very 

low pixel values are noise may lead to blurring or smoothening of uncorrupted cracked pixels. In 

view of this, we develop two important solutions by: 

1. Considering noisy pixels to be of values x times higher than the median value of the 

neighborhood pixels. Then we separate low value crack information from noise with 

similar values using morphological sets.  

2. Avoiding filtering of uncorrupted pixels through adaptive median filtering. 

 

1.2.1.4 Histogram Equalization 

Histogram equalization expands the pixel value distribution of an image so as to increase 

perceptional information. This increases the local contrast of pavement images, especially when 

the usable data of the image is represented by close contrast values. In distress image analysis, 

histogram equalization improves the efficiency of the crack detection algorithm by reducing its 

dependence on illumination condition and the type of textures on the road surface. While it may 

improve image contrast, it can also cause saturation of certain regions of the image. This has led 

to the introduction of adaptive algorithms discussed in the following section.  
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Figure 1.3: a) Original histogram of a pavement image, b) Histogram after the Histogram 

Equalization. 

 

Histogram Equalization 

 Compute the histogram 𝒉(𝒓𝒌) of the image over the range [0 G]. Where G=255, 

𝒉(𝒓𝒌) = 𝒏𝒌 

𝒓𝒌is the 𝒌𝒕𝒉 intensity level in the interval [0, G] and 𝒏𝒌 is the number of pixels in the 

image whose intensity level is 𝒓𝒌 

 Compute the CDF of the resulting histogram and normalize it over [0 255] range. 

𝒉𝒄𝒅𝒇 = 𝒄𝒖𝒎𝒔𝒖𝒎[𝒉(𝒓𝒌)] 

 Finally compute the histogram equalized image using the formula 

𝒉(𝒗) = 𝒓𝒐𝒖𝒏𝒅(
𝒄𝒅𝒇(𝒗) − 𝒄𝒅𝒇𝒎𝒊𝒏
(𝑴 ∗ 𝑵) − 𝒄𝒅𝒇𝒎𝒊𝒏

∗ (𝑳 − 𝟏)) 

where 𝒄𝒅𝒇𝒎𝒊𝒏 is the minimum value of the cumulative distribution function and 𝑳 is the 

number of grey levels used (256). 
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A simple variation of the algorithm above is to perform histogram equalization for local regions, 

dividing pixels in the neighborhood into low and high contrast pixels so as to avoid saturating 

pixels. This method is called Block-based adaptive histogram equalization.   

Contrast Limited Adaptive Histogram Equalization(Zuiderveld, 1994) is a popular variation of 

adaptive histogram equalization for enhancing the local contrast of an image. It operates on small 

regions of the image rather than the whole image. The method has three main parameters: a 

block size is required to define the local region around a pixel for which the histogram is 

equalized. It is important that the block size is bigger than the size of the features to be 

preserved.  On the other hand the number of histogram bins within each block must be less than 

the number of pixels in the block. A maximum slope value is used to limit the contrast stretch in 

the intensity transfer function.  

http://en.wikipedia.org/wiki/CLAHE
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Figure1.4: First row is the original image and its histogram. The second row is the result after 

adaptive histogram equalization. Uniform distribution of pixel values in the histogram. Crack 

information is more pronounced and easily detectable. 

 

Different variations of histogram equalization yield an appreciable enhancement result. The basic 

HE algorithm is not recommended in situations where specular reflections or dark stains exist on 

the pavement image. This is because of the problem of pixel value saturation. The choice of an 

adaptive algorithm should be dependent on the computation complexities involved.  
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Figure 1.5: a). Normal histogram equalization. b). Block-based adaptive histogram equalization 

c). Contrast-limited adaptive histogram equalization. 

 

1.2.1.5 Segmentation and Binarization 

Traditional methods for extracting crack features can be grouped into two broad categories: 

Thresholding and Edge detection. They all detect distresses in the space-domain by a process 

that divides the original image into two main subgroups (cracked and non-cracked pixels). 

Extensive research has been carried out on this during the past two to three decades. In Chan et 

al., 1989), the proposed thresholding technique is based on statistical parameters of the image. 

Subsequent binarization is achieved by using the parameters to separate cracked regions from 

non-cracked ones. The algorithm has been successfully tested against linear and pattern cracks. 

Cheng et al., 2001 utilizes neural networks to determine the optimum threshold value for 

segmentation. The mean and standard deviation of the image are used as parameters to train 

neural networks for threshold selection. The algorithm proposed in Cheng et al., 1999, could be 

considered as a fuzzy set theory used to detect and segment cracks based on the fact that crack 
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pixels are always darker than their surroundings Cheng et al., 1999. Wang and Gong, 2005 first 

applied an adaptive thresholding method for segmentation. Then morphological closing was 

applied, followed by a noise reduction method applied to 5 by 5 pixel neighborhoods to discard 

small size noises from actual cracks and unconnected dots on the image. Other methods include 

the Otsu method, regression method, relaxation method, etc. 

Thresholding is the most commonly used technique in distress image segmentation. Due to road 

conditions such as different distress types, different lighting or weather conditions and different 

external material on pavement surfaces, pavement images almost always have non-uniform 

backgrounds. Therefore thresholding algorithms should be preceded by an enhancement 

algorithm. A combination of space and frequency filtering techniques such as histogram 

equalization (or Median Filtering) and the Fast Fourier Transform could be used to standardize 

the background before segmentation is carried out.  

 

1.2.1.6 Segmentation Algorithm Examples 

Otsu Thresholding Method: This is an unsupervised method of thresholding using information 

from the gray-level histogram. It works well when the distress image histogram is bimodal. The 

algorithm searches for the threshold that minimizes the intra-class variance, defined as the 

weighted sum of variances of the two classes (background and object). 

𝜎𝐵
2 = 𝑤𝑏(𝑡)𝜎𝑏

2(𝑡) + 𝑤𝑜(𝑡)𝜎𝑜
2(𝑡)  
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Regression Method:  This method relates the optimal threshold for a given image to the mean 

and standard deviation of the gray level distribution through regression analysis. It is a trial and 

error approach which requires the user to manually set thresholds until a visually pleasing output 

is obtained. The process is applied to different images while taking note of the optimal threshold, 

mean and standard deviation. A final regression equation designed using the equation below will 

then be used to obtain optimal thresholds for segmenting the image database. 

�̅� = 𝑘 + 𝑎1𝜇 + 𝑎1𝜎
2 

1.2.2 Frequency and or time-based Image Analysis methods 

Information within a distress image could be overwhelming and complex. It may contain 

different types of distresses; surface texture could also be different at different locations; there 

could be combinations of non-uniform backgrounds, different lighting and weather conditions. 

This is likely to create problems for space-domain processing methods. Frequency-based 

techniques transform the different information in the image into narrow bands which makes 

these methods easy for isolating useful information for analysis.  

A key foundation for linear filtering in both spatial and frequency domains is the convolution 

theorem. In Fourier analysis, the convolution of two functions 𝑓(𝑥, 𝑦) and ℎ(𝑥, 𝑦) is equal to the 

inverse of the product of the transform of the two functions in frequency domain. That is: 

𝑓(𝑥, 𝑦) ∗ ℎ(𝑥, 𝑦) ≪=≫ 𝐻(𝑢, 𝑣)𝐹(𝑢, 𝑣) 

Conversely, the product of the two functions in the spatial domain is the same as the convolution 

in the frequency domain. 

𝑓(𝑥, 𝑦)ℎ(𝑥, 𝑦) ≪=≫ 𝐻(𝑢, 𝑣) ∗ 𝐹(𝑢, 𝑣) 
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𝐻(𝑢, 𝑣)is usually referred to as the filter transfer function. In spatial domain ℎ(𝑥, 𝑦) is the filter 

mask. The basic idea of frequency domain filtering is to select a filter transfer function 𝐻(𝑢, 𝑣) 

that modifies the transformed image in a specified manner. Two main frequency and or time 

based methods will be described in the following sections: the Fourier Transform and the 

Wavelet Transform. 

 

1.2.2.1 Fourier Transform 

The Fourier Transform decomposes an image into its sine and cosine components. In the Fourier 

domain, each point represents a particular frequency contained in the spatial domain image. A 2-

D discrete Fourier transform 𝐹(𝑢, 𝑣) is given by: 

𝐹(𝑢, 𝑣) = ∑ ∑𝑓(𝑥, 𝑦)𝑒−𝑗2𝜋(
𝜇𝑥

𝑀
+
𝑣𝑦

𝑁
)

𝑁−1

𝑦=0

𝑀−1

𝑥=0

 

   For 𝑢 = 0,1,2, …… ,𝑀 − 1 and 𝑣 = 0,1,2, ……… ,𝑁 − 1 

  

The inverse Fourier transform is given by: 

𝐹(𝑥, 𝑦) =
1

𝑀𝑁
∑ ∑𝐹(𝑢, 𝑣)𝑒𝑗2𝜋(

𝜇𝑥

𝑀
+
𝑣𝑦

𝑁
)

𝑁−1

𝑣=0

𝑀−1

𝑢=0

 

   For 𝑥 = 0,1,2, …… ,𝑀 − 1 and 𝑦 = 0,1,2, ……… ,𝑁 − 1, 𝐹(𝑢, 𝑣) is 

sometimes called the Fourier coefficients. 
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Pavement texture smoothening and feature extraction with Fourier Transform 

 Subdivide the image into small processing blocks (64 by 64 pixels). This enhances 

processing speed of the system. 

 Obtain the Fourier transform for each block with padding: 

𝑭 = 𝑭𝑭𝑻_𝟐𝑫(𝒇(𝒙, 𝒚), [𝑷 𝑫]): Where 𝑷 and 𝑫 is the resulting row and column 

size of the processed image after padding. 

𝑷 ≥ 𝒓𝒐𝒘_𝒍𝒆𝒏𝒈𝒕𝒉(𝒇) + 𝒓𝒐𝒘_𝒍𝒆𝒏𝒈𝒕𝒉(𝒉) ; 𝒉 is a low pass transfer filter 

function. 

𝑸 ≥ 𝒄𝒐𝒍𝒖𝒎𝒏_𝒍𝒆𝒏𝒈𝒕𝒉(𝒇) + 𝒄𝒐𝒍𝒖𝒎𝒏_𝒍𝒆𝒏𝒈𝒕𝒉(𝒉) 

 Generate a low pass filter function,𝑯𝒍𝒑, of size 𝑷 𝒃𝒚 𝑸 as shown in figure 1.6. Low pass 

filters are used for enhancement while high pass filters are for edge detection. 

• For crack feature extraction, the filter function should be high pass, 𝑯𝒉𝒑 

𝑯𝒉𝒑 = 𝟏 −𝑯𝒍𝒑 

 Multiply the transform 𝑭 by the filter 𝑯 to attenuate noise and very high frequencies. 

Obtain 

𝑮 = 𝑭𝑭𝑻_𝟐𝑫_𝑰𝑵𝑽(𝑯.∗ 𝑭) 

  𝑭𝑻_𝟐𝑫_𝑰𝑵𝑽is given by the equation above 
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Figure 1.6: A plot of different transfer filter functions. A): Ideal low pass filter. B). Butterworth 

filter C). Gaussian filter. 

 

Figure 1.7: a). Original Image. The remaining images are results of frequency filtering using 

b).Ideal low pass (𝐜𝐮𝐭𝐨𝐟𝐟 𝐟𝐫𝐞𝐪𝐮𝐞𝐧𝐜𝐲 = 𝟑% 𝐦𝐚𝐱 𝐬𝐢𝐳𝐞 𝐨𝐟 𝐢𝐦𝐚𝐠𝐞). c).Butterworth filter 

(𝐜𝐮𝐭𝐨𝐟𝐟 𝐟𝐫𝐞𝐪𝐮𝐞𝐧𝐜𝐲 = 𝟑% 𝐦𝐚𝐱 𝐬𝐢𝐳𝐞 𝐨𝐟 𝐢𝐦𝐚𝐠𝐞) and d).Gaussian filter. 

 

1.2.2.2 Feature Extraction 

Crack features can be obtained by thresholding the high pass image. It should be noted that the 

high pass image is generated from the low pass image, not the original image. This is to reduce 

the effect of noise in our results. Results are shown in figure 1.8 below.  
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Figure 1.8: a). Original Image. The remaining images are results of frequency filtering using 

b).Ideal high pass (𝐜𝐮𝐭𝐨𝐟𝐟 𝐟𝐫𝐞𝐪𝐮𝐞𝐧𝐜𝐲 = 𝟑% 𝐦𝐚𝐱 𝐬𝐢𝐳𝐞 𝐨𝐟 𝐢𝐦𝐚𝐠𝐞) – introduces artifaces, high 

fidelity to crack widths, however, thresholding may be difficult. C). Butterworth filter 

(𝐜𝐮𝐭𝐨𝐟𝐟 𝐟𝐫𝐞𝐪𝐮𝐞𝐧𝐜𝐲 = 𝟑% 𝐦𝐚𝐱 𝐬𝐢𝐳𝐞 𝐨𝐟 𝐢𝐦𝐚𝐠𝐞) - reduced crack widths, noise well suppressed. 

d).Gaussian filter – high fidelity to crack widths. 

 

1.2.2.3 Limitation of Fourier 

  

The Fourier transform gives information only 

in the frequency or time domain, but not 

simultaneously. As an example, the diagram 

on the left shows different frequencies that 

may exist in a dataset, however, it is not 

possible to know where they occur in the time 

domain. As a result it is challenging to use 

when the local statistics of the image being 

processed are highly non-stationary. This 

results in the introduction of multiresolution 

decomposition methods which can give time-

frequency information helpful for analysis of 

nonstationary images. 
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1.2.2.4 Wavelet Methods 

 

The wavelet transform can be described as a standalone tool for pavement distress analysis. This 

is mainly because all the key parameters required for road condition assessment can be obtained 

in the wavelet domain. The following section briefly describes application of the wavelet 

transform for processing distress images.  

Wavelet Image Processing Summary: 

 Image is decomposed into k levels (3 levels usually used); 𝑯𝑳𝒌, 𝑳𝑯𝒌, 𝑯𝑯𝒌 𝒂𝒏𝒅 𝑳𝑳𝒌. 

𝑯𝑳𝒌, 𝑳𝑯𝒌, 𝑯𝑯𝒌 are called details in the high frequency horizontal, vertical and diagonal 

subbands at level 𝑘 respectively. 𝑳𝑳𝒌denotes the approximation in the low frequency 

subband.  

 

 

 

 

The wavelet methods process distress 

images in both time and frequency domain. 

Comparing to the previous diagram, the 

wavelet, is able to resolve time and 

frequency information simultaneously. 
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Assumptions 

 Distresses which are high frequency components are most likely transformed into high 

amplitude wavelet coefficients. 

 Noise will be transformed into low amplitude wavelet coefficients. 

 Background information is low frequency, hence transformed into high amplitude 

wavelet coefficients in the low frequency subband. 

 

Table 1.2:  Comparison between Wavelet  and Fourier Transform 

Wavelet Fourier 

They both analyze a signal by decomposition into constituent parts  

Signal is decomposed into wavelets, 

scaled and shifted versions of the mother 

wavelet 

Signal is decomposed into a series of sine 

waves with different frequencies 

Irregular in shape and compactly 

supported. This makes it suitable for non-

stationary signals with sharp changes or 

discontinuities. Compactly supported 

nature enables temporal localization of 

signal’s features.  

Sinusoidal wave is smooth and of infinite 

length. 
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1.2.2.5 Image Denoising and Distress Detection 

Image Denoising or approximation in the wavelet domain is obtained by removing low 

amplitude coefficients (setting them to 0). Denoising in the wavelet domain involves applying 

hard or soft thresholds to the detail coefficients of the wavelet transform. An inverse transform of 

the result will yield the denoised image. Figure 1.9 below shows the result of denoising a 

pavement distress image using a hard threshold. Cracked pixels can easily be differentiated from 

the background. Texture information is, however, still persistent and could affect segmentation.  

For distress detection and segmentation, the following procedure is followed: 

 Compute the wavelet modulus𝑀𝑘(𝑥, 𝑦): a combination of horizontal, vertical and 

diagonal details from the wavelet coefficients. 

𝑀𝑘(𝑥, 𝑦) = √𝐻𝐿𝑘
2 (𝑥, 𝑦) + 𝐿𝐻𝑘

2(𝑥, 𝑦) + 𝐻𝐻𝑘
2(𝑥, 𝑦): 

 Binarize the wavelet modulus image 

𝐷1(𝑥, 𝑦) = (
1      𝑖𝑓 𝑀1(𝑥, 𝑦) ≥ 𝑘
0     𝑖𝑓 𝑀1(𝑥, 𝑦) < 𝑘

 

𝐷1(𝑥, 𝑦) is the binarized image, and 𝑘 = √2𝜎2log (𝑛); is the threshold for wavelet 

modulus. 𝜎 is the noise power and 𝑛 is the size of the subband containing the contributed 

wavelet coefficient. 
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Figure 1.9: Results of image denoising based on hard thresholding of Haar wavelet transform 

coefficients. 

Figure 1.10 Below shows the efficiency of the procedure described above. In the absence of 

severe scene illumination and rough texture, the performance of the wavelet is ideal although 

fine cracks could be compromised during the denoising process. The algorithm’s performance in 

the presence of shadows is not very appreciable as shown in the last column of figure 1.10 

below. The computational cost of using the wavelet for crack detection is relatively low as 

compared to other adaptive methods like empirical mode decomposition and adaptive median 

and thresholding algorithms.  
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Figure 1.10: Distress detection in the wavelet domain. 

 

1.3 Summary 

The chapter presented a comprehensive review and advancements in current algorithms for 

automatic distress image processing and detection. Below is a list of key achievements and 

challenges of current detection systems. 

Achievements 

 In spite of the idealistic assumptions of traditional systems, they provide a safe, objective 

and relatively more effective means of conducting road condition surveys. Rapid 

advancements in pavement image data acquisition have resulted in the development of 
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high resolution cameras which are able to detect sub-millimeter crack widths and 

eliminate shadowing problems. 

 Image enhancements through adaptive spatial filters are strongly recommended due to 

their easy manipulation. The use of adaptive median filter and histogram equalization 

reduces smoothing of uncorrupted pixels. This ensures that fine cracks are not erased 

during the preprocessing and enhancement process. Most importantly, combining spatial 

filters with frequency domain filtering improved the denoising process.  

Challenges 

 Feature Extraction: Firstly, traditional gradient based segmentation and thresholding 

algorithms are sensitive to noisy pixels and specular effects on the surfaces of the 

pavement image. As a result, false cracks could be detected on non-cracked images. 

Usually, robust post-processing algorithms are suggested which increases the complexity 

of the system. Secondly, during the crack detection process, pavement cracks are 

assumed to be the objects with lowest pixel values. This may not be necessarily true if the 

pavement image acquired is corrupted with noise. Also, thresholding algorithms assume 

slow pixel value variability in the pavement images. 

 Frequency Based Processing: Although the application of the wavelet transform for 

pavement crack detection is efficient for images that are highly non-stationary, the choice 

of a basis function remains an important factor in the quality of the processed output. 

There exist no automated means for selecting basis functions for different types of 

images.  
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Chapter 2 

PAVEMENT DISTRESS IMAGE ANALYSIS USING MULTI-

RESOLUTION INFORMATION MINING 

 

2.0. General Background 

The consistency and accuracy of road condition rating and analysis has considerably improved 

with the introduction of Automated Digital Image Processing (ADIP) routines discussed in 

Chapter 1. The ADIP presents more objective, robust and faster procedures than traditional 

manual rating methods. The ADIP techniques are, however, confronted with a number of 

challenges, some of which are a result of idealistic assumptions used to develop the algorithms 

which run the systems. For example, in most ADIP systems, images are acquired with special 

lighting systems at night, off-peak hours or under very controlled environments. This is mainly 

to avoid the introduction of artifacts or noise from trees or objects by the road side. Such a well-

controlled environment that could isolate noise during the acquisition process is very difficult to 

achieve in practice; hence, pavement images are almost always corrupted with background 

illumination variation from single or multiple sources. During the crack detection process, 

pavement cracks are assumed to be the objects with lowest pixel values. This may not be 

necessarily true if the pavement image acquired is corrupted with noise. Also, thresholding 

algorithms assume slow pixel value variability in the pavement images. 
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Such assumptions and restrictions could affect the ADIP’s efficiency and overall, its ability to 

distinguish between the different types of cracks or image background information such as 

shadows, oil stains, pavement texture, etc. An improved ADIP should therefore be able to clearly 

distinguish between three key pavement image components; background, pavement texture and 

pavement cracks. This challenge calls for image analysis techniques which have no special 

requirements for the input pavement image; it should be data-dependent and adaptive. 

In recent years, extensive research has been conducted into more efficient ADIP methods such as 

the use of Wavelet and Fourier transforms. These techniques are usually combined with edge 

detection and or thresholding techniques to extract cracks from images. Abdel-Qader et al., 2003 

and Hutchinson and Chen 2006 present a comprehensive review and comparisons of the 

effectiveness of these transform techniques and the various edge detection techniques such as the 

Sobel filter and Canny filter. Despite the strength of these techniques, they are not fully adaptive. 

Fourier transforms and most traditional denoising or smoothening filters assume that the 

localized image statistics are stationary. They are therefore ineffective when applied to pavement 

images with a wide range of crack widths; smaller cracks will be erased. The choice of a pre-

determined mother wavelet also renders Wavelet transforms not completely data driven and fully 

adaptive. 

With regard to separating background and pavement texture information from the cracks, other 

improved methods such as the median filter-based approach developed in Fujita et al. (2009), 

Bayesian approaches, and multiscale space techniques (Xianglong and Qingquan 2006) are also 

being investigated. In Fujita et al. (2006), a median filtering approach is used to smoothen the 

pavement image texture while isolating pavement image background variations (especially 

shadows) simultaneously. This preprocessing technique, although effective, is limited to images 
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acquired in very simplistic or ideal environments. In complex scenarios where pavement texture 

is very rough with different sources of illumination, the median filter erases some crack 

information and also could lead to saturation of light areas. Several similar proposed 

methodologies (Liang and Salari 2009, Cheng and Miyojim1998) suffer the same challenges 

mainly because they assume that the background illumination may vary smoothly. A 

comprehensive survey of design and implementation issues related to pavement distress analysis 

systems is discussed by Wang et al., (2004). 

Pavement images are acquired with a variety of devices under non-uniform distributed lighting 

(Cheng and Miyojim 1998). The problem with varying illumination usually results from the use 

of one or more primary sources of light such as camera flashes, or special lights in current 

pavement distress detection systems. It is common to use a flash especially when there is shade 

on the pavement. The problem arises with uneven coating surfaces where using flash may create 

a number of specular reflections in the image acquired. As a result, most detection systems 

undergo very cumbersome and laborious pre- and post-processing routines which affect the 

integrity of the post-processed image. In this work, a more robust approach is developed to 

standardize corrupted images instead of imposing certain generic assumptions about the images. 

Recent development of high resolution cameras and laser-based image acquisition techniques has 

improved pavement image quality and resolution of cracks in classical pavement crack detection 

systems (Lee 2005, Wang 2007, and Kim 2009). These advancements, however, introduce a 

major challenge in pavement image analysis. Improving the resolution of cracks also increases 

the amount of noise contributed from the pavement texture. A common tendency to reduce the 

effect of texture noise is to use low spatial resolution images. Apart from the fact that low spatial 

resolution images might erase crack edges, the noise in pavement images does not always reside 
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in a particular frequency; they are intermittent. For example, pavement textures (noise in this 

case) could be smaller, similar or wider than the crack itself. In this case, a normal convolution 

with certain pre-defined basis functions will not be able to filter out the noise in the image. To 

efficiently extract and classify pavement crack textures, it is necessary to emphasize the specific 

features of interest while other redundant information is de-emphasized. This results in the need 

for multi-resolution image information mining for optimal, fast and reliable pre-processing of 

images, which is particularly important for images recorded in real world situations. 

Multiresolution analysis allows for the preservation of an image according to certain levels of 

resolution or blurring. Broadly speaking, multiresolution analysis allows for zooming in and out 

on the underlying texture structure (Alzu’bi and A. Amira, 2010). Therefore, the texture 

extraction is not affected by the size of the pixel neighborhood. In this chapter, we introduce the 

application of a unique multiresolution image analysis technique known as Bidimensional 

Empirical Mode Decomposition (BEMD). BEMD is a 2D extension of the EMD explained in 

chapter 2. BEMD can be seen as a filtering process which results in a set of narrow band 

components called Bidimensional Intrinsic Mode Functions (BIMFs). These BIMFs essentially 

reflect variations in the spatial frequency of the original pavement image. We therefore use this 

capability to extract various linear patterns of interest while isolating the slowly varying 

background pavement image information.  

BEMD was first applied to pavement images in (Ayenu-Prah and Attoh-Okine 2008) mainly for 

the purpose of denoising. This work improves the denoising methodology proposed and explores 

new areas for the application of BEMD in pavement image analysis. One major challenge of 

using the BEMD technique has to do with the reconstruction of the BIMFs with a goal of 

obtaining the desired objective of decomposition. So far, reconstruction techniques employed in 
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the EMD could be optimal (Weng and Barner 2007), complete (Bhagavatula and Savvides 2007) 

and selective (Ayenu-Prah and Attoh-Okine 2008) procedures. Complete reconstruction 

techniques could produce redundant information in the composite image due to the inclusion of 

detailed components that might not offer good discrimination ability. This could also slow the 

system because it requires more computation time. Selective procedures lack optimality and are 

also susceptible to false edge generation. Selective procedures compromise either the frequency 

or spatial resolution of the selected image. A procedure that compromises between the two 

(spatial and frequency resolution) is required for accurate classification. Optimal reconstruction 

techniques remain the future direction for BIMF reconstruction. However, current methods such 

as Least Mean Square (LMS) technique require a “desired image” to generate reasonable weights 

for reconstruction; this may be impractical to obtain under real world situations. 

The first goal of this chapter is to develop an image processing system based on the 

multiresolution analysis techniques, BEMD, that will simultaneously and adaptively denoise 

(smooth textures and isolate foreign objects) and standardize the background (remove 

background illumination) of a pavement image without any prior requirement for the image. The 

second goal is to reconstruct a composite image which records only salient information (crack 

features) from both fine and coarse scales of the BIMFs while refraining from combining 

complementary and redundant information. 

2.1. Bidimensional Empirical Mode Decomposition 

The Bidimensional Empirical Mode decomposition is a 2-dimensional extension of empirical 

mode decomposition described in earlier chapters. To avoid repetition, we summarize the 

methodology of the BEMD in figure 2.1 below. 
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Figure 2.1: The sifting process (Klionski et al., 2008) 

 

Extrema Detection and Interpolation:  Identify local maxima, 𝑴𝒂𝒙  and minima, 𝑴𝒊𝒏 using a 3 

by 3 neighborhood window.  Using Radial Basis Function interpolation, construct a maxima and 

minima envelope from the extrema detected. 

   𝐸𝑚𝑎𝑥(𝑥, 𝑦) = 𝑓𝑚𝑎𝑥(𝑀𝑎𝑥, 𝑥, 𝑦)     (1) 

   𝐸𝑚𝑖𝑛(𝑥, 𝑦) = 𝑓𝑚𝑖𝑛(𝑀𝑎𝑥, 𝑥, 𝑦)     (2) 

The remaining steps are similar to the ones discussed in chapter 2.  
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2.2. Pavement Distress Image Processing in BEMD Domain 

In chapter 1, we discussed various techniques for preprocessing the distress images in order to 

enhance the efficiency of crack object detection algorithms. In the BEMD domain, these 

techniques can be implemented in a more efficient and simpler manner. 

2.2.1. Image Enhancement 

In spite of recent advances leading to the use of laser-based imaging to acquire quality (no 

shadows) images, low-cost pavement distress surveying (Ahmed and Haas 2010) still remains 

attractive as long as there are efficient algorithms to standardize the images acquired. The 

varying background brightness of a pavement distress image could be caused by shadows of 

road-side objects, uneven lightening from image acquisition equipment or even the type of 

material used in constructing the pavement. An important step in pavement image background 

removal is the characterization of the different variations in the image. An intensity matrix from 

a pavement distress image usually contains three types of variations: (1) Incident non-uniform 

illumination effects; (2) Pavement texture which usually consists of the pavement distresses and 

irregularities such as oil stains and other materials on the surface; (3) Image noise which is 

usually caused by poor quality data acquisition, heterogeneous materials and granularity.  Hence, 

a generalized pavement image model is usually expressed as:  

 𝐼(𝑥, 𝑦) = 𝐼𝑏𝑎𝑐𝑘(𝑥, 𝑦) + 𝐼𝑐𝑟𝑎𝑐𝑘(𝑥, 𝑦) + 𝐼𝑛𝑜𝑖𝑠𝑒(𝑥, 𝑦)   (3) 

𝐼𝑏𝑎𝑐𝑘is the background illumination or variation; 𝐼𝑛𝑜𝑖𝑠𝑒is the image noise and 𝐼𝑐𝑟𝑎𝑐𝑘epresents the 

cracks in the image. In this section we assume that 𝐼𝑛𝑜𝑖𝑠𝑒is the image noise which is introduced 

mainly by pavement texture (not from poor data acquisition) and other irregularities such as oil 

stains and other materials on the surface which might be falsely detected as cracks. We seek to 
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smoothen out as much as possible the irregularities introduced by the pavement’s texture without 

erasing the cracks.  

Usually, image noise is characterized as a high-frequency and low-to medium amplitude signal, 

however, the behavior of 𝐼𝑛𝑜𝑖𝑠𝑒might be different for different distress images. These high 

frequency and low amplitude data are usually extracted into the low index Intrinsic Mode 

functions by BEMD. This is, however, dependent on the type of pavement being analyzed. 

Sometimes this component is mixed with fine crack features as shown in the figure 2.2 &2.3 

below.   

.  

Figure 2.2: First intrinsic mode function and its mesh plot. The mode contains both texture 

features and fine edges of crack features. 

Crack features 𝐼𝑐𝑟𝑎𝑐𝑘(𝑥, 𝑦)are usually collated in more than a single IMF. In later sections, we 

will describe how to combine crack information from the different scales to obtain just the 

salient crack information.  
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Figure 2.3: Modes containing Crack features 

 

The pavement image is standardized by removing any variations in background 

illumination 𝐼𝑏𝑎𝑐𝑘(𝑥, 𝑦). The characterization of illumination in images is widely known in the 

literature. Illumination effects are usually partitioned into two types, shadowing and specular 

reflections.  Since the shadowing darkens regions of an image, it creates low-valued regions 

while specular reflections create relatively high-valued regions. These are effectively the largest 

magnitude extrema in the images, but are also the most slowly changing (Bhagavatula and 

Savvides, M. 2007).  Many solutions and improvements to image recognitions under 

illumination-variant conditions have been proposed (Belhumeur et al., 1997, Chen et al., 2002, 

Gross et al., 2002). Yet, the complexities and assumptions of idealities in many of these methods 

often limit their overall applicability, and hence are not ideal. A generic test of an ideal method 

for background standardization is one that preserves the crack widths, lengths and directions in 
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the original image. In the following experiment, we illustrate how BEMD provides a simple, yet 

efficient way of removing the backgrounds of pavement images acquired under different forms 

of illumination variation using low-cost cameras and laser devices. 

 

2.2.1.1. Single Source Background Illumination Removal 

For an image corrupted from single source illumination, the shadows and specular effects usually 

have similar intensities. This does not necessarily imply that the shadows are created from a 

single object; it could be from different objects, however, the intensity of the shadows they cast 

on the image is similar. Figure 2.4 and 6 shows examples of an image corrupted from a single 

and multiple sources. The single source clearly has a very simple bimodal histogram. This makes 

its characterizing or modeling more straightforward than from the multisource. As already 

explained, in the BEMD domain, each different IMF reveals the state of the image in varied 

scales. The highest-frequency components usually contain the noise and the fine edges in the 

image. The intermediate components extract the widths and generic shapes of linear patterns in 

the image, while the  high-indexed IMFs collate effectively the slowly changing and largest 

magnitude extrema in the images. Hence, the low- and high-valued regions in the image will be 

collated in these IMFs. Figure 2.4b shows the background illumination component extracted by 

BEMD. 
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Figure 2.4: a). Pavement image corrupted by a single source illumination with its histogram. b). 

Illumination component extracted by BEMD. 

 

From figure 2.5, the BEMD almost perfectly restores the corrupted image without compromising 

any other spatial features such as the width and shape of the cracks on the surface. Also, the 

implementation is very simple and straightforward; the restored image is obtained by a linear 

sum of IMF 1 and IMF 2.  This is adaptive and data-dependent and can be applied for all images 

corrupted from a single source illumination variation.  

Case 1: When image trend or illumination is separated into a single IMF. 

 𝐵𝐼𝑀𝐹𝑟𝑒𝑠𝑡𝑜𝑟𝑒𝑑 = ∑ 𝐵𝐼𝑀𝐹𝑚
𝑛−1
𝑚=1 ;       (4) 

where  𝐵𝐼𝑀𝐹𝑟𝑒𝑠𝑡𝑜𝑟𝑒𝑑 is the restored image 

a) 
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Case 2: When image trend or illumination is separated into more than a single IMF. 

 𝐵𝐼𝑀𝐹𝑟𝑒𝑠𝑡𝑜𝑟𝑒𝑑 = ∑ 𝐵𝐼𝑀𝐹𝑚
𝑛−∑ 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑖
𝑚=1 ;       (5) 

where  𝐵𝐼𝑀𝐹𝑟𝑒𝑠𝑡𝑜𝑟𝑒𝑑 is the restored image 

 

 

Figure 2.5: Original image, the IMFs, the illumination variation extracted and the restored image 

 

2.2.1.2. Multisource Source Background Illumination 

Images corrupted from multiple sources are more difficult to handle compared to those discussed 

in the previous section. In practice, a pavement image could also be corrupted from different 

sources creating sharp discontinuities between gray level pixels. In figure 2.6b, the histogram of 

the image corrupted from multisources is not completely bimodal. The shadowy regions appear 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 3: presents the original image, the IMFs, the illumination variation extracted and the 

restored image. 

 

Original Image IMF 1 IMF 2 

Illumination Restored 
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to have disparate intensity values. Note that the shades in the image have different intensities and 

hence don’t have unique frequency characteristics. This is a challenge to the EMD because the 

different shades might not be collated into a single image. Initial decomposition results for the 

image are shown in figure 2.7. The restored image (figure 2.7f) still has some shadows on it. The 

difference in shadow intensities causes them to be collated in different IMFs, other than the 

residue. This will create difficulties in thresholding and segmentation (the shadow might appear 

as a crack). It is worth noting that this challenge defies our basic assumption that background 

variations are smooth variation high-low valued regions in the image.  

 

Figure 2.6: Pavement images corrupted by a) a single source illumination with its histogram and 

b) a multiple source illumination with its histogram. 
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Figure 2.7: Original image, the IMFs, the illumination variation extracted and the restored image. 

To handle this challenge, we combine the EMD algorithm with a least mean square 

approximation approach to adaptively restore the corrupted image (see Table 4.1). The key 

objective is to approximate the BIMFs to a high-pass (contains only high frequency information, 

no shadows) of the original image. The result of applying the procedure outline in figure 2.9 is 

shown in figure 2.10.  

Although weighting the low spatial BIMFs improved the results, the process is not perfectly 

automatic and adaptive. It requires working with extensive training data to estimate the optimal 

threshold value for the decomposition’s stopping criterion. This defect was improved by 

restoring 17 pavement images with different levels of corruption. The histogram of the optimal 

threshold values used in each case is show in figure 2.8. From the plot, the threshold fluctuates; 

        
a) Original         b) IMF 1           c) IMF 2           

 

       
d) IMF 3          e) Illumination    f) Restored 
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however, it is predominantly between 0.6 and 0.8. The restored image also has a faint shadow on 

it. The reason is that because we are approximating the BIMFs to the high pass image, our 

resulting image will not be exactly the same as the high pass image. There may still be some 

light shadows present; however, these shadows are not a challenge as before, since they can 

easily be thresholded out. 

 

Figure 2.8: Histogram plot for the effective thresholds for SD criterion 

 

 

 

 

0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Effective SD Threshold

F
re

q
u

e
n

c
y



  

59 
 

Multisource Corrupted Image Normalization 

Filtering: 

1. Decompose the original image into a finite number of IMFs 

2. High-pass filter the original image. This suppresses all shadows or low-pass 

information. Set this as the desired image, 𝒅(𝒙, 𝒚). 

Initialize a weight matrix? and determine the error of approximation: 

3. Initialize 𝒘𝒋(𝒙, 𝒚) = 𝟎; 𝒋 = 𝟏; 

4. Compute the error of approximation 

𝒆(𝒙, 𝒚) = 𝒅(𝒙, 𝒚) −∑𝒘𝒋(𝒙, 𝒚) ∗ 𝒄𝒊(𝒙, 𝒚)

𝒏−𝟏

𝒊=𝟐

 

5. Compute pixel by pixel weights that minimizes the error of approximation 𝒆(𝒙, 𝒚) 

𝒘𝒋+𝟏(𝒙, 𝒚 + 𝟏) = 𝒘𝒋(𝒙, 𝒚) + 𝝁 ∗ 𝒆(𝒙, 𝒚) ∗ 𝒄𝒊(𝒙, 𝒚) 

𝛍 𝐢𝐬 𝐚 𝐩𝐨𝐬𝐢𝐭𝐢𝐯𝐞 𝐧𝐮𝐦𝐛𝐞𝐫 𝐜𝐨𝐧𝐭𝐫𝐨𝐥𝐥𝐢𝐧𝐠 𝐭𝐡𝐞 𝐜𝐨𝐧𝐯𝐞𝐫𝐠𝐞𝐧𝐜𝐞 𝐬𝐩𝐞𝐞𝐝 

6. Determine the restored image: 

𝑹(𝒙, 𝒚) = ∑𝒘𝒊(𝒙, 𝒚) ∗ 𝒄𝒊(𝒙, 𝒚)

𝒏−𝟏

𝒊=𝟐
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Figure 2.9: Flow of pixel-by-pixel weighting. 

 

 

Figure 2.10: Original image, restored image. 

 

       

                     Original            Restored 
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2.2.2. Image Denoising and Reconstruction for Crack Feature Extraction 

In this section we assume that 𝐼𝑛𝑜𝑖𝑠𝑒(𝑥, 𝑦) is the image noise which is introduced mainly by 

pavement texture (not poor data acquisition) and other irregularities such as oil stains and other 

materials on the surface which might be falsely detected as cracks. We seek to smooth out as 

much as possible the irregularities introduced by the pavement’s texture without erasing the 

cracks. Usually, image noise is characterized as a high-frequency and low- to medium-amplitude 

signal, however, the behavior of 𝐼𝑛𝑜𝑖𝑠𝑒(𝑥, 𝑦)might be different. Whereas texture information is 

predominant in the high frequency BIMFs, oil stains, paint markings and other objects will be 

collated in the medium to low scales. Therefore, pavement noise can be intermittent across the 

different image scale resolutions. So far, all BEMD denoising techniques can be generally 

grouped into two groups:  Image Approximation (IA) and Selective or Complete Reconstruction. 

A brief description of these denoising techniques follows in the next section. It is important, 

however, to note that none of these techniques are able to deal with challenges posed by the 

pavement noise problem; hence, crack features extracted have spurious edge information.  

 

2.2.2.1. Denoising and feature extraction by Image Approximation 

This technique chooses an approximation of the original image (one BIMF) from an arbitrarily 

chosen decomposition level for feature extraction and segmentation. Usually, the low indexed 

BIMFs are used as the approximate image. This is because they have a very good 

characterization of the crack edges in the image. An arbitrary selection or combination of the 

first two BIMFs could extract all the edges in the image. However, these components are very 

sensitive to noise and as such could lead to false edges in the final image. Also, all the edges 

present in the composite image might not be needed for efficient extraction of crack patterns in 



  

62 
 

the pavement image. The widths of the edges are usually smaller than the actual width in the 

original image; this is because the low index BIMFs lose most of the low spatial information. 

Fidelity to the shape and width of cracks is very important for any pavement distress 

management system: An arbitrary selection, although it might be useful and simple in some 

special cases, generally will require laborious post-processing to remove spurious edges. Figure 

2.11 illustrates some of the results obtained when this technique is employed.  

 

2.2.2.2. Denoising and feature extraction by Complete or Arbitrary Selective 

Reconstruction 

This technique aims at extracting a composite image while maintaining high fidelity to crack 

widths and shape in the original image. For complete reconstruction, the only pattern excluded 

from the original image is the image tendency or residue (last BIMF) which is usually the 

background illumination variation. Selective reconstruction combines BIMFs from arbitrary 

levels of decomposition. These procedures yield redundant information in the composite image 

due to the inclusion of detailed components (except the residue) that might not offer good 

discrimination ability. This could also lower the system’s efficiency and would require more 

computation time. From Figure 2.11c and Figure 2.11e, the edge detector is unable to extract 

meaningful features from both criteria. Morphological techniques (Sun and Qiu 2007) were also 

used but the results were not appreciative. Similarly, edge detectors less sensitive to noise did not 

yield satisfactory results when applied. It should be noted that under simplistic cases, the 

techniques described above will work well. The key point here is that most traditional edge 

detectors are not necessarily good crack feature extractors. In this work, segmentation is used 

only to illustrate the accuracy of the crack feature extraction algorithm developed and to reduce 
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the storage requirements for each image. The next section introduces an improved reconstruction 

methodology to overcome some of the issues with traditional BIMF reconstruction and 

approximation. Later, an information mining technique that is capable of compromising between 

the two reconstruction techniques explained above will be introduced for extracting meaningful 

crack features from noisy images. 

 

 

Figure 2.11: a).Original image. b). An approximation using the first BIMF.  d). An image 

resulting from complete reconstruction. c) & e). A canny edge detector is used to detect the 

respective edges of the images. 
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2.2.2.3. Improved Multiscale Image Reconstruction and Approximation (IMIRA) 

The key issue with the reconstruction and approximation methods described in the previous 

section is its inability to effectively separate noise from fine crack information. Figure 2.12 

illustrates a proposed flow chart for improving the performance of the reconstruction algorithm. 

We suggest that before the image is fed into the BEMD algorithm, some preprocessing needs to 

be carried out using median filtering described in chapter 3. This will smoothen out some of the 

rough textures, reducing the noise in the first and second IMFs. Histogram equalization followed 

by the addition of white noise to the data aid the BEMD algorithm to generate IMFs with very 

narrow frequencies. Image approximation or reconstruction can then be used to reconstruct a 

composite image containing only salient crack information. If results are not satisfactory, the 

high frequency components of the composite image are decomposed again after white noise is 

added. The procedure is repeated until appreciable results are obtained. 
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Figure 2.12: Flow diagram for Improved Multiscale Image Reconstruction and Approximation 

 

The results of the proposed improved multiscale reconstruction and approximation is shown in 

figure 2.13. The discrimination between crack pixels and background objects is more 

pronounced and the canny edge detector does a better job than in the traditional methods. The 

algorithm, however, is unable to fully remove isolated pixels which consequently reduces the 

efficiency of the canny edge detector. 

 

 

Figure 2.13: Results of proposed improved multiscale reconstruction and approximation 

 

In spite of the improved results shown above, the process is not automatic and it can be time 

consuming since it may require a number of iterations to obtain desired results.  In view of this, 

we introduce a more efficient reconstruction technique based on multiresolution information 

mining.  
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2.2.3. Multiresolution Image Information Mining 

As explained earlier, in “complex” images, it may not be prudent to arbitrarily select BIMF for 

detection and classification of cracks on a pavement. The goal of multiresolution image mining 

is to reconstruct a composite image which records only salient information (crack features) from 

both fine and coarse scales of BIMFs while refraining from combining complementary, 

redundant information. So the term “multiresolution” stems from the fact that we are using 

different image scales or BIMFs whereas the information mining has to do with searching for 

crack features at the different resolutions.  

To achieve this goal, we consider this issue as a separation problem. Each BIMF is considered as 

a superposition of a low-rank component and a sparse component as shown in equation 4. The 

sparse component captures the linear patterns in the foreground at each scale or BIMF, while the 

low-rank component corresponds to the background information. 

    𝐶 = 𝐿 + 𝑆      (6) 

Where 𝐶is a BIMF, 𝐿is the low-rank component and 𝑆is the sparse component.  

Using the technique developed in Candes et al., 2009, we are able to recover the salient 

components (sparse components) efficiently without erasing crack information. This is achieved 

by using the Principal Component Pursuit (PCP) algorithm to solve the problem in equation 7. 

    minimize‖𝐿‖∗ +  ‖𝑆‖1                                  (7) 

    subject to 𝐿 + 𝑆 = 𝐶                                              (8) 

Where 
*

L  is the nuclear norm of the matrix L and 
1

S  is the 1l -norm of S. 
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For an exhaustive description of this technique, please refer to Candes et al., 2009. The general 

flow of the algorithm is as follows: 

 

PCP Algorithm 

Step 1: Initialize 0,000  YS  

Step 2: While not converged loop 

 Compute 1kL  via singular value decomposition 

 )( 1

1 kkk YSMDL 

  
. 

 Where *)()( VUSXD    and )0,)(max()sgn()(   xabsxxS ,   

 *VU  is any singular value decomposition   

Step 3: Compute )( 1

11 kkk YLMSS 

  
 

Step 4: Compute )( 111   kkkk SLMYY   

 end while 

Step 5: output: L, S. 

1
4/* MNM  where M and N are the rows and columns of C. The algorithm is terminated 

when 
FF

MSLM   with  =1e-7. The composite image is a sum of sparse 

representations at different scales. 





n

i

iSX
1


 ; where X


 is the composite image and iS are the sparse representations at different 

resolutions. 
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The composite image in Figure 2.14b captures the salient information required for accurate and 

physically meaningful extraction of linear patterns in the pavement image. There are no spurious 

features in the composite image. Also, the widths of the cracks are well preserved. The 

segmented image is more physically meaningful than in Figure 2.11. 

It should be noted that applying the PCP directly to the original image does not yield good 

results because of artifacts and background variations. It provides an improved result when there 

is minimum variation in the background. Hence, the PCP may not be efficient as a stand-alone 

methodology. 

 

Figure 2.14: a) Original image; b) its approximation using the information mining technique;  

c) the segmented image by canny edge detector and the final edge after morphological closing. 

 

2.3. Remarks 

This study plays a vital role in pavement distress image analysis. The main focus of the chapter 

was to develop straightforward, adaptive and data driven procedures to extract salient 
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information from pavement distress images through a multiresolution information mining 

technique.  

The EMD was used to decompose the distress image into components that accurately reflected 

the state of the image at different scales and resolutions in the spatial and frequency domains. A 

straightforward application of the EMD for image background standardization was demonstrated 

for single source illumination.  For images corrupted from different sources, a weighted sum of 

the BIMFs was used to standardize the background of the image.  

By combining the EMD algorithm and PCP, the authors achieve their ultimate aim of 

reconstructing a composite image that extracts only salient crack features from different 

resolutions while refraining from the inclusion of detailed components that may not provide 

discrimination ability. The fidelity of the composite image to the original image is very high in 

terms of the width and direction of cracks. The approach illustrated can be extended for 

analyzing images from different civil infrastructure systems. 
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CHAPTER 3 

VISION SYSTEM FOR AUTOMATED PAVEMENT DISTRESS 

ANALYSIS 

 

3.0. General Background 

Vision is a startling but difficult feature of natural intelligence. It involves the use of sensory and 

brain parts of biological organisms. This makes it very difficult to explicitly mimic its functions 

using computers. Computer vision seeks to develop algorithms that replicate the capabilities of 

the human brain - inferring properties of the external world.It endows computers with 

information-processing capabilities which enable them to model and automate the process of 

visual recognition in a way comparable to those of biological organisms. The concept has a wide 

variety of applications in medical image analysis, mobile robot navigations, image retrieval in 

digital libraries, etc.  

Previous chapters were focused on developing image processing algorithms whose main goal 

was to manipulate the image data and return another image as the output. In addition, a few 

concepts of vision such us detection or recognition and reconstruction were introduced. This 

chapter will focus on developing a robust and complete vision system capable of generating 

consistent and meaningful symbolic data (one which outputs decisions rather than a transformed 

image) from acquired pavement distress images. With computer vision, we are able to construct 

explicit and meaningful description of cracks, which is a prerequisite for distress quantification 

and classification.  
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The vision system will consist of two main components: first, an image retrieval component for 

separating cracked images from non-cracked ones. The goal here is to pass on only cracked 

images for edge detection. This will speed up the system considerably since non-cracked images 

will not be processed. The second component is for crack feature detection. Here, we propose a 

model-based approach known as active contour models. Edge detection systems are purely local; 

they have no concept of an edge (e.g. that edges are continuous; they tend to be smooth almost 

everywhere). They just detect points where the gradient is high, whether they are edges or noise 

(Waite and Welsh 1990). Built into the active contour models are various properties such as 

continuity and smoothness which are usually associated with both edge and human visual 

systems. Hence, they are more efficient for processing typical edge segments and extracting 

accurate geometric parameters of the crack boundary.  

3.1.System Design 

The design is expected to achieve three primary goals: First, the system should be able to take 

inputs from different camera types (laser, digital, etc.) and automatically identify the most 

efficient algorithm for processing their respective images. Secondly, the system uses adaptive 

and data-driven algorithms for feature extraction; this implies that we will also examine a 

parallel implementation of these algorithms in order to facilitate the speed of the system. The last 

goal is to provide the user with a database and output results that are easily understandable and 

helpful for project or network level road maintenance and repair programs. So the system will 

have three (3) main components:  

 Image Acquisition Component 

 Image Retrieval and Vision Component 

 Output Analysis and Visualization Component. 
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Acquisition Devices:The system can process images from different cameras, mostly lasers or 

digital. The user has the option to choose either real-time or offline processing. For real-time 

processing, computers must be multi-core (at least eight cores) and have large memory and disk 

space. Acquisition vehicles cannot exceed 45 mph since that will affect the quality of images 

acquired. In view of current advancements in 3D crack depth perception, the geometry of 

cameras is designed to facilitate stereo vision.  

3.1.1. Vision Component 

This is the heart of the system. Figure 3.1 shows the key parts of the vision component. It 

involves four basic steps:  

 Crack Image Retrieval System 

 Pre-processing stage (enhancements and de-noising) 

 Crack Feature Detection System 
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Figure 3.1: Complete Vision System Design 

 

3.1.2. Crack Image Retrieval System 

Image retrieval is a process for separating “cracked” image pixels from non-cracked images in 

the database. This process is an important step that improves the overall system’s speed. Here, 

image retrieval algorithms will run through the database and inhibit all non-cracked images (see 

figure 3.2) while passing on cracked ones to the vision system for denoising, segmentation, 

feature extraction and classification. Three different procedures, a Harris detector-based method 

(Harris and Stephens, 1988), a row-column projection method and a correlation-based method 

were developed for crack interest point identification and isolation of cracked images from non-

cracked ones. Their relative efficiency is also evaluated in this section. 
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Figure 3.2: Illustrates the goal of an image retrieval system. 

 

3.1.2.1.Harris Detector Method: 

The Harris detection method uses descriptors that are rotation and partially scale invariant. It 

computes the change of intensity for a shift(𝑢, 𝑣). That is: 

𝐸(𝑢, 𝑣) =∑𝑤(𝑥, 𝑦)[𝐼(𝑥 + 𝑢, 𝑦 + 𝑣) − 𝐼(𝑥, 𝑦)]2

𝑥,𝑦

 

Where 𝑤(𝑥, 𝑦) is a window function (e.g. Gaussian), 𝐼(𝑥 + 𝑢, 𝑦 + 𝑣) is the shifted intensity and  

𝐼(𝑥, 𝑦) is the original intensity. For small shift(𝑢, 𝑣), we have a bilinear approximation: 

𝐸(𝑢, 𝑣) = [𝑢 𝑣]𝑀 [
𝑢
𝑣
] 

Where 𝑀 is a 2 𝑋 2 matrix computed from image derivatives 
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𝑀 =∑𝑤(𝑥, 𝑦) [
𝐼𝑥
2 𝐼𝑥𝐼𝑦

𝐼𝑥𝐼𝑦 𝐼𝑦
2 ]

𝑥,𝑦

 

The response for each pixel is given by: 𝑅 = det(𝑀) − 𝑘(𝑡𝑟𝑎𝑐𝑒(𝑀))2;  

𝐾 is an empirical constant ranging from 0.04 − 0.06. Table 3.1 describes the complete 

implementation of the algorithm. 

 

Harris Interest Point Detector Algorithm 

1. Compute image derivatives in 𝒙 and 𝒚 directions: 

a. [𝑰𝒙 𝑰𝒚] = 𝑰𝒎𝒂𝒈𝑫𝒆𝒓𝒊𝒗𝒂𝒕𝒊𝒗𝒆(𝑰𝒎𝒂𝒈𝒆,′ 𝒙 − 𝒅𝒊𝒓𝒆𝒄𝒕𝒊𝒐𝒏,′ 𝒚 − 𝒅𝒊𝒓𝒆𝒄𝒕𝒊𝒐𝒏′) 

2. Convolve image derivatives with a Gaussian function to construct matrix M. Using a 1-D 

function for the convolution process speeds up the system. 

a. 𝑰𝒙
𝟐 = 𝟏𝑫_𝒈𝒂𝒖𝒔𝒔_𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏(𝑰𝒙

𝟐,′ 𝒙′,′ 𝒚′); Similarly, 𝑰𝒚
𝟐 𝒂𝒏𝒅 𝑰𝒙𝑰𝒚 

3. Compute Harris response for each pixel: 

a. 𝑹 = (𝑰𝒙
𝟐.∗  𝑰𝒚

𝟐 − (𝑰𝒙𝑰𝒚).
𝟐 ) − 𝒌 ∗ (𝑰𝒙

𝟐 + 𝑰𝒚
𝟐).𝟐 

4. Find points with large corner response function 𝑹 (𝑹 > 𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅) 

5. Take the points of local maxima of R  

 

The efficiency of this algorithm is dependent on the smoothing function used. However, 

materials such as loose rocks could be a big challenge, resulting in false detection of crack 

interest points. The results of using Harris detection for crack interest point locations are shown 

in figure 3.3. Shadows may not be an issue as long as the image is well smoothed. Clearly, 
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pavement texture remains an issue. Overall, the algorithm gives a good delineation of the cracks 

in the images. 

 

Figure 3.3: Interest point detection using Harris Detector 

3.1.2.2.Pixel Correlation Method: 

This procedure assumes that the grey level of a point of interest must be low correlated to the 

grey levels of its neighbors.Sylvie and Moliard, 2011developed a correlation method that 

estimates the cost between a pixel and its neighborhood pixels. This technique could slow the 

system due to redundant pixel-to-pixel correlations and it also fails when an interest point covers 

a large image area. The method developed in this work uses a window matching technique 

described below. The algorithm is very effective; however, it is computationally expensive. 
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Figure 3.4: Correlation between a region of interest and its neighborhood 

 

Pixel Correlation Algorithm 

1. Select a pre-defined neighborhood window (say 3 by 3). This region could 

be any of the blue, red and green regions indicated in figure 3.4 above. 

2. Compute correlation between center pixel 𝒇𝒊𝒋 (indicated by the yellow region 

in figure 3.4) and a neighborhood pixel 𝒇𝒌𝒍 

𝑹𝒊𝒋 = 𝑪𝑪(𝒇𝒊𝒋, 𝒇𝒌𝒍) 

3. Final measure is 𝐦𝐚𝐱 [𝑪𝑪(𝒇𝒊𝒋, 𝒇𝒌𝒍)] −𝒎𝒊𝒏[𝑪𝑪(𝒇𝒊𝒋, 𝒇𝒌′𝒍′)] 

 

From figure 3.5 below, the correlation method is able to locate interest points with few 

distractions from texture information. Compared to Harris, the number of false interest point 

detections is lower.  
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Figure 3.5: Interest point detection using Pixel Correlation Detector 

 

3.1.2.3.Pixel Projection: 

The projection function is summation. The direction of projection is vertical and horizontal. 

Alligator and block cracks may therefore be difficult to pick up. Cracks should lie in the 

direction of the projection (see figure 3.6). 
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Figure 3.6: Illustrates pixel value projection in image rows and columns. 

 

Pixel Projection Algorithm 

1. Project image pixels 𝒇(𝒊, 𝒋) column-wise and row-wise onto a horizontal 

and a vertical accumulator  

𝑯𝑨𝑪 = 𝑷[𝒇(: , 𝒋)], 𝒂𝒏𝒅 𝑽𝑨𝑪 = 𝑷[𝒇(𝒊, : )]; 

𝐰𝐡𝐞𝐫𝐞 𝐏 𝐢𝐬 𝐭𝐡𝐞 𝐬𝐮𝐦 𝐨𝐩𝐞𝐫𝐚𝐭𝐨𝐫 𝐢𝐧 𝐭𝐡𝐞 𝐜𝐚𝐬𝐞 𝐚𝐧𝐝 𝐣 𝐢𝐬 𝐭𝐡𝐞 𝐜𝐨𝐥𝐮𝐦𝐧 𝐢𝐧𝐝𝐞𝐱 𝐚𝐧𝐝  

              𝐢 𝐢𝐬 𝐭𝐡𝐞 𝐫𝐨𝐰 𝐢𝐧𝐝𝐞𝐱 

2. Take a derivative of𝐇𝐀𝐂 𝒂𝒏𝒅  𝐕𝐀𝐂to obtain𝐇′𝐀𝐂 𝒂𝒏𝒅  𝐕′𝐀𝐂. Points of 

interest should be marked 

3. Supposing that a crack POI has the highest local dissimilarity use 𝑴𝒂𝒙 −

𝒌 ∗ 𝑴𝒊𝒏 to estimate the threshold T, for finding the points of interests. 

𝑷𝑶𝑰 = 𝒇(𝒊, 𝒋) > 𝐦𝐚𝐱(𝑯𝑨𝑪
′ < 𝟎) − 𝒌 ∗ 𝐦𝐢𝐧(𝑯𝑨𝑪

′ < 𝟎) = 𝑻 

If the image𝒇(𝒊, 𝒋), has sufficient POIs greater than the threshold, T, then 

the image is cracked; else it is a non-cracked image. 

 

From figure 3.7 below, the projective method is easily distracted especially when the cracks in 

the image are not unidirectional. It is also very sensitive to texture and stones on the image. 
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Figure 37: Interest point detection using Pixel Projection Detector. 

3.1.2.4.Algorithm Efficiency 

The efficiency of the algorithms described above is tested against three different image 

databases. The first and second database consists of only transverse and longitudinal cracked 

images respectively. The third database is a mixture of transverse, longitudinal, block and 

alligator cracked images. The test for algorithm efficiency is based on the equation below: 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
2𝑇𝑃

𝐹𝑁 + 𝑇𝑃 + 𝑃
 

𝑇𝑃 represents true positives, 𝐹𝑁 are the false negatives while 𝑃 is the total number of positives. 

An efficiency rate of 100% implies that there are no false negatives-FN (i.e. algorithm selects 

image as non-cracked when it is cracked) or the number of true positives (i.e. algorithm selects 

an image as cracked when it is cracked) corresponds to cracked pixels in the database.  

From the results shown in Table 3.1, the Harris detector out-performs correlation and the 

projection based method. This is probably because it is sensitive to direction information. The 
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performance of correlation method is close to that of the Harris detector, however, it is 

computationally expensive. 

 

Table 3.1: Evaluating the efficiency of image retrieval algorithms. 

 

 

3.1.3. Image Enhancement and Preprocessing 

In previous chapters, we developed several enhancement and denoising algorithms for preparing 

pavement image for crack detection and recognition. A new algorithm for preprocessing distress 

images is developed in this chapter due to its simplicity, efficiency and speed. This algorithm is 

used as the default for preprocessing in the complete system, except if the user selects a different 

algorithm suggested in chapters 3 and 4. The algorithm has two principal phases:  

 Background normalization or standardization, and  

 Image Smoothening  
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3.1.3.1.Gaussian Pyramid based background standardization 

The algorithm decomposes the original image into different scales by sub-sampling and 

convolution with a pre-defined Gaussian function.   

 Low-pass Filtering: the original image is smoothed by convolving it with Gaussian 

function illustrated in the figure 3.8 below. This is the first step of the multiscale 

background standardization approach. This step can be designated as: 𝑔𝑖 = (𝐺𝜎 ∗ 𝑔𝑖−1) 

 

Figure 3.8: Illustrates low pass filter design and blurred images. 

 

 Sub or Down Sampling: Involves cutting the width and height of the image into half at 

each iteration.  It can be designated as𝑔𝑖 = 𝑠
↓(𝐺𝜎 ∗ 𝑔𝑖−1). Where 𝑠↓ is the down 

sampling operation. An example is shown in figure 3.9 below. 
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Figure 3.9: Image down-sampling example. 

 

Pyramid Levels: Iterative down-sampling generates a pyramid of images as shown in the figure 

below. The general trend in the image stays persistent while crack information is removed. 

Subsequent level 𝑔𝑖+1 is obtained by convolving the preceding level with the Gaussian function 

followed by sub-sampling that is: 𝒈𝒊+𝟏 = 𝒔
↓(𝑮𝝈 ∗ 𝒈𝒊). Figure 3.10 shows three pyramid levels 

generated from a distress image.   

 

Figure 3.10: Left-pyramid levels after iterative sub-sampling. G1, G2 and G3 – images resized to 

original image after interpolation. 
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Image Restoration: The image is restored by subtracting the final level from the original to 

obtain the standardized image. From the figure below, the Gaussian pyramid algorithm almost 

perfectly restores the corrupted image without compromising any other spatial features such as 

the width and shape of the cracks on the surface. Thresholding at this stage is simple from the 

transverse profile shown in figure 3.11.  

 

 

 

Figure 3.11: Top – image restoration using Gaussian pyramid. Bottom-transverse profile original 

(left) and restored (right) image. 
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Also, the implementation of the algorithm is very fast because of sub-sampling. However, 

intermediate levels are not useful. Since our ultimate goal is to standardize the image, and only 

the 𝑛𝑡ℎ level is useful, intermediate levels will not be needed. The algorithm steps are 

summarized in the table below. 

 

Gaussian Pyramid Algorithm 

1. Initialize the zero level of the Gaussian pyramid with an image array 𝒈𝟎 containing C 

columns and R rows of pixels.  

2. Low-pass filter the original image 𝒈𝟎 and sub sample to obtain 𝒈𝟏. 

𝒈𝒊 = 𝒔
↓(𝑮𝝈 ∗ 𝒈𝒊−𝟏) 

𝑮𝝈is a 1D Gaussian filter used to convolve the image in both direction. 

 

3. Subtract the 𝒏𝒕𝒉 decomposition level from the original image to obtain the restored. 

𝒈𝒓𝒆𝒔𝒕𝒐𝒓𝒆𝒅 = 𝒈𝟎 − 𝒈𝒏 

 

In the preceding chapter, another multiscale technique called BEMD was used for background 

standardization. Below, we compare the strengths and weaknesses of both approaches. From 

figure 12, intermediate modes from BEMD are useful for crack detection. However, the 

Gaussian pyramid is five times faster than BEMD (see figure 3.13). On restoration quality, the 

Gaussian pyramid looks artificial as compared to BEMD. 
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Figure 3.12: Top: BEMD decomposition levels. Bottom: Gaussian pyramid decomposition 

levels. 

 

Figure 3.13: Computational time comparison. 
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3.1.4. Crack Feature Extraction using Active Contour Models 

Traditional pavement detection systems (Lee 2005, Wang 2007, and Kim 2009) extract crack 

features by the use of edge detectors and thresholding algorithms, which generally work by 

setting the grey value of each pixel in the image to a value that is dependent on the magnitude of 

the gradient of the grey level at the corresponding point in the original image. The processing 

from this class of systems is purely local; they have no concept of an edge (e.g. that edges are 

continuous, and tend to be smooth almost everywhere) and just detects points where the gradient 

is high, whether they are edges or noise (Waite and Welsh 1990). Therefore such systems may 

fail in difficult conditions (rough textures, oil stains, etc.), creating spurious and discontinuous 

edges.  

The concept of an edge is far more than the presence of a high gradient at a particular location; it 

highly depends on the spatial distribution of these high and low gradient points across the image. 

An edge detector, however, does not explicitly possess the capability of identifying the 

distribution of the gradients. In this section, instead of relying on tradition edge detection 

systems, we resort to investigating a model-based technique to detect the exact location of the 

crack, processing its edge segments and extracting accurate geometric parameters of the crack 

boundary.  

Active contour models, also called snakes, appear to show promise in this direction. Snakes are 

energy-minimizing deformable splines, influenced by constraint and image forces that pull them 

toward object contours or boundaries. They are used to represent object boundaries or salient 

image features. Built into the snake models are various properties such as continuity and 

smoothness, which are usually associated with both edge and human visual systems. First 

introduced by Kass et al., the technique has gained much popularity since then. The snake can be 
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thought of as an elastic band of arbitrary shape, represented by a chain of points that wiggles in 

the image toward points of high image gradient. So the edge pixels must “pull” the snake points. 

The stronger the edge, the stronger its pull on the snake points.  

Active contours are broadly classified into two main groups: parametric active contour models 

and geometric active contour models. Parametric models represent active contours explicitly as 

parameterized curves. In geometric models, however, they are represented as level sets of a two-

dimensional function that evolves in a Eulerian framework. It is able to break or merge naturally 

during evolution. This helps it to handle topological changes very well. In the following sections, 

parametric contour models are used to explain the general properties and formulation of the 

snake algorithm. This is followed by the application of geometric models to different types of 

pavement distress images. 

 

3.1.4.1.Snake Properties and formulation 

Let us represent a snake by a parametric curve, 𝑣(𝑠) 

𝑣(𝑠) = [𝑥(𝑠), 𝑦(𝑠)]; 𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑠 ≤ 1 

By this definition, the curve, 𝑣(𝑠) could be closed or open as shown below in figure 3.14 
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Figure 3.14: Two examples of parametric curves used to represent the snake. 

 

Property 1: The curve must be able to detect an edge in the image and move to align itself with 

it. In order to achieve this, the curve should be influenced and driven by the image edge 

strength 𝐹[𝑥(𝑠), 𝑦(𝑠)], until the point where 𝐹 is maximized along the points of the snake.  

max∫ 𝐹[𝑥(𝑠), 𝑦(𝑠)]𝑑𝑠
𝑠=1

𝑠=0

 

Obviously the edge strength’s influence on the snake will vary depending on the initial location 

of the curve. To prevent F from being zero at the initialization, it is advisable to blur the image 

so that it broadens the width of the edge. The energy/force contribution from the object edge 

strength is called the external energy. It is designated as: 

𝐸𝑒𝑥𝑡[𝑣(𝑠)] = (|𝐺𝑥[𝑣(𝑠)]|
2 + |𝐺𝑦[𝑣(𝑠)]|

2
) 

The total external energy of the snake/curve is therefore: 

𝐸𝑒𝑥𝑡 = ∫ 𝐸𝑒𝑥𝑡[𝑣(𝑠)]𝑑𝑠
1

0

 

Property 2: The curve must be able to contract or shrink as it is driven by the image forces. The 

curve is precluded from stretching by introducing this property. Without this, the curve cannot fit 

smoothly to the objects in the image. The amount of contraction is based on the amount of elastic 

energy at a point. For curve 𝑣(𝑠) its elastic energy is proportional to the square of how much it is 

being stretched at a point. 

(
𝑑𝑣

𝑑𝑠
)
2

= (
𝑑𝑥

𝑑𝑠
)
2

+ (
𝑑𝑦

𝑑𝑠
)
2
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The elastic energy of the snake should be minimized when constrained by the edge of the object. 

This ensures that the snake does not contract through the object. Also, the elasticity of the snake 

should be controlled; too much of it will cause the snake to pull across the boundaries of the 

object. 

Property 3: The last property is to enable the snake to continue smoothly in regions where crack 

edge is occluded by foreign objects, shadows, etc. For the snake to achieve this it must possess 

some stiffness together with the elasticity described under property 2. The stiffness of the snake 

is designed to be proportional to the curvature of the occluding object; this is also the second 

derivative of the curve: 

(
𝑑2𝑣

𝑑𝑠2
)

2

= (
𝑑2𝑥

𝑑𝑠2
)

2

+ (
𝑑2𝑦

𝑑𝑠2
)

2

 

Equation xxx must also be minimized when the curve is constrained by an object. Where there is 

too much stiffness the curve is unable to fit the object correctly. Combining the second and third 

property gives the bending energy of the snake or curve. It is also known as the internal energy 

of the curve. The internal energy is designated as: 

 

The more the curve bends, the larger the value of its internal energy. The total internal energy of 

the snake will therefore be: 
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𝐸𝑖𝑛[𝑣(𝑠)] = ∫ 𝐸𝑖𝑛[𝑣(𝑠)]𝑑𝑠
1

0

 

Based on the properties listed above, the parametric curve is chosen such that the following 

function is minimized: 

𝐼[𝑥(𝑠), 𝑦(𝑠)] = ∫ {𝛼(𝑠) ∗ {(
𝑑2𝑥

𝑑𝑠2
)

2

+ (
𝑑2𝑦

𝑑𝑠2
)

2

} + 𝛽(𝑠) ∗ {(
𝑑𝑥

𝑑𝑠
)
2

+ (
𝑑𝑦

𝑑𝑠
)
2

}
𝑠=1

𝑠=0

− 𝐹[𝑥(𝑠), 𝑦(𝑠)]} 𝑑𝑠 

𝛼(𝑠) > 0 𝑎𝑛𝑑 𝛽(𝑠) ≥ 0 represents the amount of stiffness and elasticity that the snake is to 

have. The negative sign in front of the 𝐹[𝑥(𝑠), 𝑦(𝑠)] is because equation xx is being minimized. 

Minimizing −𝐹[𝑥(𝑠), 𝑦(𝑠)] is the same as maximizing 𝐹[𝑥(𝑠), 𝑦(𝑠)]. Equation xxx is also 

known as the total energy of the snake. Similarly, combining property 1 and 2, the total energy of 

the snake can be defined as: 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑖𝑛 + 𝐸𝑒𝑥𝑡

= ∫ {𝛼(𝑠) ∗ {(
𝑑2𝑥

𝑑𝑠2
)

2

+ (
𝑑2𝑦

𝑑𝑠2
)

2

} + 𝛽(𝑠) ∗ {(
𝑑𝑥

𝑑𝑠
)
2

+ (
𝑑𝑦

𝑑𝑠
)
2

}
𝑠=1

𝑠=0

− 𝐹[𝑥(𝑠), 𝑦(𝑠)]} 𝑑𝑠 

Let us represent the curve with a set of n points. That is: 

𝑣𝑖 = (𝑥𝑖, 𝑦𝑖) For 𝑖 = 0… . 𝑛 − 1 
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Figure 3.15: A parametric curve represented by a set of n points. 

 

 

 

Therefore, the internal energy becomes: 

𝐸𝑖𝑛 =∑𝛼 ∗ |𝑣𝑖+1 − 𝑣𝑖|
2

𝑛−1

0

+ 𝛽 ∗ |𝑣𝑖+1 − 2𝑣𝑖 + 𝑣𝑖−1|
2 

Parametric active contours have been applied successfully in a wide range of applications 

(Moller and Posch 2012, Bo et al. 2004). They have three key limitations however, due to 

parametric representation. 

1. Difficult to adapt to different topology because it is unable to split and merge.  

2. It is too sensitive to model parameters. 
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3. No external force acts on points which are far away from the edge boundary. 

A more efficient model known as the level set active contour algorithm is reviewed and applied 

to detect edges in pavement distress images in the following section. 

 

3.1.4.2.Level set Active Contour Algorithm 

The level set algorithm developed in Li et al. (2005) is implemented in the work. The evolving 

level set function is approximated to a signed distance function. Equation 3 is used as a metric to 

characterize how close a function 𝜑 is to a signed distance function.  

𝑃(𝜑) = ∫
1

2
(|∇𝜑| − 1)2𝑑𝑥𝑑𝑦     (3) 

The snake is influenced by two types of forces. 

 The Internal Energy (𝐸𝑖𝑛𝑡):  Also called the bending energy of the curve. It preserves the 

snake (keeping it smooth) as it is being pulled by image forces.  

    𝐸𝑖𝑛𝑡 = 𝜇𝑃(𝜑)      (4) 

Where 𝜇 > 0 is a parameter controlling the effect of penalizing the deviation of  𝜑 from a 

signed distance function. 

 The External Energy (𝐸𝑒𝑥𝑡): The force that moves the snake points or zero level curve.  It 

is dependent on the edge strength at a point; the stronger the edge, the stronger the pull. 

The external energy is supposed to be minimal when the snake is at the object boundary 

position. We designate this energy as: 

   𝐸𝑒𝑥𝑡(𝜑) = 𝜆 ∫𝑔𝛿(𝜑)|∇𝜑|𝑑𝑥𝑑𝑦 + 𝜈 ∫𝑔𝐻(−𝜑)𝑑𝑥𝑑𝑦 (5) 
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   𝛿(𝜑) = (
0                                       |𝑥| > 𝜀
1

2
[1 + cos (

𝜋𝑥

𝜀
)] , |𝑥| ≤ 𝜀

                             (6) 

𝜆 > 0 and 𝜈 are constants, 𝛿 is the univariate Dirac function, and H is the Heaviside 

function. 

The total energy 𝐸𝑡𝑜𝑡𝑎𝑙 can therefore be defined as: 

 𝐸𝑡𝑜𝑡𝑎𝑙(𝜑) = 𝜇𝑃(𝜑) +  𝜆 ∫𝑔𝛿(𝜑)|∇𝜑|𝑑𝑥𝑑𝑦 + 𝜈 ∫𝑔𝐻(−𝜑)𝑑𝑥𝑑𝑦              (7) 

 

3.1.4.3.Application and Discussion of Results 

Modifications and different variations of the algorithm described above are applied to pavement 

images acquired under different environmental conditions, helping the authors to evaluate the 

merits and limitations of the algorithm.  

The snake model should adapt to different environments and distress types. To achieve this, it is 

important for the model to have general information on the type of distress it is trying to detect 

before initializing the contour. This information (which is the type of crack) can be obtained 

from the crack retrieval algorithm.  

Transverse and Longitudinal Cracks: Here, we consider one or a maximum of two cracks in the 

same direction or of the same type on one image. At most two contours are initialized and its 

orientation will be based on the type of distress in the image. From figure 3.16 above, it is 

realized that the algorithm is able to detect the accurate location and shape of the distress. 
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Figure 3.16: First row: the first and third images represent how the active contours were 

initialized. The second and fourth images show the identified crack after several iterations of the 

initial contour. Second Row: Initialization and segmentation of transverse cracks with the snake 

model. 

Complex Cases: The complexities involved in crack detection increase under the following 

conditions: 

 Pavement image texture is very rough. 

 Pavement image surface has foreign objects such as oil stains, paint markings, etc. 

 Image contains a mixture of distress types. For example, longitudinal and transverse 

cracks.  
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Under these conditions, it is almost impossible to use edge detection or thresholding in such 

environments.  The snake model is robust in such conditions due to its unique interpretation of 

the edge detection concept. Under such conditions as listed above, the contours should be 

initialized as equally-spaced multiple circles or squares. The contours should have the capability 

to merge or split depending on local image conditions and also compete with each other to 

distinguish between the different crack severities. Figure 3.17 shows results obtained by using 

the snake algorithm. From the first column, the algorithm is able to accurately separate distresses 

(defects) from other objects such as gravels. In column two, paint markings are clearly 

differentiated from the pavement crack. Column three illustrates the algorithm’s robustness 

against oil stains. 
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Figure 3.17: The first row represents how the active contours were initialized. The second row 

shows the identified crack after image smoothening and several iterations of the initial contour. 

 

Pattern Cracks (Alligator and Block Cracks): Pattern cracks present a new set of challenges. 

First, the cracks are interconnected; that means a singular contour or equally spaced multiple 

contours cannot be used. Also, the severity of crack widths is disparate. Since active contours are 

designed to move towards features with broader widths, fine cracks may be missed leading to 

inaccurate detection results. 
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3.2.Concluding Remarks 

This paper develops a complete vision system for pavement distress detection. Image retrieval 

algorithms such as Harris, projection or correlation based detectors are used to pre-screen 

acquired images. This will reduce to the image database to only cracked images. Consequently, 

the speed of the vision system is improved by inhibiting non cracked images from the feature 

extraction process. The use of a multiresolution image enhancement algorithm based on 

Gaussian pyramids is an efficient and fast method for background standardization. The resulting 

denoised image improves the efficiency of thresholding and edge detection algorithms.  

Finally, the active contour models developed in this chapter are useful and objective tools for 

detecting different types of distresses in pavement images. They show promise in detecting 

pavement distress in very noisy environments. Their ability to split and match different 

topologies of the image data is essential for accurate crack location and shape detection. The 

algorithm can be extended to other problems in civil infrastructure systems such as void 

detection in bridge decks, traffic sign inventory, etc. The algorithm is unable to detect certain 

types of cracks such as alligator cracks. Also, very fine cracks can be missed. Lastly, the initial 

location of the active contour can affect the crack detection process. Future work should be 

geared toward an automated means of contour initialization.  
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Chapter 4 

RESEACH IMPLEMENTATION AND SOFTWARE DESIGN 

4.0. General Background 

Within the past decade, several automated pavement distress image analysis systems have been 

developed (Lee 2005, Wang 2007, and Kim 2009). A number of these systems separate data 

processing from acquisition. This allows for experts to assist in the crack information extraction 

process. Inherent in such systems are some of the demerits of manual methods such as fatigue, 

inconsistencies, and cost (both money and time). These limitations are, however, minimized as 

compared to manual methods. There are also real time systems (Wang 2005) that are capable of 

accurately processing and analyzing image data at the speed of the image acquisition vehicle. 

Such incredible processing speed is achieved by taking advantage of current multicore CPUs or 

GPUs to process images in a parallel computing environment. In Wang (2005), a real-time 

system using parallel processing at the multi-CPU level is proposed. In their work, real time data 

collection and distress analysis is carried out by implementing two parallel features. The first one 

is based on parallelism within the CPU, usually called single instruction multiple data (SIMD) 

and the other is based on a dual processing system programmed with multithread techniques so 

that each CPU has its own resources to perform image analysis tasks. This work does not focus 

on parallel implementation of the image processing algorithms; rather, it focuses on parallelism 

within the hardware architecture. This level of parallelism improves processing rates mainly 

because the detection system employs algorithms with low computational cost such as image or 

histogram equalization, median, average, Gaussian filters and morphological operators such as 

thinning and closing. These algorithms are fast and easy to implement, however, they are not 
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very adaptive. Hence, they may not be able to detect all types of distress. Also, thresholds 

consistently need to be fine-tuned for different pavement types and environments. 

Recently, very efficient image analysis techniques such as wavelets (Subirats et al., 2006; Nejad 

et al., 2011), empirical mode decomposition (Ayenu-Prah et al., 2008; Adu-Gyamfi et al., 2011), 

principal component analysis and its families have been developed. However, because they are 

very complex and computationally expensive, they are impractical for industries to implement. 

Some of the algorithms developed in this work fall into this category. Parallelism only at the 

hardware level will not be sufficient for faster implementation of this work. The first 

consideration to a successful implementation of this research work involves investigating 

parallelism within the algorithms and restructuring them to meet the demands for faster 

processing.  

The next step of the implementation process involves integrating the algorithms developed onto 

a GIS platform to aid estimation of crack extent width and types and visualization for road 

condition. This will open the door to a fully automated pavement management system. New 

developments in spatial analysis will be employed for efficient documentation of surveyed 

results, condition visualization, data query, management and effectively planning maintenance 

and repair programs. 
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4.1. Toward Real-Time Implementation of Algorithms 

The benefits of developing a real-time crack system when contrasted against an offline system 

may not be very significant. The reason is this: knowing that a section of a pavement is cracked 

in a second or in 30 minutes doesn’t really make a difference, since response from pavement 

managers to fix the problems will take much longer. It is, however, unnecessary and a waste of 

time to sit behind a computer for hours before knowing how well or bad a section of road is.  So, 

our goal is to develop a system that compromises between the two; one that is very fast, not 

necessarily real-time and also allows for human expert input into the analysis.  In order to 

increase the computational speed of the system we adopt two procedures: 

Subsampling/Upsampling and parallel processing. 

 

4.1.1. Image Subsampling and Upsampling 

Image subsampling implies reducing the size of an image by a certain factor or frequency. That 

is to say, we are selecting one pixel to represent several pixels in its neighborhood. An example 

of subsampling by a factor of 0.5 is shown in figure 4.1 below. Obviously, from the figure, there 

are likely to be challenges if the variance within each neighborhood is high. It is therefore 

prudent to smoothen the image with preferably a Gaussian filter before subsampling. This will 

suppress extreme values in neighboring pixels, making subsampling more effective. 

[

14
13

14 31 19
16 18 21

18
21

19 11 12
20 10 15

]
    𝑦𝑖𝑒𝑙𝑑𝑠
→     [

14 14 31 31
14
18
18

14
18
18

31
11
11

31
11
11

]
𝑦𝑖𝑒𝑙𝑑𝑠
→    [

14 31
18 11

] 
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Figure 4.1: Image subsampling example 

Upsampling, on the other hand, is increasing the size of the image by a designated factor or 

frequency. Here, instead of replicating pixels (as done in the downsampling), missing pixels are 

found by interpolation. In this work, a bicubic interpolation approach is used. With bicubic 

interpolation, the output pixel is simply a weighted average of pixels in the nearest 4 by 4 

neighborhood. The important steps to improving the speed of a crack detection algorithm simply 

by using image sub- and upsampling is illustrated below. 

 

 

 

 

 

Fast crack image analysis using sub and upsampling 

1. Apply a smoothening filter (Gaussian preferred) to the original image. 

2. Subsample image to the desired frequency. The desired or optimum 

frequency is related to the crack widths by this equation: 𝑾𝒄𝒓𝒂𝒄𝒌 =

𝟐∗𝒇𝒅𝒆𝒔𝒊𝒓𝒆𝒅

√𝑴∗𝑵
. This equation is obtained by regression using 120 images of 

different sizes. 

3. Apply crack detection algorithms to obtain the desired output. 

4. Upsample the output to the original size of the image. 
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The experiment below shows the efficiency of using the procedure outlined above. Its limitations 

should not be overlooked, however. Figure 4.2 presents the results of crack detection using 

sub/up sampling as against a straightforward approach which does not require sub/up sampling. 

From the figure, the first column and the second column look similar in spite of different 

sampling frequencies.  The processing speed, however, for column 2 is about 2.5 times faster 

than column 1 (see figure 64.2). For column 4 and 5, processing speed is incredibly high, but 

crack edge information is degraded.  

 

Figure 4.2: Crack detection at different sub-sampling frequency levels. 

It is therefore very important to know the optimum frequency required for accurate feature 

extraction and improved speed. If it is too high, some cracks may be removed; if it is too low, the 

processing speed will be high. Another benefit of subsampling is denoising. As is portrayed in 

the figure above, increasing the sampling frequency reduces the number of isolated pixels and 
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rough textures.  Lastly, figure 4.3 shows image sizes for which subsampling produces a more 

effective result and speed-up. For image size between 180 by 180 pixels and 512 by 512 pixels, 

speed-up is almost the same for different sampling frequencies. It will therefore be prudent not to 

subsample images with sizes less than or equal to 512 by 512 pixels. An impressive 

improvement in speed-up is realized when the images are greater than 512 by 512 pixels but less 

than or equal to 1500 by 1500 pixels. The speed-up could be as high as 5X. Beyond image size 

of 1500 by 1500 pixels, the speed-up reduces but is still significant between 2X to 4X.  
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Figure 4.3. Computational time gained by using subsampling/upsampling technique for different 

image sizes. 

 

4.1.2. Parallel Processing: 

A reason for looking at parallel processing is the issue of massive image data. Crack detection 

systems are expected to extract crack information from miles of road images. Each image 

contains approximately 1 million pixels. This will obviously increase computational time. To 

overcome this burden, most systems restrict the processing area to the resolution of the 

acquisition camera. However, analyzing pavement distress using restricted image sizes could 

lead to inaccurate classification of cracks. For example, a block crack could be misinterpreted as 

two longitudinal or transverse cracks depending on the camera view. To resolve this challenge, 

individual images could be stitched together to form one massive layer. This will improve results 

of crack classifications and condition ratings since analysis will be based on a network level. By 

re-structuring and re-thinking through the application of image analysis algorithms while taking 

advantage of current multicore computers, the authors will seek to simultaneously improve the 

accuracy and computational cost for processing massive distress image datasets.  

 

4.1.3. Parallel BEMD 

In chapter 4, BEMD was successfully used to denoise, enhance and detect distresses in images 

with the help of Principal Component Pursuit – PCP (Candes et al. 2009). The main 

disadvantage of this algorithm is its time consuming nature. The algorithm involves four main 

steps: Extrema detection, Interpolation, Sifting and Reconstruction. Extrema detection and 
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interpolation consumes about 80% of the computational time. The remainder of the time is used 

for the sifting process and reconstruction. The main focus for improving the speed of this 

algorithm is therefore on extrema detection and interpolation. In the following sections, a parallel 

implementation of extrema detection and interpolation is presented. It is important to note that 

sifting and reconstruction cannot be implemented in parallel due to data dependencies. The 

sifting process, however, is faster if an efficient interpolation technique is chosen. We take 

advantage of MATLAB Parallel Computing Toolbox for this implementation (Matlab, 2010)  

 

4.1.3.1.Design Methodology 

The design of an effective and fast algorithm is far more than just coding, but also intelligent 

manipulation of matrices. Our design of a parallel system uses two main approaches; Serial 

Parallelism and PARFOR/SPMD. 

Serial Parallelism (SP): The goal of SP is to reconstruct a 2D image from its 1D components 

without losing spatial correlation between pixels (Smith, 2010).  It also helps to improve the 

performance of non-serial parallelism. This technique is used in extrema detection and 

interpolation. 

PARFOR & SPMD:  “parfor” is a command used in MATLAB’s parallel computing toolbox to 

run loops in parallel. A key limitation of this command is its inability to handle dual indexing 

such as𝑓(𝑖, 𝑗); here let 𝑓 be an arbitrary variable with 𝑖, 𝑗 being the indexes. SP was used 

primarily to overcome this limitation. As explained, with SP, processing is one-dimensional. 

Hence, we are not bothered with dual indexes.   
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Combining SP and “parfor” tremendously improved speed for extrema detection and basis 

function’s distance matrices. In cases where SP cannot be implemented such as image 

reconstruction, feature extraction, etc., image arrays are co-distributed as shown in figure 4.4. 

Each local segment is processed in parallel using Single Program Multiple Data (SPMD) 

statements. The SPMD command is like a very simplified version of MPI. There is one client 

process, supervising workers who cooperate on a single program. Each worker (sometimes also 

called a \lab") has an identifier, knows how many workers there are in total, and can determine 

its behavior based on that ID. Each worker runs on a separate core (ideally) and workspace and 

they meet at synchronization points; 

 

http://www.icam.vt.edu/Computing/fdi_2012_spmd.pdf


  

113 
 

Figure 4.4: Distribution of image parts to different workers 

Figure 4.5 Shows the methodology designed for implementing the decomposition algorithm in 

parallel. Two key factors are considered in this design. 

Avoid interpolation of limited data: The parallel architecture will require partitioning and 

running image data on shared memories. This may lead to interpolation of limited data on the 

shared memory. The system is designed such that when the number of image extrema on the 

shared memory falls below a certain threshold, image interpolation will be performed on the 

global memory. 
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Figure 4.5: Design for fast computation of BEMD algorithm 

 

Efficient choice of basis functions for interpolation: The Radial basis function (RBF) is used for 

interpolation during the sifting process. However, there are different variations of the RBF 

(linear, cubic, multiquadric, etc.) having different levels of accuracy depending on the size of 

data involved. The higher the accuracy, the higher the computational cost.  In designing parallel 

architecture for data interpolation, the faster but less accurate basis function approximations are 

used when we have a lot of data points to interpolate. For limited data, multiquadric basis 

functions are used.  

Extrema Detection 

Extrema detection involves finding high and low points in a region. Usually, a neighborhood 

region analysis method is used to search for extrema. This ensures that spatial correlation 

between pixels is not lost. The choice of an efficient neighborhood region size is, however, 

uncertain and also not embarrassingly parallel (i.e. it is difficult to separate into a number 

parallel tasks). In order to take advantage of parallel processing technique, the 2D image is 

processed from its 1D components and extrema are searched in rows and columns (see figure 

4.6). This helps remove the restrictions on neighborhood size, it is also easy to implement in 

parallel using MATLAB's “PARFOR” 
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Figure 4.6: a). Neighborhood Extrema detection in series b) & c). Parallel Implementation of 

extrema detection. D). Extrema detected. 

 

Extrema Interpolation 

As explained in previous chapters, the Radial Basis Function is used as the interpolation 

technique for the BEMD decomposition since it imposes fewer restrictions on the geometry of 

the interpolation centers and is suited to problems where the interpolation centers do not form a 

regular grid as in the case of local maxima or minima maps of images or textures. 

The radial basis interpolation function is designed as: 



  

116 
 

𝑃𝑓(𝑥) = ∑𝑐𝑘(𝜓‖𝑥 − 𝑥𝑘‖) +∑𝑑𝑙𝑝𝑙

𝑀

𝑙=1

𝑁

𝑘=1

 

 

Parallelizing the Distance Matrix or Basis Function 

Consider constructing a distance matrix, 𝜓‖𝑥 − 𝑥𝑘‖from a very simple square matrix of size 4 

by 4 in parallel using just 2 workers or labs.  The distance matrix can be implemented in parallel 

as follows (see figure 4.7): 

Step 1: Reconstruct matrix into a 3-D matrix of 1 by number of rows by number of columns. For 

example if the matrix is as below, the new matrix is of size 1 by 4 by 4. Each face of the 3D 

matrix is a column of the original matrix.  

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑀𝑎𝑡𝑟𝑖𝑥 =

16 2 3 13
5 11 10 8
9
4

7
14

6
15

12
1

 

Transpose the 3D matrix and assign it to a different worker (worker 2). Keep the original 3D 

matrix on worker 1. 

Step 2:  Replicate each face of the matrix such that each face has a dimension similar to the 

dimensions of the original matrix.  

Final Step:  Re-group results from different workers onto the global memory and calculate the 

distance matrix. 
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Figure 4.7: Splitting images over different workers or labs before running parallel extrema 

detection and interpolation. 

 

 

Basis Functions Used 
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Three different types of basis functions were used in our analysis; linear, Gaussian and 

multiquadric basis. They are designed as follows: 

𝜓(𝑟) = 𝑒−(𝜀𝑟)
2
; 𝑟 = ‖𝑥 − 𝑥𝑖‖ − 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 

𝜓(𝑟) = √(1 + (𝜀𝑟)2 −𝑀𝑢𝑙𝑡𝑖𝑞𝑢𝑎𝑑𝑟𝑖𝑐 

𝜓(𝑟) = 𝑟; −𝑙𝑖𝑛𝑒𝑎𝑟 

The different basis function types pose two key issues: when to use a particular basis function 

and how should 𝜀 be selected. 

 

4.1.3.2.Choosing a Basis Function: 

The basis functions used for interpolation could affect the overall computational time and 

accuracy considerably. Whereas linear and Gaussian basis functions may not be as accurate as 

multiquadric, they are faster.  The experiment in Table 4.1 serves as a guide to selecting the 

appropriate basis function for interpolation. 

 Although multiquadrics are more accurate, its RMS error appears to converge (see Table 

4.1) with linear basis functions as the number of interpolation points increase. 

 Use linear interpolation for extracting high-frequency modes (edge-dominant modes) 

since they are faster, while multiquadrics are used when there are few extrema or when 

global memory is been used.  
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4.1.3.3.Choosing an Optimal Shape Parameter: 

The optimal shape parameter is the one with: 

•  The least RMS error. 

•  No ill condition warning from MATLAB. 

From Table 4.2, this value is 10.5 for multiquadric and 16.2 for Gaussian.  

 

Table 4.1: Image Size and Interpolation Accuracy 
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Table 4.2: Optimal Shape Parameter value 

 

 

4.1.3.4.Speed-up (CPU) 

Resources: 

 Computers: All computations were done on two computers.  

- Intel (R) core (TM) 2 duo, 2.5GHz 

- Intel (R) core (TM) 2 quad, 2.5GHz 

 Toolbox: MATLAB Parallel Computing Toolbox 

 

Extrema Detection: A parallel implementation of the extrema detection algorithm increases the 

overall computation speed. In figure 4.8, the speed-up could be approximately 8x to10x for large 

image sizes. This is when 1D serial parallel is implemented. For 2D-parallel implementation, the 

speed-up is about 0.5x on average. The root mean square error for using the 1D serial is also 

shown in the figure below. RMSE is computed using the result of 2D-parallel as the reference.  
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𝑟𝑚𝑠𝑒 =∑‖𝑓2𝑑 − 𝑓1𝑑‖
2 

For small image sizes, errors for 1D parallel are relatively high. As image size increases, the 

error value becomes unstable, however. relatively low. 

 

 

Figure 4.8: Extrema detection using parallel processing. 
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Table 4.3: Execution time (sec) and Speed using different fast approaches  
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Figure 4.9: Overall speed contribution by extrema detection, extrema interpolation, sifting and 

the reconstruction process.  
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From figure 4.9, the 2D-BEMD takes 69secs to decompose an image of size 256 by 256 pixels. 

Of this time, 22% and 66% is used for extrema detection and interpolation respectively. This 

value decreases by half when the algorithm is implemented in parallel. 

 

 

Figure 4.10: Parallel implementation of MATLAB’s imfilter algorithms. 

Computational speed comparison between the parallel BEMD developed, and a parallel 

implementation of MATLAB’s averaging filtering algorithm is shown in Table 4.4 below. The 

parallel imfilter algorithm is implemented as shown in the steps described in figure 4.10. 

Although parallel BEMD is still slower than the averaging and median filters, the difference in 

speed-up is not very significant considering the merits of using the BEMD for denoising. It 
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should be noted that the computational times presented in table 4.3 above for parallel BEMD is 

different from that indicated in table 4.4. This is because for denoising, only two BIMFs are 

required, meaning higher speed-ups. That is why the speed-up in Table 4.4 is higher than in 

Table 4.3. 

 

 

 

 

Figure 4.11 compares the speed gained by using the parallel implementation of the BEMD/PCP, 

Active Contours and Adaptive Thresholding. All the algorithms have common speed-up 

behavior for image sizes between 180 by 180 pixels and 1024 by 1024 pixels. Speed-up for 

adaptive thresholding, however, flattens out and even decreases for image sizes greater than 

1500 by 1500. The reason for this is because the adaptive thresholding (parallel) is not 

embarrassingly parallel. Hence, it is heavily dependent on SPMD. The SPMD, however, has only 

4 workers (since a quad core computer is used) available for processing images. As the data for 

each worker increases beyond a certain limit, their processing speed-up reduces. This will not 

happen for computers with more than four cores. The speed-up for BEMD-PCP and Adaptive 

Table 4.4: Image De-noising Computation Speed 
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Thresholding, however, continues to increase because it is embarrassingly parallel. It is therefore 

able to successfully combine parfor and SPMD to execute loops in parallel.  

 

 

Figure 4.11: Speed improvements for different detection algorithms 

 

4.2.Integrating Detection System onto GIS Platform 

Crack detection systems provide inputs for Pavement Management Systems which helps 

personnel make cost-effective decisions with regard to pavement rehabilitation or re-

construction. A Crack Detection System acquires the data and processes it to extract data 

regarding damages regions. The output is sent to Pavement Management System (PMS) which 

rates the degree of damage, displays a map of conditions along road segments and manages all 
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other documents created from the surveys such as prioritization and maintenance cost analysis. 

In recent years, there is a trend toward integrating crack detection systems (CDS) into Pavement 

Management Systems (PMS) (Wang et al., 2001, Obaidat and Sharaf, 2006) in order to enhance 

and support decisions for pavement or asset management. There is, therefore, a demand for 

efficient tools that can integrate, manage and analyze the information from CDS such that its 

output will be meaningful to the PMS for improved decision making. There are, however, three 

main challenges affecting the successful integration of the two systems: 

- Platform Differences: A typical example is when algorithms in CDS are written in a 

programing language that is different from that of PMS.  

- Full and Complete Automation:  This is one of the biggest challenges. Most CDSs are 

fully automated; however, the PMS may require routines that require manual editing. Due 

to this, a fully automated system is difficult to find. 

- Massive Data. 

A common platform for integrating CDS into a PMS is usually through GIS. This is mainly 

because of the geographic nature of road networks and GIS’s improved resources for spatial data 

management and analysis. Also, new developments in spatial analysis may be employed for 

efficient visualization and documentation of the surveyed results, query, manipulation, analysis 

and management in order to effectively plan maintenance and repair programs. Challenges such 

as automation and platform differences, however, still plague systems integrated using GIS.  

The primary goal of this section is to integrate algorithms developed in previous chapters 

(Empirical Mode Decomposition/Principal Component Pursuit, Adaptive Thresholding, and 

Active Contour Models) onto a GIS platform. The steps used to overcome challenges such as 

platform differences, automation and massive data will also be illustrated. Overall, we seek to 
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provide a system which offers a safe data collection technique, fast, efficient processing, analysis 

and visualization of data. The integrated system will automatically provide the following: 

- Inspect roads for cracks or damages. 

- Identify the type of damage (longitudinal, transverse, block, alligator, etc.), its extent 

and location. 

- Construct a map for visualizing conditions on the different segments of the road. 

- Generate priority indexes for rehabilitation purposes. 

- Perform maintenance cost analysis. 

 

4.2.1. Components of the Integrated System 

The platform will have four main components. A flowchart describing how they are integrated 

into the GIS system is presented in figure 4.12. See Appendix A for the complete code structure 

used to integrate the crack detections system into ArcGIS. The components are as follows: 

- Network Identification and Database Development 

- Image Processing System 

- Pavement Condition Rating and Analysis System 

- Data Management and Visualization 

- Priority Indexing and Maintenance Cost Analysis. 
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Figure 4.12: Key components of the Integrated System 

 

4.2.1.1.Network Identification and Database Development (NIDD): 

The primary goal of NIDD is to segment the entire road network system into manageable 

divisions for surveys. Also at this stage, database development begins through the acquisition of 

distress data and all other information such as street names, road type, road width, traffic 

volume, traffic speed, etc. Roadway information is obtained from individual states’ department 

of transportion. After processing, the database is updated with other information such as damage 

or crack type and severity conditions and the priority index of each road segment. In modern 

systems, data acquisition vehicles are mounted with a GPS, hence network identification can be 

performed simultaneously with distress survey and database development. During this process, 
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the coordinate of each image is acquired. A potential problem may sometimes occur if the GPS’s 

signal can be lost due to nearby trees or high rising buildings in an area. Also, the GPS 

instrument is unable to acquire accurate information within fractions of a second since data is 

being acquired at highway speeds.  

For the system developed in this work, a mounted GPS is not required. Coordinates of each 

image are obtained through an automated georeferencing approach. The process requires 

coordinates of the first image taken at the beginning of each division in order to coordinate the 

remainder of the images taken. This work will seek to overcome some of the limitations of the 

current systems by preceding distress survey and database development with network 

identification. For our network identification, only six coordinates are required per street; three at 

the beginning and three at the end. This is shown below in figure 4.13. 

 

Figure 4.13: Network identification 
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4.2.1.2.Image Processing System (IPS): 

The image processing algorithms used have been discussed exhaustively in chapters 3, 4 and 5. 

The IPS consists of three key components: Crack image retrieval, image pre-processing or 

enhancement, feature extraction or thresholding and binarization. At each stage, the system 

provides different alternatives for processing the image. The user can select the desired option 

depending on the level of accuracy and speed desired.  

Crack Image Retrieval Algorithms 

- Harris Detector Method 

- Pixel Correlation Method 

- Pixel Projection Method 

Image Pre-Processing Algorithms 

- Gaussian Pyramid based background standardization 

- BEMD-based image restoration 

Feature Extraction Algorithms 

- BEMD and PCP algorithm 

- Adaptive Thresholding algorithm 

- Active Contour algorithm 

 

4.2.2. System Integration onto GIS Platform 

Integrating the vision system developed in previous sections into GIS improves the analysis, 

assessment and management of road condition information.  The integrated system developed 

provides the following: 



  

132 
 

 Automates the process of converting binarized (raster) images into vectorized features for 

spatial analysis. 

 Assigns coordinates to every pavement image acquired through automated geo-

referencing. 

 Provides an improved classification of cracked images and visualization of road 

condition. 

 Improves database management of road condition information. 

 

4.2.2.1.Vectorizing Raster Data: 

Vectorization converts binarized (raster) images into geographical features or polygons. Raster 

cells that are interconnected will be grouped as one polygon. The key advantage of this step is its 

ability to detect different types of crack in an image. The assumption here is that different types 

of cracks in a single image will not be connected. Image classification algorithms can only detect 

one type of crack per image. This is usually not the case; a cracked image could consist of 

different types of cracks. An added advantage of the vectorization process is that the 

computation of crack lengths and orientations becomes easier since each crack polygon has its 

associated coordinates. Each vectorized image will be considered as a separate shapefile layer 

with its own attributes. Figure 4.14 shows an example of a vectorized cracked image with its 

attributes.  
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Figure 4.14: Vectorized Image and its crack attributes 

 

4.2.2.2.Automated Geo-referencing: 

This step assigns geographic coordinates to every pixel in the processed (vectorized) image. This 

can only be achieved by a process known as geo-referencing. Traditionally, geo-referencing is 

achieved only by manual procedures. Ground controls points (at least 4 or 5) are required to 

register each image. To geo-reference each image, they have to be resized (by stretching or 

shrinking) in order to maintain the pixels in their right geographical positions. This procedure is 
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impractical since we are dealing with a huge image database (about 3000 images per mile). The 

most feasible way will therefore require an automatic way of registering or geo-referencing. 

 

 

General Idea 

Auto geo-referencing is achieved by finding an approximate image location and orientation on a 

given road segment, which represents the start of imagery. Vertices of the road are read using 

ArcGIS ArcPy – a tool that provides access to geoprocessing tools as well as additional 

functions, classes, and modules that allow you to create simple or complex workflows quickly 

and easily. Using one ground image length, the snapshot location for every image is interpolated 

at the image ground distance using Python shapely.geometryLineString. A snapshot location (see 

figure 4.15) approximates the image center pixel coordinates. Using snapshot locations and the 

following image properties: upper left corner, pixel size in x, pixel size in y, the approximate 

ground coordinates are computed for upper left corner and upper right corner.  

 

 



  

135 
 

Figure 4.15: Snapshot locations of automatically geo-referenced image. 

 

With at least three ground and image coordinates (center coordinates of the upper left corner and 

upper right corner), a six parameter image-to-world affine transformation can be used to obtain 

geo-referencing parameters for a raster World File. Each known coordinate generates two 

equations (𝑥’, 𝑦’).  

𝑥′ = 𝐴𝑥 + 𝐵𝑦 + 𝐶 

𝑦′ = 𝐷𝑥 + 𝐸𝑦 + 𝐹 

With three coordinates, six equations are generated between image and ground coordinates, and 

a solution for 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 are computed: Transpose [𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹]  =  𝑁 ∗ 𝑈. Matrix 

calculations are achieved using PythonNumpy. A world file is generated containing the 

parameters needed to geo-reference the image. Where: 

N = Transpose [𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥] ∗ 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 and  

U = Transpose [𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥]*(𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 [𝑥’, 𝑦’ 𝑡𝑒𝑟𝑚𝑠… . ]) 
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Figure 4.16: Transformation from image space (units in pixels) into geographic coordinate space 

(units in meters, feet, etc.). 𝒙 and 𝒚 are column and row count respectively in image space. 𝒙′and 

𝒚′ are horizontal and vertical value respectively in coordinate space. A and E constitutes the size 

(width and height) of each cell in map units. C is the 𝒙′ value of the center of the upper-left cell. 

F is the  𝒚′ value of the center of the upper-left cell. Figure 4.17 shows an example of 

automatically georeferenced pavement crack images. 
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Figure 4.17: Automatically georeferenced images in ArcGIS. 

Key Assumptions and Important notes:  

 First image length starts from the first vertex of the road. 

 Image acquisition is continued from first given image  

 Control Points: During the network identification stage, four control points were 

obtained for each street. This will be all that is required for geo-referencing all the 

images on that road. 

 Image Size: The image sizes for each road must be the same.  

4.3.Case Study 

The complete vision system developed was used to assess the condition of sections of roads on 

the University of Delaware campus. The study area is displayed in figure 4.18 below: 
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Figure 4.18: Map of Study Area 

4.3.1. Database Development 

 Centerline data:  This database gives a spatial representation of the State road network. 

Variables such as road type (divided or not divided), name, length, width, median width, 

location (CBD or non-CBD), directions (one or two-way), elevation and traffic data 

(volumes and peak hour factor).  

 Pavement Condition data: Still images were acquired instead of video images. The 

reason is due to the lack of an automobile equipped with an imaging system, so image 

acquisition was done manually. Consequently, the stream of images may not be 

continuous; however, considerable effort was made to capture most important distresses 

on the roads.  In order to efficiently manage the vast number of pictures acquired, 

segment IDs were assigned based on picture names.   
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NB: The resolution of the camera determines the quality of survey and the minimum 

crack size that can be analyzed. For example, if an image with 640 x 480 pixels covers an 

area of 64 x 48 inches, then the survey represents an inch with 10 pixels or 2.5mm per 

pixel. 

A graphic user interface (GUI) (shown in figure 4.19) application was developed in MATLAB 

for the implementation of the vision system developed. Sample outputs information from the 

GUI is shown in figures 6.20, 6.21 and 6.22. The following section will discuss and analyze the 

results obtained from the vision system.   
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Figure 4.19: Graphic user interface developed for case study 

 

4.3.2. Pavement Condition Rating and Analysis System 

The condition of each road segment is rated based on the percentage of road surface cracked and 

the type of crack.  

4.3.2.1.Damage Ratings: 

A ratio of the area of cracks to the total image area is used to assess the distress 

condition of roads (rating index) and defined as:  

    



i o

ii

A

WL
PDI

)*(  

where 
iL  is the length of the crack, iW is the width of the crack and oA  is the area of 

the image. 

4.3.2.2.Crack Type Classification: 

The process of crack classification has varying degrees of complexity depending on 

the type of crack. For a simple transverse or longitudinal crack, a very simple 

algorithm based on pixel manipulations can be used to classify that image. However, 

classification can become much more complex. This has resulted in the development 

of very complex algorithms which are computationally expensive. In this system, 

crack classification is simpler because the coordinates of the cracks are known; 

hence their direction can easily be estimated. Also, if there is more than one crack in 

an image, conventional crack classification algorithms will fail. However, due to the 

vectorization process in GIS, different types of cracks can be detected.  
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Different types of cracks are assigned different ratings in order to calculate the 

overall condition rating for the road segment being analyzed. Table 4.5 provides a 

list of ratings from the most popular crack types. The pavement condition rating is a 

product of the crack type rating and the PDI. Figure 4.20 shows a map visualization 

of degree of damages of the pavement under study based on the PDI and crack type 

classification.  

 

Table 4.5: Assignment of defect rating 

Crack Type Rating 

Longitudinal Crack 0.10-0.35 

Transverse  0.10-0.35 

Pot holes 0.30-0.5 

Pattern (block and alligator) 0.3-0.6 
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Figure 4.20: Visualization of road condition ratings 

 

Also, in figure 4.21, a plot of average cracking per 0.05 mile is shown. This is helpful in 

describing the concentration of cracks along the road segment. 
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Figure 4.21: Average PDI per 0.05 of a mile 

 

Table 4.6: Average PDI  values for road sections 

Section ID Average PDI per quarter 

mile 

Sect_11062011_01 0.168 

Sect_11062011_02 0.142 

Sect_11062011_03 0.023 

Sect_11062011_04 0.296 
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4.3.3. Maintenance Prioritization 

Maintenance prioritization groups identified damaged sections based on average traffic volume. 

This will help pavement managers to make decisions and request for appropriate interventions in 

the face of budget constraints.  

𝑃𝑟 ∝ (𝐴𝐴𝐷𝑇, 𝐶𝐼𝑅 𝑎𝑛𝑑 𝐶𝑇𝑟) 

where 𝑃𝑟is the section priority; 𝐶𝐼𝑅 is the percentage of pavement image cracked.  𝐶𝑇𝑟 is the 

rating assigned based on crack type (longitudinal, transverse, pothole, pattern cracks) and 𝐴𝐴𝐷𝑇 

is the annual average daily traffic volume. 

In figure 4.22, sections requiring immediate interventions are in red followed by yellow and 

green.  
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Figure 4.22: Maintenance priority maps. 

 

4.3.4. Summary of Invention 

In order to overcome the shortcomings of the state of the art, the current invention improves on 

automation of crack detection, assimilation (analysis) and visualization process. A framework for 
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developing adaptive algorithms with increased parallelism is also illustrated. Above all, the key 

components of the inventions are as follows: 

- Crack Detection and analysis: Instead of using traditional image processing tools, in 

this invention, a bold attempt is made to use adaptive and data deriving methods, 

which outputs more accurate results. For the first time, active contour models are 

successfully used in place of edge detection methods. This provides much more 

continuous and smoother description for crack edges. 

- Toward Real-Time Implementation: To improve the speed of the system, crack image 

retrieval is used to suppress non-cracked images from feature extraction. This saves 

the system significant time. Also, the invention provides a parallel implementation of 

computationally expensive algorithms, which dramatically reduces their computation 

time. 

Ultimately, the pavement crack detection system must be: 

Adaptive: Classical pavement distress detection systems usually extract desired features by 

convolving predefined basis functions with the original distress image. In this work, feature 

extraction is totally data driven through detection and interpolation of local extrema. 

Partially Real-Time: Generating crack maps on-line while the image acquisition vehicle travels 

at 50mph. The results in this work cannot operate in real-time. The goal here is to explore the 

potential of a real-time application of the adaptive algorithm. 
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Chapter 5 

CONCLUSIONS AND RECOMMENDATIONS 

 

5.0. Introduction 

This chapter provides a summary of the key findings and developments made with regards to the 

development and application of the multiresolution information mining and vision systems to 

pavement distress detection and analysis of condition information. Additionally, key challenges 

and their appropriate recommendations will be outlined to serve as a guide for future studies. 

5.1.Crack Detection 

Automated pavement crack detection has undoubtedly improved the pavement road condition 

assessment process. BEMD (Bidimensional Empirical Mode Decomposition) was introduced to 

improve the adaptation of current crack detection systems to different types of distresses. 

Decomposed results from BEMD were revealing, and separated cracks into different components 

based on their widths and intensity. In order to separate all the cracks from background 

information, an improved IMF reconstruction technique was developed. Although the results 

were better than traditional reconstruction techniques, the method was too slow and the 

discrimination between cracks and their background was not very clear. This resulted in 

combining BEMD with a multiresolution information mining algorithm known as Principal 

Component Pursuit (PCP) to develop straightforward, adaptive and data driven procedures to 

extract salient information from pavement distress images. Using this approach, image 

enhancement, denoising and reconstruction can be performed simultaneously without any a 
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priori assumptions. The fidelity of segmented images is very high in terms of the width and the 

direction of the cracks. 

To enhance the practical application of BEMD, a real-time implementation of the algorithm was 

investigated through image subsampling and parallel processing. It was realized that extrema 

detection and interpolation alone contributed to about 80% of the computational time. 

Fortunately, these procedures are embarrassingly parallel. Hence, codes were restructured to take 

advantage of current generation of CPUs.  Incredible improvement in speed is achieved during 

parallel extrema detection and interpolation.  

The last contribution in this area is the introduction of a vision system into the crack detection 

process. As explained earlier, this development endows computers with information-processing 

capabilities enabling them to model and automate the process of crack detection in a way 

comparable to those of biological organisms. It involved the introduction of automatic crack 

image retrieval system for pre-screening the database, thus selecting only cracked images for 

processing. The main aim of the image retrieval system is to improve the speed of the system. 

Also, image denoising algorithm based on Gaussian-pyramid was explored.  

In the area of edge detection, a model-based approach known as active contours or snakes are 

introduced. It is dependent on the distribution of high and low gradient points across the image 

rather than just the presence of a high gradient points; this is a concept that is predominantly 

used by traditional edge detection systems. The model-based approach therefore has a good 

perception of a crack edge. It is able to produce a continuous and smooth delineation of cracks in 

the image, detect its exact location and produce accurate geometric parameters of the crack 

boundary. 
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5.1.1. Complete Pavement Management System 

A number of pavement management systems exist for assessing conditions, prioritizing and 

scheduling maintenance routines for road networks. Most often, condition assessments or ratings 

and database management are carried out on different platforms. As such data verification by 

decision makers can be very difficult. Much human intervention will then be required, which 

may reduce the system’s efficiency and consistency. Recent works which seek to integrate these 

systems from different platforms have not been very successful as they are not fully automatic. 

The development carried out in this work is fully automatic; routines such as geo-referencing, 

vectorization of raster images, road condition visualization and prioritization are all performed 

without any interventions or manual editing procedures from the user. 

The integrated system outputs a map visualization of the road condition based on the percentage 

of image area cracked. An important procedure to this step is the automated georeferencing of 

images that was introduced. This ensures that we have the accurate location of where the image 

was taken. From vectorized images, the type of crack in the image can be classified since each 

crack has its corresponding coordinates.  

 

5.2.Recommendations for Future Research  

In spite of the various contributions made in this study, there is still room for improvement in 

others to extend the methodology described to wider application areas. 
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5.2.1. Crack Detection and Classification 

Recent advances in video imaging have improved the quality of images acquired by acquisition 

vehicles. Therefore, image enhancement algorithms may not be extremely important. The key 

challenge introduced by these advancements is that the current generation of video cameras 

reveals too much information which may not be helpful in analysis. This could affect the 

efficiency of edge detection algorithms. In the past, video cameras might not have been able to 

discern small objects or fine texture information, etc. hence, newer video equipment may not be 

hindered by rough textures and other small foreign objects on the road. Future algorithms should 

be geared toward intelligent feature extraction in the midst of the cloud of information in distress 

images. 

 

5.2.2. Robust Condition Monitoring 

One step that is conspicuously missing in this study is the analysis of crack depth information. 

This work assumes that there is a correlation between the width of cracks and its depth. This is 

not necessarily true. Pavements may look good on the surface however, due to water dissipating 

through small cracks into the core of the pavement; there could be cracks within the sub-base. 

There are two main ways to approach this: first, after the distress crack detection algorithm is run 

on the pavement, the pavement structural strength could be obtained using deflectographs or 

ground penetrating radars to assess what exactly is happening within the structure. A second 

technique could be developing devices that can simultaneously sample surface and depth 

information. In essence each pixel will have its relative depth. 3D algorithms will therefore be 

required to process such information. Although such advancement will be very hopeful, it may 

however increase computational time.  
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5.2.3. Platform Speed and Database Management 

The current implementation of BEMD for crack detection is not real time. Usually, the crack 

detection algorithm is expected to assess the condition of the road while the vehicle acquires data 

at a travelling speed of approximately 50 to 60 mph. This will require the algorithm to be 

extremely fast. The current generation of computer memory and CPUs cannot provide this 

speed-up.  Future research should explore the possibility of using GPU computing and MEX 

functions to improve the time for computations carried out on Global memory. MATLAB also 

slows computations since the programmer is unable to control memory allocations; therefore, a 

more efficient and fast programming language like Visual Studio C++ should be explored. 

Another area that requires attention is the platform for database management. In the present 

study, ESRI’s ArcGIS is used for managing distress information. The software is very expensive 

so cheaper versions of GIS software could be explored.  

 

 

 

 

 

 


