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1. DESCRIPTION OF THE PROBLEM 
During their lifetimes, bridges suffer from environmental corrosion, persistent traffic and wind loading, 

extreme earthquake events, and material aging, etc., which inevitably result in structural deficiencies. 

According to a recent report from the American Society for Civil Engineers, "more than 26%, or one in 

four, of the nation's bridges are either structurally deficient or functionally obsolete". Actually, a large 

percentage of the bridges in use in the United States have been used for several decades, maybe beyond 

their intended service lifetime. Therefore, their health condition should be assessed to ensure their 

integrity and to improve the safety for the public. The collapse of the I-35W highway bridge over the 

Mississippi River in Minneapolis (Minnesota, US, August 2007) further underscores the urgent need for 

reliable and robust condition assessment of bridges. A precise numerical model is very important for 

structural condition assessment (Adeli and Jiang, 2009; Hampshire and Adeli, 2000; Ou, 2004; Park, et al., 

2007; Ou and Li, 2010; Xia, et al., 2011). However, it is difficult to develop a precise numerical model of a 

structure due to modeling simplification and modeling errors. Model updating provides an effective way 

to obtain a precise numerical model of a structure. Mottershead and Friswell (1993) presented a 

comprehensive literature review on model updating techniques. 

When applying traditional model updating methods, an initial FEM of the structure is first established 

based on construction drawings and then numerous iterations are performed on the entire FEM during 

the optimization process, leading to a large amount of computation that is time-demanding and requires 

a lot of computational resources. The situation becomes much worse for large-scale real-world 

structures, in which a great number of degrees of freedom (DOFs) are involved and a great number of 

parameters on geometry, material properties as well as boundary conditions may need to be updated.  

 

To alleviate this problem, the response surface (RS) method has been employed to generate an 

equivalent model (referred to as ‘surrogate model’) to replace the FEM in the model updating process 

(Fang and Perera, 2009; Faravelli and Casciati, 2004; Horta, 2010). The basic idea of the RS method is to 

model a structure by seeking an explicit function to approximate the implicit relationship between the 

physical parameters (input) and responses of the structure (output). The model established by the RS 

method is much more efficient in terms of computation amount and speed than the traditional FEM. The 

substitution model is referred to ‘meta-model’ or ‘surrogate model’ (Modak, et al., 2002).  

 

Efforts have been witnessed for the RS method involved into FEM updating during the past ten years. 

Marwala (2004) proposed the RS method for structural model updating by using multilayer perception to 

approximate the relationship between system parameters and structural responses. Fang and Perera 

(2011) proposed a damage identification method achieved by response surface-based model updating 

using D-optimal designs. Lu Deng et al. (2010) updated a bridge model by using the genetic algorithm for 

optimization with the RS method for modeling the structure. The RS model was constructed by a 



 

quadratic polynomial (QP) function based on the experimental samples generated by central composite 

designs (CCD). Results of numerical simulations and the application of an existing bridge showed that this 

method worked well and achieved reasonable physical explanations for the updated parameters. When 

updating a bridge FEM, Ren et al. (2010, 2011) also employed the RS method based on quadratic 

polynomial functions to model the bridge. They pointed out that it is still challenging to apply the RS 

method in updating the models of complex civil engineering structures where the relationship between 

the design parameters and the output responses is complicated and a large number of updated 

parameters are involved. Through a comprehensive literature review in this area, the present authors 

found that almost all the reported researches about the RS method for model updating are based on 

polynomial functions, but that based on RBFs is not much studied, which is more suitable for multivariate 

and complicated problems. Recently, Qin et al. (2011) updated the FEM of airplane wing by using RS 

method of Gaussian function.  

 

Through a comprehensive literature review, almost all the reported research in this area is based on 

polynomial functions, and is limited to simple structures. This project is to improve the RS method by 

applying a more appropriate approximation function (Radial basis function) and then perform a genetic 

algorithm on the surrogate model generated by the improved RS method to update models of large-scale 

bridges. As a result, the computational amount can be significantly reduced, making model updating 

more quickly. The implementation of the improved RS method makes model updating promising in being 

applied to large-scale real-world structures. 

2. APPROACH AND METHODOLOGY 
Various response surface (RS) methods will briefly reviewed in this section. The RS method as a 

comprehensive statistical and experimental technology has been widely used to predict the relationship 

between the input and output of complicated systems. It can also be considered as the function fitting or 

interpolation of the discrete data points, which obtains the numerical model of the concerned systems 

based on the observed samples in the design space. One feature of this method is to express a 

complicated implicit function using deterministic formulas. In this method, the approximate function is 

arguably considered as the most important factor. The polynomial function has been mostly used as it is 

continuously derivable and easy for subsequent computation. 

 

2.1 The RS method based on polynomial functions 
A polynomial function with different orders can be adopted as an approximate function in the RS 

method. The critical step is to properly determine the order and cross-terms of the polynomial function. 

For most problems, the first-order and second-order polynomial functions are usually used to satisfy 

modeling precision and achieve a reasonable amount of calculation (Hill, 1996). The most used second-

order polynomial RS model can be expressed as 
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Where β is the undetermined regression coefficient, x is the design variable, k is the number of design 

variables and ε is the error term. 

 

The number of unknown coefficients β in second-order polynomial RS model is (k+1)(k+2)/2. β can be 

obtained by a least squares estimation. It should be noted that the number of undetermined coefficients 

of the polynomial RS model increase exponentially with the increase of design variables and the 

polynomial order, which means that more observed samples and larger calculation amount are required 

for the RS construction.  

 

Theoretically, for simulation of complex problems such as a non-linear curved surface, the RS model with 

higher-order polynomial functions achieves better results. However, the number of unknown regression 

coefficients and the amount of calculation will subsequently increase significantly, making the cost of 

high-order RS model unacceptable, especially for multivariable problems.   

 

2.2 The RS method based on RBFs  
To overcome the disadvantages of the RS method base on polynomial function, the RS method based on 

radial basis functions (RBFs) is proposed in this section. RBFs were first proposed by Krige in 1951 in the 

Kriging method (Krige, 1951). They have been widely studied since 1950s and applied in many fields, 

such as geodesy, geophysics, surveying and mapping, photogrammetry, remote sensing, signal 

processing, geography, digital terrain modeling, hydrology (Hardy, 1990), solving elliptic, parabolic or 

hyperbolic partial differential equations (Fornberg and Piret, 2008), and RBF neural network  (Adeli and 

Karim, 2000; Karim and Adeli, 2002, 2003; Ghosh, et al., 2008; Savitha, et al., 2009). In particular, the 

application of RBFs in the areas of function approximation and interpolation of scattered data has 

attracted considerable attention (Jackson, 1989). Compared with other approximate functions, RBFs can 

achieve a better performance and the advantage becomes more obvious for high-order nonlinear 

problems. RBFs have been validated to be the best one compared to other interpolation methods by 

using examples of different kinds of scattered data (Frank, 1982). Powell (1991) presented a good review 

of the theory of RBF approximation.   

 

Radial basis function. The definition of RBF proposed by Stein and Weiss (1971) is as follows: if 
1 2x x , 

the function ϕ satisfying 1 2( ) ( )x x   is a RBF. It means that the RBF only depends on the function r x , 

where ||·|| denotes the Euclidean norm. The most commonly used RBFs are listed in Table 1, where c is 

the shape parameter and 
ir x x  is the Euclidean norm.  

 

 



 

Table 1 Commonly used RBFs 

Name of RBF Expression Abbreviation 

Gaussian 
2-( )  ( 0)  c rr e c  GA 

Inverse Quadratic 2 2 -1( ) ( )  r r c  IQ 

Multiquadrtic  MQ 

Inverse 

Multiquadrtic    IMQ 

 

Modeling of RS method based on RBFs. The RS method is to approximate a real-valued function f(x) 

based on a finite set of values 
1{ , , }nf f f  at discrete points 

1{x , , } d

nX x R  . Herein RBFs are chosen to 

construct the RS model as an approximation of the function. For positive definite RBFs such as GA, IQ and 

IMQ functions, the RS model has the general form: 

1
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n

i i

i

y f x x x   ( dx R , ix X )                                                        (2) 

where 1 2{ , , , } kx x x x is the vector of design variables (k is the number of updating parameters); X  is a 

given set of known discrete points, ( ) ( )ir x x    is a RBF; 
ix x  is the Euclidean distance between an 

arbitrary point x and a discrete point xi; 1 2{ , , , }    n
 is the regression coefficient vector of a RS 

model.  

 

For conditional positive-definite RBFs such as MQ function, some additional polynomials and constraint 

conditions should be adopted for the modeling of RS model. The RS model takes the form 

1
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If  ( )    and 
1

0



n

i i

i

x , the solution to Eq. (3) is unique. Where γ is the order of conditional positive-

definite function; α and bα are the order and regression coefficient of the additional polynomials, 

respectively. 

 

As can be seen from Eqs. (2) and (3), the RS model based on RBFs can be described as a weighted sum of 

a radially symmetric basis function based on the Euclidean distance. It should be noted that the number 

of regression coefficients only depends on the observed points, and almost has no relationship with the 

dimension of the design variable vector x. Therefore, the increase of design parameters does not require 

more samples. As a result, the calculation efficiency can be improved and the computational cost 

significantly reduced, which is very important for high dimensional and multivariate problems. 

 

Selection of the shape parameter c for RBFs. As shown in Table 1, the shape parameter c is the only 

undetermined coefficient in a RBF, which needs to be specified by the user. It controls the ‘flatness’ of 

RBFs, and is employed to adjust the curve shape of RBFs for achieving a better approximation precision. 

2 2 1/ 2( ) ( )r r c  

2 2 1/ 2( ) ( )r r c  



 

 

The accuracy of approximating functions using RBFs highly depends on the selection of the shape 

parameter c (Frank, 1982; Carlson and Foley, 1991; Schaback, 1995). Therefore, selecting an appropriate 

shape parameter plays an important role when using RBFs. The value of the optimal c depends on the 

number and distribution of data points, the RBFs and the precision of the computation (the condition 

number of the interpolation matrix) (Rippa, 1999). The shape parameter c in RBFs application can be 

divided into constant c (Carlson and Foley, 1991) and variable c (Kansa and Carlson, 1992; Sarra and 

Sturgill, 2009). The variable c-based methods can produce more rational and accurate results. However, 

they are more complicated with high computational costs required. Therefore, the constant shape 

parameter-based methods have been widely used due to their simplicity and efficiency. In most cases, 

desired accuracy can be achieved with a constant shape parameter.  

 

As a numerical illustration of the influence of the shape parameter c on function approximation, the 

Peaks function in MATLAB is adapted to be approximated by the RS method based on RBFs. Peaks is a 

bivariate function with the following form 
2
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   (4) 

It is obtained by translating and scaling Gaussian distribution with three local minimum points and three 

local maximum points on the concave and convex continuous surface, as shown in Fig. 1(a). The RS 

models based on RBFs (GA and MQ) are developed for the Peaks function by using the proposed method 

as described in Subsection 2.2.2. Figures 1(b)-(d) display the errors distribution of the obtained RS 

approximation with different shape parameters c using the same set of data points. It is clear that the 

magnitude and distribution of approximation errors are obviously different from each other. If a small 

value c=0.5 is used, the major error distributes at the vicinity near edge where the surface is supposed to 

be flat. Using a large value c=10, the error concentrates around the maximum or minimum points of the 

surface. Using the value of c=1, a more uniform distribution and small errors are achieved. The above 

discrepancy is caused by the difference in the shape of the approximation function. 

 
(a) The surface of Peaks           (b) c=0.5                    (c) c=1                  (d) c=10 

Fig. 1. The Peaks surface and the error distribution of the GA RS approximation 

(a) Peaks function, (b) c=0.5, (c) c=1 and (d) c=10 

 



 

To investigate the influence of different RBFs and different numbers of samples on selecting the shape 

parameter c, the four RBFs were used to approximate the Peaks function with various amounts of 

samples. From Fig. 2, it can be observed that: 1) The approximation errors gradually change with the 

variation of the shape parameter c; 2) RBFs almost have the same minimum error, but the distribution of 

error is different; 3) As the number of the observed data points increases, the approximation error is 

reduced dramatically and a wider range of c can be used. 

 

It can therefore be concluded that the selection of optimal c should take account of the approximation 

RBFs and properties of observed data points. It is suggested that a pre-analysis with different 

approximation functions and the shape parameter c as a continuous variable in a certain range is first 

conducted, and an optimal value of c can be obtained by observing the value and distribution of 

approximation errors. Before applying this approach to each individual bridge, c should be determined 

using the above instructions.  
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(a) GA function with various samples              (b) Four RBFs with 200 samples 

Fig. 2. RMS error as a function of c for the GA and MQ RS approximation defined on various amount of 

data points (n is the number of data points) 

3. SAMPLING AND EVALUATION CRITERION OF THE RS METHOD 
3.1. Sample generating based on design of experiment 
The selection of samples is one of the key issues for the RS approximation, significantly affecting the 

accuracy and the computational cost of a RS to be constructed. Based on the mathematical statistics, 

design of experiment (DOE) can efficiently and reasonably choose the observed samples in the global 

design space. With the increase of model complexity, DOE has become an essential part of the modeling 

process. Numerous methods of DOE were developed for different proposes. Some methods were 

especially proposed for the RS method, such as Central Composite Design (CCD) (Montgomery, 2006), D-

optimal design and Box-Behnken design of DOE.  

 

The CCD is adopted in this study to generate samples. The CCD samples (assume n-factor) generally 

consist of three components: 1) Cube points. The 2n cube points come from a two-level full factorial 



 

design, which takes the all possible combination of the two-level values of the parameters; 2) Axial 

points. The 2n axial points are located on a hyper-cube with the radius α. An axial point is defined by the 

rule that one of the parameters has the minimum or maximum value and all other parameters have their 

mid-levels; 3) Center point. A single point in the center is created by a nominal design. The nominal 

design consists of one experiment where all parameters are set to their nominal values.  

 

It should be noted that the samples for RS modeling and accuracy evaluation are different. When 

selecting samples for modeling, high computation efficiency and low experiment cost are required; when 

selecting the samples for accuracy evaluation, a uniform and random distribution in the design space of 

input parameters is required. In this study, the samples for RS modeling are generated by the CCD 

method, and uniformly distributed pseudo-random samples are utilized for precision evaluation.  

 

3.2 Evaluation Criterion of the RS method  
Many RS methods with different approximate functions and various optimization strategies are widely 

used in the engineering fields. Therefore, it is necessary that some evaluation criterions should be 

adopted to evaluate the validity and accuracy of the RS application, and the commonly used evaluation 

indexes are described in this section. 

 

Multiple correlation coefficient R2. The multiple correlation coefficient is used in a multiple regression 

analysis to assess the quality of the prediction of the dependent variable. It is an estimate of the 

combined influence of two or more input variables to the observed output quantity, expressed as 
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Only for a linear approximation, SSR=SSY-SSE, then R2 can be further expressed as 
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Where n is the number of the observed samples; yi is the observed value; ӯ is the average value of yi; and 

ŷi is the predicted value by the RS model at observed points; SSR is the regression sum of squares which 

indicates the discreteness of y; SSY is the total sum of squares, showing the discreteness of yi; SSE is the 

error of squared sum, indicating the discreteness of y caused by random errors.  

 

The value of R2 closer to 1 indicates that a higher accuracy of approximation is achieved. Usually, the 

0.5≤R2≤0.8 defines a significant correlation between dependent and independent variables and 

0.8≤R2≤1.0 means a high correlation. It should be noted that only for a linear approximation, the 



 

relationship of SSR=SSY-SSE can be obtained, then the R2 in Eq. (6) is constrained in the range of [0, 1]. 

For more general problems of nonlinearity, the R2 of Eq. (5) takes a value greater than 0.  

 

Root mean squared (RMS) error. For approximation of a nonlinear function, precision can be evaluated 

appropriately by a RMS error, which can be written as  
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                                                                             (7) 

A RMS error represents the discrepancy between measured values and predicted values of the RS model. 

A RS model with higher approximation accuracy achieves a smaller value of RMS error.  

 

Obviously, the RMS error directly estimates the discrepancy between the measured value and prediction 

value, while the R2 is an estimation of the correlation between dependent variables and independent 

variables. Compared with RMS, the R2 has the advantage of comparing the accuracy of both diverse RS 

methods and different approximated problems in the range of 0~1, but cannot exactly explain the 

difference between each model. For example, when R2 is close to 1, a small change of R2 may generate a 

great discrepancy of RMS error. The precisions of different models can be reflected clearly by the RMS 

error, but it is inconvenient to have a comparative analysis for various models. In this study, both R2 and 

RMS errors are adopted to estimate the accuracy of RS approximation. 

4. FINDINGS 
A cable-stayed bridge model (see Fig. 3) is used to illustrate the effectiveness of model updating using 

the RS method based on RBFs and Genetic Algorithm numerically and experimentally. The research 

findings are described as below. 

 

4.1 Description of the structure 
This bridge model was designed and manufactured according to the similarity theory based on a real-

world bridge (Li, et al., 2006). The scale factor is 1/40. The bridge deck and towers were made of 

aluminum alloy, and cables were made of steel wires with different cross-sectional areas. The bridge 

deck is 15.2m long and 0.82m wide, and the middle pylon and side pylon are 3.1m and 1.9m high, 

respectively. The total weight of aluminum alloy is about 1 ton. 

 



 

 
Fig. 3. Scaled model of a cable-stayed bridge 

 

4.2 Establishing the RS model  
To model the structure using the RS method, a three-dimensional finite element (FE) model of this bridge 

model was first developed using ANSYS, as shown in Fig. 4. The bridge girders, piers and towers were 

modeled by Element SOLID64, which have three translational degrees of freedom (DOFs) at each node. 

The bridge decks were modeled by Element SHELL63, which has both bending and membrane 

capabilities with six DOFs at each node (three translations and three rotations with respect to x, y and z 

directions). The bridge cables were simulated by LINK10 element, which has the unique feature of a 

bilinear stiffness resulting in a uniaxial tension-only (or compression-only) element.  
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Fig. 4. FEM of the cable-stayed bridge model 

 

4.2.1 Selection of the design parameters and output characteristic parameters  

There exist discrepancies between the prototype bridge and the bridge model due to the differences in 

materials, dimensions, boundary conditions, and connections between segments. It is worth noting that 



 

it is very complicated and difficult to exactly depict the mechanical behaviors of the connections 

between segments. Therefore, the adjustments of the material properties of the connection elements 

are considered to simulate these discrepancies. A total of 10 design parameters with potential error are 

selected as input parameters for the RS modeling, which are listed in Table 2. Figure 4 shows the details 

of connection for FEM of the bridge model.  

 

Here, the first 10 natural frequencies and MACs of mode shapes, as well as the tensions of 15 cables with 

different lengths and angles of inclination (see Fig. 4) are selected as the output characteristic 

parameters. 

Table 2 Selected design parameters and baseline value 

Parameters Baseline value Notation  

Young’s modulus of aluminum alloy of bridge decks and pylons 52 GPa E1  

Density of aluminum alloy of bridge decks and pylons 2700 kg/m3 D1  

Young’s modulus of deck connection 52 GPa E2  

Young’s modulus of pier connection 52 GPa E3  

Young’s modulus of middle tower connection 52 GPa E4  

Young’s modulus of side tower connection 52 GPa E5  

Mass of side tower connection 2700 kg/m3 D2  

Young’s modulus of deck cables 200 GPa E6  

Young’s modulus of boundary cables 200 GPa E7  

Density of deck additional mass 7850 kg/m3 D3  
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Fig. 5. The approximation error of RS model as a function of c 

 

4.2.2 Selection of an optimal shape parameter c of RBFs for the RS method 

To investigate the selection of optimal shape parameter c for RBF RS of approximating the implicit 

relationships between physical design parameters and static and dynamical output quantities of long-

span cable-stayed bridge, the same numbers of CCD and uniform distribution samples, as well as GA and 

MQ functions for RS Model are discussed. Figure 5 shows the approximation RMS errors in different 

conditions with continuous variation of c, and the optimal c is defined as the value of c with the 

minimum approximation error.  

 

It can be seen from Fig. 5 that the magnitude and distribution of approximation errors highly rely on the 

RBFs and observed samples. Most of the approximation errors have a continuous and smooth 

distribution. The error drops to a minimum and then increases with the c varies  from zero to big value, 

and it is clear that an optimal c could be obtained when the error achieves to a minimum. However, it 

should be noted that there are some obvious discrepancies among them. The errors of RS approximation 

have different trends of distribution with respect to different characteristic quantities, samples and RBFs. 

Comparing Fig. 5(a) with Fig. 5(b) and Fig. 5(c) with Fig. 5(d), it shows that the error of UD samples 

smoothly changes and the minimum could be clearly found, but the error of CCD samples has more 

extreme changes when c takes an extremely small or relative big value. By observing the cable tension in 

Fig. 5(b), the error is dramatically disturbed when c takes a value near 2. One possible reason for the 

instability could be that the ill-conditioning occurs in calculation. By comparing Fig. 5(a) with Fig. 5(c) and 

Fig. 5(b) with Fig. 5(d), it can be seen that the GA and MQ RS model are similar with respect to UD 

samples, but the situation is obviously different for CCD samples. The MQ RS model based on CCD 

samples has a long stable region for optimal c and stability of solution. 

 



 

4.2.3 Selection of RBFs 

In this section, the performance of the RS method based on different RBFs is evaluated for 

approximation. For comparison, the RS method based on polynomial functions is also implemented. The 

flowchart of RS modeling and model updating based on RS methods of RBFs is shown in Fig. 6.  

 

The CCD method is adopted to generate the samples for RS modeling. Level of center points takes the 

baseline value, and the corner points and star points take 120% and 80% of the baseline value as the 

upper and lower bounds, respectively. FE analysis is performed and corresponding characteristic 

quantities can be obtained from the output responses. Then, RS models are constructed based on input 

samples and the output characteristic quantities. Based on uniformly distributed pseudo-random 

samples, accuracy of RS approximation for each output quantity is investigated with the continuous 

change of c from 1.0×10-5 to 500, and the optimal c is determined when the error reached to the 

minimum. Meanwhile, the multiple correlation coefficient R2 and RMS error are employed to evaluate 

the accuracy of RS methods. If the constructed RS models have good performance on both R2 and RMS 

error, then they can be used for model updating. Otherwise, the observed samples and approximation 

function should be adjusted and the RS modeling procedures should be repeated.  
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Fig. 6. The flowchart of RS modeling based on RBFs 

 

Figure 7 presents the RS based on the GA function for the approximation of natural frequency, MAC and 

cable tension with respect to the design parameters of E1 and D1. It can be seen that the relationship 

between design parameters and MAC is more complicated than the other two. 

 

The analysis of approximating precision. Figure 8 shows the R2 and RMS error of the first 10 natural 

frequencies approximation of the five discussed RS models. As can be seen from Fig. 8(a), R2 of all the 

five RS models are nearly equal to 1, which means that all the five RS models have high approximation 

quality of natural frequencies. The RMS error of the 10 natural frequencies is shown in Fig. 8(b), which 



 

clearly displays the detail precision of each RS models. It can be observed that the error has a stable 

distribution, and GA model has a higher accuracy than the other four RS models. QP (quadratic 

polynomial) model also has a good precision, but IQ, MQ and IMQ models have relative bigger errors. 

Focusing on the RBFs model, GA and IMQ have better accuracies than IQ and MQ.  
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(a) The first natural frequency                  (b) The first MAC                 (c) The No. 8 cable tension 

Fig. 7. GA RS of frequency, MAC and cable tension with respect to the design parameters of E1 and D1 
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Fig. 8. The RMS error and R2 in the RS approximations of the first 10 frequencies 
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(a) The R2 of MACs                                 (b) The RMS error of MACs 

Fig. 9. The R2 and RMS error of the RS approximations for the first 10 MACs 

 



 

Figure 9 presents the R2 and RMS error of RS models approximation for the first 10 MACs. Clearly, the 

approximation results are not as good as natural frequencies, and RS models of RBFs have a relative 

better performance than QP model. The R2 and RMS error for a different MAC change dramatically. As 

observed in Fig. 9(a), the RS approximations for MACs of the 9th and 10th are almost invalid. However, the 

other MACs have acceptable accuracies (R2≥0.6). It also could be seen in Fig. 9(b) that the RMS error of 

the 9th and 10th MAC are significantly bigger than other MACs. The 1st MAC has the lowest error with an 

average value of 1.6×10-5, but the 10th MAC has the highest error with the mean value about 2.5.  

 

There are two possible explanations for the high discreteness of MAC approximation. 1) MAC of mode 

shapes indicates the spatial vibration property of structure, the limit of measurement points in the 

experimental tests makes it difficult to capture the integral characteristic of the entire structure, 

especially for high-order mode shapes. Usually, only the first several mode shapes can be identified with 

a satisfied accuracy; 2) The mode shapes of a cable-stayed bridge are more complicated due to the 

flexibility of this type of structure and the coupling effect between the bridge deck and the tower. 
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(a) The R2 of cable tensions                                              (b) The RMS error of cable tensions 

Fig. 10. The RMS error and R2 in the RS approximations of 15 different cable tensions 

 

Figure 10 illustrates the R2 and RMS error in RS approximation of 15 different cable tensions of the cable-

stayed bridge. As shown in Fig. 10(a), all the R2 are very close to 1, indicating that the quality of the 

approximations of RS methods to cable tensions is very good. The RMS errors are shown in Fig. 10(b), 

and it can be observed that the errors of the 15 cable tensions exhibit stationary distribution. Obviously, 

the RS method of RBFs has a better performance than the QP method; MQ and IMQ of RBFs could obtain 

a higher accuracy than the GA and IQ model.  

 

Multiple correlation coefficient R2 is used to assess the quality of RS approximation by correlation 

between design parameters and response quantities. A RMS error directly estimates the gap between 

the observed points and the approximation value of RS method. However, R2 and RMS error may not 

reach a consistent conclusion. Since R2 and RMS error are both very important evaluation indices for RS 

method approximation, it is suggested that only the RS method approximation with good performance in 

both R2 and RMS error should be utilized for model updating.  
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Fig. 11. Optimal shape parameter c in the RS approximations 

of frequencies (a), MACs (b) and cable tension (c) 

 



 

The optimal shape parameter c. The optimal shape parameter c for each RS model with respect to 

approximated characteristic quantity is determined independently. Precision inspection is conducted 

repeatedly with the c monotonously and continuously changing from 0 to 500 and the optimal c is 

determined when the approximation error drops to the minimum. Figure 11 illustrates the selected 

optimal c in the RS model of RBFs approximation to natural frequencies, MACs and cable tensions. It can 

be seen that the optimal c changes irregularly and highly depends on RBFs and approximated 

characteristic quantities. From Figs. 11(a)-(c), the optimal c of RBFs for different natural frequencies and 

cable tensions approximation changes stably, but MACs exhibit extreme situations where the optimal c 

takes a value that is close to 0 or a big value.  

 

The above analysis indicates that for approximating the system of large and complex structure by using 

the RS method of RBFs, the optimal c highly depends on the approximated problems and should be 

determined independently. The approach of precision inspection with c as a continuously variable in a 

reasonable range is recommended, and then the optimal c can be determined as the approximation 

error reaches to the minimum. Normally, for an individual bridge, the responses measured from this 

bridge are quite similar to each other. The selected c and RBFs should be applied to all sets of data 

measured from this bridge. 
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Fig. 12. Approximation error of RS models for frequency (a), MAC (b) and cable tension (c) 

under the situation of data contaminated by different degree noise 

 

4.3 Model updating results  
Dynamic testing has been conducted on the bridge model and the experimental setup is shown in Fig. 13. 

The accelerometers are installed on both sides of the bridge deck along the longitudinal direction. There 

are totally 18 measurement points with symmetric distribution (14 points for vertical testing and the 

other 4 points for lateral testing). Two electromagnetic shakers are installed at the closure segments to 

excite the bridge model using white noise excitation.  

 

Table 3 Identified natural frequencies (Hz) 

Order Description Value 



 

1 The first order of vertical mode   4.014 

2 The second order of vertical mode   8.839 

3 The third order of vertical mode 10.822 

4 The first order of lateral mode 10.963 

5 The fourth order of vertical mode  11.857 

6 The fifth order of vertical mode  14.312 

7 The second order of lateral mode 15.075 

8 The sixth order of vertical mode  16.344 

9 The seventh order of vertical mode  21.926 

10 The eighth order of vertical mode 22.962 

 

Based on the dynamic testing, the first ten natural frequencies (see Table 3) of the bridge deck are 

identified by eigen-system realization algorithm (ERA) combined with natural excitation technique 

(NExT). ERA and NExT methods for modal parameters identification have been widely used in the field 

testing and lab experiment of civil engineering structures.  

 

Dynamic excitation Accelerometer

Vertical accelerometer 

Lateral accelerometer 
Lateral direction

Vertical direction

Longitudinal direction

 
Fig. 13. Dynamic testing of the bridge physical model 

 

A cable-stayed bridge is taken as simulation study and experiment validation to demonstrate and present 

the procedures of the proposed RS method based on RBFs for FEM updating. According to the 

manufacture of the bridge physical model and limited dynamic testing data for model updating, six 

parameters with potential errors are selected to be updated in the model updating. They are Young’s 

modulus of aluminum alloy (E1), density of aluminum alloy (D1), Young’s modulus of deck connections 

(E2), the additional mass on deck (D3), Young’s modulus of deck cables (E6), Young’s modulus of 

boundary cables (E7). Their baseline values are 52 GPa, 2700 kg/m3, 52 GPa, 51 kg, 200 GPa and 200 GPa, 

respectively. The baseline values are usually chosen from the original construction drawings of 

structures. The sensitivities of the first ten frequencies with respect to the selected six physical 



 

parameters are shown in Fig.14. It can be seen that all six parameters have considerable influence on 

natural frequencies, but E2 has a relatively small sensitivity compared with the other parameters. 
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Fig. 14. Sensitivity of frequencies to physical parameters 

 

The physical parameters are sampled by using CCD of DOE. The initial design value of each parameter is 

taken as the level of center points in CCD sampling, and the corner points and star points take the levels 

of 120% and 80% of the initial value, respectively. Then, the axial points of six-parameter CCD samples 

take the values of 52.43% and 147.57% of initial value. A total of 45 samples are used for RS modeling. 

The FEM analysis is implemented with the samples of parameters as input, and the corresponding 

response of natural frequencies are obtained. Then, the RS model of each natural frequency is 

constructed by the RS method based on GA function. GA RBF is used for the RS modeling because it has a 

good performance on approximating the relationships between natural frequencies and physical 

parameters as discussed in Section 4.4. 

 

Table 4 Optimal shape parameter c 

Freq. No.  1     2      3     4     5    6     7     8     9    10  

Optimal c (10
-4

) 8.3  7.5  8.6  8.9  6.5  8.3  5.7  6.9  8.7  6.9 

 

Accuracies of RS approximation of the ten natural frequencies are investigated with the continuous 

change of shape parameter c from 1.0×10-5 to 10, and the optimal c is determined when the error 

reaches to the minimum. The optimal c for the RS models of frequencies is listed in Table 4. The multiple 

correlation coefficient R2 and RMS error are employed to evaluate the constructed RS models as shown 

in Fig. 15. It can be seen that all the R2 are very close to 1 and the RMS errors are very small (10-5), then it 

can be concluded that the RS models have good quality and accuracy of approximation, and can be used 

for the following model updating. 

 

4.3.1 Model updating results based on numerical simulation data 

Numerical simulation of model updating on the bridge model is carried out to test the validity of the 

proposed approach. A random change is taken to the physical parameters based on the initial design 



 

values in design space and corresponding natural frequencies are obtained from the FEM analysis as 

target (measured) characteristic information for model updating. An objective function is built up using 

the residuals between the measured and the RS predicted natural frequencies  
2

1

( )


 
  

 


N
ai ei

i

i ei

f f
Obj X w

f
                                                                   (8) 

where fei and fai are the ith measured and RS predicted natural frequencies respectively; wi is the weight 

coefficient of ith natural frequency; N is the number of modes involved and X is the vector of design 

parameters.  

 

Then, FEM updating is implemented based on the constructed RS models and objective function (values 

of all the weight coefficients are taken as 1) by using a genetic algorithm (Sgambi, et al., 2012; Putha, et 

al., 2012). The updated results of numerical simulation are summarized in Table 5. The updated values of 

the parameters are very close to the true values with a maximum error of only 0.91%. The comparison of 

the 10 natural frequencies which are employed for model updating can be found in Table 6. The updated 

values and true values of natural frequencies are almost the same. Therefore, the numerical simulation 

indicates that the performance of the RS method of RBFs for model updating of cable-stayed bridge is 

very encouraging. 
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Fig. 15. R2 
and RMS errors of the GA RS models of natural frequencies 

 

Table 5 Model updating results of cable-stayed bridge in numerical simulation 

Parameters Notation 
Initial 

value 
Target value Updated value Error (%) 

Young’s modulus of aluminum alloy (GPa) E1 52    49.92   49.95  0.06 

Density of aluminum alloy (kg/m3) D1 2700  2835.00 2832.84 -0.08 

Young’s modulus of deck connection (GPa) E2 52   44.20   44.61  0.91 

The additional mass on deck (kg/m3) D3 7850 8007.00 7991.61 -0.19 

Young’s modulus of deck cables (GPa) E6 200  190.00  190.22  0.12 

Young’s modulus of boundary cables (GPa) E7 200   180.00 180.70  0.39 



 

 

Table 6 Comparison of natural frequencies after model updating in numerical simulation 

Order 
Target value 

 (Hz) 

Updated value 

 (Hz) 
Error (%) 

1  4.0349  4.0350  0.0015 

2  8.9033  8.9038  0.0051 

3 10.8117 10.8121  0.0038 

4 11.6142 11.6129 -0.0114 

5 11.6060 11.6045 -0.0134 

6 14.0175 14.0174 -0.0006 

7 14.8664 14.8684  0.0137 

8 15.5512 15.5523  0.0071 

9 21.0115 21.0133  0.0087 

10 21.5404 21.5368 -0.0167 

 

4.3.2 Model updating results based on experimental data 

Model updating is also carried out on the bridge model based on experimental data. The objective 

function is built up using Eq. (8). The weight coefficients of the objective function are taken as [3 3 3 1 2 2 

2 1 1 1] for the first ten natural frequencies. The lower order natural frequencies take relative larger 

weight coefficients than higher natural frequencies because the lower natural frequencies of structures 

can be identified with high accuracy, and lateral model (4th mode) of bridge deck takes a small weight 

coefficient because the testing and identification are not much reliable due to the fact that few sensors 

are used. Model updating is optimized by using a genetic algorithm. The lower and upper bounds for the 

six parameters are set to be [90%; 90%; 60%; 90%; 90%; 60%] and [105%; 105%; 100%; 105%; 105% 

110%] of initial design values.  

 

Table 7 Results of model updating based on experimental data 

Parameter Initial value Updated value Difference (%) 

E1 (GPa) 52 50.76 -2.39 

D1 (kg/m3) 2700 2772.90 2.70 

E2 (GPa) 52 45.77 -11.99 

D3 (kg/m3) 7850 7930.07 1.02 

E6 (GPa) 200 194.58 -2.71 

E7 (GPa) 200 157.00 -21.50 

 

The results of model updating are listed in Table 7. As can be seen from the table, the Young’s modulus 

of aluminum alloy (E1) and the additional mass on deck (D3) have been decreased because the material 

and dimension are slightly smaller than real values. The increase of the density of aluminum alloy (D1) is 



 

reasonable because of the connections of deck and cables increase the mass on the deck. The large 

decrease of Young’s modulus of deck connection (E2) can be predictable because the stiffness of the 

connection of deck is weaker than the intact deck. The decrease in Young’s modulus of deck cables (E6) 

and boundary cables (E7) could be attributed to the weakness of the connection and boundary condition 

at the end of cables.  

 

Table 8 Error of natural frequencies after model updating based on experimental data 

Order 
Measured  

value (Hz) 

Updated  

value (Hz) 
Error (%) 

1  4.014  4.045  0.760 

2  8.839  8.971  1.493 

3 10.822 10.824  0.022 

4 10.963 11.722  6.922 

5 11.857 11.662 -1.648 

6 14.312 14.167 -1.012 

7 15.075 15.033 -0.280 

8 16.344 15.722 -3.806 

9 21.926 21.247 -3.096 

10 22.962 21.830 -4.932 

 

The comparison of the natural frequencies between measured values and updated values after model 

updating can be seen from Table 8. The results are acceptable with almost all errors below 5% except the 

first-order lateral mode with the largest error 6.92%. However, it is obvious that the results are not so 

good as numerical simulation. The gap between tested values and updated values cannot be closed 

because of the existing error in testing and identifying of the physical model experiments. The relatively 

big errors in lateral modes and higher order modes are consistent with the practical cases in field testing. 

 

As shown in Sections 4.3.1 and 4.3.2, the proposed approach can obtain structural physical parameters 

at any time instant by performing model updating. If structural physical parameters associated with time 

instants are obtained, structural condition change can be easily identified by comparing the obtained 

two sets of data. Of course, the change in the updated parameters (such as young’s modulus here) may 

not express the condition change in the same way as visual inspection, such as “Good”, “Fair” or “Bad”. 

The relationship between the change in young’s modulus and the change in structural condition should 

be further investigated. 

 

The condition change in elements can be reflected from the change in Young’s modulus of material for the 

elements or from changes in some other physical parameters. If changes in boundary conditions affect elements, 

for example a relatively loose connection between a cable and the deck may reduce the pretension in the cable, 

this condition change can be detected by the reduction of Young’s modulus of the cable.  

 



 

5. CONCLUSIONS 
This project proposed the RS method based on RBFs to model large-scale structures for model updating. 

The complicated and implicit relationships between design parameters and output characteristic 

parameters of cable-stayed bridges are employed to investigate the performance of the RS method 

based on RBFs. A three-dimensional finite element (FE) model of a scaled cable-stayed bridge model is 

established for numerical simulation. The design parameters of interest include global and local physical 

parameters, and the output response quantities consist of static and dynamic characteristics of cable-

stayed bridges.  

 

Numerical simulation results on a cable-stayed bridge show that all of the RS models have high accuracy 

for approximation of natural frequencies, MACs and cable tensions, and a RS model of RBFs exhibits a 

better performance than a RS model based on polynomial. In particular, RBF based on GA has the highest 

precision for approximation of natural frequencies, but RBFs based on MQ and IMQ have a better 

accuracy for approximation of cable tension.  

 

It is demonstrated that the increase of design space dimensions (model variables) does not require more 

samples for RBF RS construction. Therefore, the RS method based on RBFs has the potential to apply in 

more complicated, high dimensional and multivariate problems. The approach and strategies proposed 

in this project has been applied to model updating of a cable-stayed bridge model. Numerical simulation 

and experimental results indicate that the proposed method works well and can be easily implemented 

in practice for model updating of complicated bridges such as long-span cable-stayed bridges. 

RECOMMENDATIONS 
To successfully apply the RS method of RBFs for model updating of cable-stayed bridges, appropriate RBF 

for different approximated relationship should be firstly determined. Meanwhile, the selection of an 

optimal c of RBFs is very important, which heavily depends on the modeling samples, the type of RBFs 

and the approximated relationship. Before the proposed approach is implemented to real-world bridges, 

experimental validation on an actual bridge should be performed. 
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