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INTRODUCTION 

Description of the Problem 

Unlike most weather events, hurricanes have the capacity to topple a large region within 

a span of a few days. Increasingly, preparing for and responding to a major hurricane 

event involves intensive collaborations between multiple agencies and organizations, 

some of them are geographically distant. To facilitate large-scale collaborations, 

technology is required that enables data at multiple sites, often geospatially coded, to 

be interlinked and presented as a unified source, allowing stakeholders to perform 

integrative analyses. However, such collaborations are often hampered by several 

obstacles: (1) Agencies and utility owners are often reluctant to openly share their own 

data sets due to their concerns on data security; (2) Sharing and moving of large-scale 

data sets are difficult, especially over the internet; and (3) Lack of data management 

solutions that are both scalable and distributed to accommodate various integrative 

analysis needs. As the result, integrative analyses of system vulnerabilities and system-

level planning on response and recovery actions are often not possible. 

Relevance to Strategic Goals 

During the last decade, nature disasters have been creating mounting stresses to the 

nations aging transportation infrastructure. In contrast to the gradual deterioration 

process in normal operating conditions, transportation infrastructures are often facing 

the danger of rapid destruction during nature disasters, calling for immediate mitigation 

and response actions. In this research, we will investigate effective data federation and 

fusion methods to support decision makings on these rapid mitigation and response 

actions. The outcome of this research will contribute to improving the security and 

resilience of the critical infrastructures.  

Background 

Severe weather events such as hurricanes, ice storms, surge and flooding have 

been occurring across U.S. and around the world, threatening places where economic 

and industrial activities are heavily concentrated. Advanced geospatial sensing 

technologies are playing an increasingly important role for decision support in disaster 
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preparation, response, and recovery operations as they greatly expand our ability of 

collecting disaster data. For instance, in recent years, because state and federal 

agencies have made airborne LiDAR (Light Detection and Ranging) data collection a 

priority, post-storm LiDAR collection is now routine after large surge event and vast 

amounts of disaster data are now freely available online (e.g. NOAA’s Digital Coast). In 

another example, emerging high resolution sensing systems such as terrestrial/mobile 

LiDAR have also been deployed for damage data collection during recent events such 

as Superstorm Sandy, generating an unprecedented amount of 3D geospatial data. 

Analysis of these data sets offers tremendous opportunities in improving our 

understanding, modeling, and prediction of the impacts of coastal hazards on 

transportation infrastructure systems and coastal communities as well as providing real 

world education and training experiences in classrooms and offices. Despite this 

potential, there are fundamental challenges in managing, analyzing, and interpreting the 

growing size and complexity of spatial disaster data sets. The vast size and complex 

processing requirements of these new data sets make it challenging to effectively use 

them in real-life scenarios. For example, during large-scale coastal storm events, crucial 

information is often hidden in these data sets and is in no way integrated into ongoing 

decision processes. To fully exploit their potential, we need to revisit data sharing and 

analytics methods and develop new capabilities to rapidly synthesize information from 

these large data sets.  

Research Goals and Objectives 

In this research, we will explore the potential of cloud-based federation and fusion of 

distributed geospatial data sources for supporting hurricane response. Specific 

objectives are:  

(1) Understanding how geospatial data sources have been used, shared, and analyzed 

to support major natural disasters like Hurricane Sandy and what are the limitations 

(2) Identifying opportunities for using cloud computing to enhance data sharing, 

federation, and integrative analysis at distributed sites. 
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(3) Developing testing cases to highlight the effectiveness of cloud computing to support 

future data-intensive disaster response applications.  

The product of this research will be a catalog of lessons learned in Hurricane Sandy 

response related to geospatial data support and a guidance on recommended cloud 

computing techniques and data infrastructures for enhancing geospatial data support 

during major disasters. 

Overview of the Report 

This report documents the research approach, methodology, findings, conclusions and 

recommendations of this collaborative research project. The following sections outline 

the approach and methodology. The next section presents the findings, followed by 

sections documenting the conclusions and making recommendations for future work 

and application in state Departments of Transportation.  

APPROACH 

This research involves the collaboration between CAIT and Rutgers' RDI2. Dr. Jie Gong 

from the CAIT led the project and be responsible for the overall management of the 

project. Building on his expertise in geospatial sensing and post-disaster damage 

assessment, he will focus on identifying geospatial data sources, developing data 

process workflow, gathering data from stakeholders, and implementing data federation 

and fusion on a cloud-based platform. Dr. Manish Parshar provided guidance on cloud 

computing techniques and distributed processing implementation. The research 

involved several student researchers in data gathering and research development. 

METHODOLOGY 

The following tasks will be undertaken to complete the objectives of this project.  

Task 1. Identify geospatial data sources for supporting Hurricane Sandy response 

(01/2014 - 02/2014) 

In this task, we will examine how various data sets relevant to disaster preparation and 

response were utilized and processed during the Hurricane Sandy to gain 

understanding on existing data analytics practices.  
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Task 2. Identify data sharing and integrative analysis needs (03/2014 - 05/2014) 

This task involves interviewing relevant state officials to understand the existing 

workflow used in gathering, distributing, and analyzing geospatial data sources to gain 

situation awareness and to identify limitations of these existing methods. Through the 

analysis of existing practices, the study will further explore how these distributed data 

sets can be shared, federated, and analyzed in a more efficient and effective manner.  

Task 3. Review and identify successful applications of cloud-based data platform and 

distributed computing for mission critical applications (03/2014 - 05/2014) 

This task involves reviewing literature and industry case studies to develop a catalog of 

successful applications of cloud computing in data intensive applications.  

Task 4. Requirement modeling on using cloud computing infrastructures to support data 

intensive disaster response applications (06/2014 - 09/2014) 

A series of quantitative analyses on data load, bandwidth requirement, data streaming 

capacity need, query optimization requirement will be conducted in order to fully 

understand hardware and software needs for transforming the existing data analytics 

into a cloud-based one.  

Task 5. Demonstration on using cloud computing as data infrastructure for post disaster 

applications (09/2014 - 11/2014) 

In this task, we will develop testing cases to demonstrate the use of Cloud-based data 

infrastructure for providing a unified data federation and fusion platform for real-time 

applications.  

Task 6. Final Reporting (11/2014 - 12/2014) 

The project relied largely on literature review, discussion and expert input. The original 

proposal involved eight tasks that are summarized here for completeness.  

Expected outcomes from this research are: 

(1) List of data sources for supporting hurricane preparation, response, and recovery 

(2) Catalog of implemented methods in sharing, distributing, gathering, and analyzing 

geospatial data during Hurricane Sandy and their limitations 
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(3) Recommendations on the required computing platform for data federation and fusion 

to support more effective disaster response, including cost, functionality, and system 

configurations 

(4) Final reporting documenting the process used to develop these products. 

FINDINGS 

Geospatial data sources for supporting Hurricane Sandy response 

Use of remotely sense data in disaster management is an extensively researched area. 

These remotely sensed data include data sensed from space, air, and land. More 

recently, the rising of social media network is another form of sensing that brings data in 

large geographic regions. This is also coined as social sensing and crowd-sourcing. In 

the following, a brief overview of remote sensing from different platforms is provided. 

Satellite remote sensing platform: The use of satellite remote sensing in disaster is 

becoming increasingly common as the advancement in of state of the art geospatial 

technology and increased awareness in the demand for disaster need (Joyce et al 

2009). Geospatial data comes from both active and passive sensors carried by 

satellites. From the hurricane prospective, the flooding damage is readily apparent in 

both optical (imagery) and Synthetic aperture radar (SAR) data. High resolution optical 

imagery has been widely employed in forecasting, monitoring and assessing natural 

disasters in general. One of the very first pioneer studies in precutting the tropical 

intensities can be found in Dvorak (1975). Recently techniques such as Landsat-5 TM 

and ALOS AVNIR-2 have successfully mapped the flooding event of 2007 and 2008. 

SAR provide the strong capability to detect flooding area even in closed vegetation 

area, since the backscatter signature of water is distinctive by the nature of this 

technique (Lewis et al 1998). Taking advantage of this unique feature, Lymburner et al 

(2008) and Thankappan et al (2008) extracted flooding inundation area using SAR. 

Besides flooding damage, hurricane often combined with wind damage. Shen et al 

(2009) proposed a speed ambiguity removal algorithm to retrieve wind speed in 

Hurricane Rita (2005). 
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Airborne and UAV systems: Airborne Mapping System (AMS) is suitable for large 

area scanning or wide regional operations (Yang et al 2015), which naturally meets the 

timely issue in disaster response. Paired with the LiDAR sensor, it offers the capability 

to capture three-dimensional (3D) point clouds in different disaster scenarios.  As a 

relative accurate, fast and versatile measurement technique (Wehr and Lohr 1999), 

AMS survey even become a routine survey practice in some extreme events. In recent 

years, improvements in Unmanned Aerial Vehicles (UAVs) enable an alternative remote 

sensing platform for disaster response (Wallace et al 2012). It offers a distinctive 

combination of high resolution 3D points at a significantly lower cost. While the UAV 

image system has been widely studied in literatures, only few of the UAV LiDAR 

systems are actually deployed in real disaster scenarios.  Related studies include forest 

inventory (Wallace, et al 2011) and landslide (Liu et al 2011). 

Land-based remote sensing systems: Terrestrial lidar and mobile mapping systems 

are example sensing systems that have been used in large-scale disaster mapping 

projects. Compared to air-based systems, land-based systems do not have long ranges 

like ALS does, but it offers much higher resolution and accuracy. In many cases, these 

systems have been used for city-scale mapping projects, which provide valuable 

baseline data for disaster impact assessment. For example, several states in the United 

States such as Utah and Oregon and cities like Indianapolis have already conducted 

state-wide/city-wide mobile lidar data collection. Recently, static/mobile lidar have also 

seen increased deployment during natural disasters. 

Crowdsourcing: With the advancement in the sensor embedded devices as well as the 

communication technology, data acquisition is no longer the responsibility of 

government agencies such as DHS or FEMA. Volunteer geography information (VGI) or 

crowdsourcing is a potentially valuable data income for disasters. The important role of 

VGI or crowd-sourced in disaster response is highlighted (Poser et al 2010). The 

availability of handheld device in the market compliments the traditional LiDAR survey 

platform as a resource of volunteered geographic information or crowd-sourced. The 

new technology presumably may have altered the emergency response mapping 

needs, but the reliability and quality of such a derived data are still a concern (Hodgson 

et al 2014). 
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One of the growing importance of data used in disaster response and vulnerability 

assessment is point cloud data from lidar systems. In the following, we provide a 

systematic overview of lidar technologies.  

Lidar (also written LIDAR or LiDAR) is a remote sensing technology that measures 

distance by illuminating a target with a laser and analyzing the reflected light. A lidar 

system typically consists of several components: 

 Laser transmitter and detector/receiver 

 Deflection mechanism of the laser ray 

 GPS/INS 

 Computer, onboard software and storage devices, including precise timing 

device that synchronizes all sensors 

 Optionally other optical sensors such as digital cameras 

For a lidar system, 600–1000 nm lasers are most common used for non-scientific 

applications. They are inexpensive, but since they can be focused and easily absorbed 

by the eye, the maximum power is limited by the need to make them eye-safe. Eye-

safety is often a requirement for most applications. A common alternative, 1550 nm 

lasers, are eye-safe at much higher power levels since this wavelength is not focused 

by the eye, but the detector technology is less advanced and so these wavelengths are 

generally used at longer ranges and lower accuracies. They are also used for military 

applications as 1550 nm is not visible in night vision goggles, unlike the shorter 

1000 nm infrared laser. Other than the type of lasers used, a lidar system is also 

characterized by the following mechanical and performance factors:  

 Pulse repetition frequency (PRF) or pulse rate: number of pulses sent per second 

 Echoes: number of received pulse reflections recorded for one sent pulse 

 Minimum vertical object separation: minimum distance between 2 separate 

echoes 

 Scan rate: number of scan patterns (e.g. scan lines) per second 

 Field of View (FOV) or scan angle: across-flight angle that laser beam can cover 
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 Beam divergence: the angle showing the deviation of the laser beam from 

parallelity 

 Wavelength: important for measuring certain objects 

 GPS/INS measurement frequency and accuracy 

 Range resolution and accuracy 

Lidar systems can be installed on a variety of platforms such as airborne or ground-

based platforms. While there are occasionally other platforms such as satellites or 

waterborne vehicles which can be used, airborne and ground-based Lidar systems are 

the most commonly systems.  

Airborne lidar systems 

The typical platforms used for airborne lidar are fixed-wing airplanes, helicopters, and 

more recently unmanned airborne vehicles (UAVs). According to their applications, 

airborne lidar systems can be further divided into airborne topographic mapping and 

bathymetric mapping lidars. 

Airborne topographic mapping lidars 

Airborne topographic mapping lidars generally use 1064 nm diode pumped YAG lasers. 

Airborne lidar systems typically use scanning lasers at pulse rates that can exceed 

100k/second to produce dense (>1/square meter), high accuracy (~0.1m vertical) point 

clouds along 300-600m-wide swaths at forward speeds around 100knots. Returns will 

include both canopy (trees, houses) and ground, often with multiple returns from a 

single lidar pulse, and often have co-located aerial photography. 

Bathymetric mapping lidars 

Designed for accurate sea-depth determination, bathymetric lidar systems are 

composed of two beams, one green (532 nm) and one infrared (1064 nm). The green 

beam traverses the air-water interface and propagates in the water until the sea bottom 

with the least attenuation. The infrared beam is reflected by the water and gives the 

range from the plane to the sea surface. Low-flying aircraft equipped with GPS/IMU and 

a pulsed laser scanner is the platform of choice for this application. The data are used 

to support navigation, military operations, and environmental and recreational needs. 

Bathymetric lidar systems are often flown simultaneously with digital cameras and 
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hyperspectral sensors to gather additional information about water quality and bottom 

composition.  

Ground-based lidar systems 

Ground-based lidar systems are either static (on a stationary platform such as a tripod 

or mast) or dynamic (on a moving vehicle). It has been incorporated into surveying and 

metrology instruments and is often employed in mobile lidar systems. In a static 

implementation, a GPS/INS geo-referencing system is not needed. The lidar is set up 

over a known point, and the scan angles for each point are recorded in the data set. 

Reference points on the target surface can also be surveyed to provide additional geo-

referencing control. In a dynamic implementation of ground-based lidar, GPS/IMU is 

utilized to provide geo-referencing, just as it would be on an airborne platform. Using an 

infrared or green wavelength laser, ground-based lidars pulse at rates up to 1000 Hz, 

and can map objects from about 1 meter up to 1000 meters away with accuracies on 

the order of millimeters to a few centimeters. The accuracy of individual points can be 

affected by atmospheric conditions, distance to the target, angle of incidence of the 

laser pulse upon the target, and the reflectivity of the target surface. Very shiny, 

polished surfaces and very black surfaces that absorb nearly all incident light are 

difficult to image. Three types of scanning systems are employed in ground-based lidars: 

 Panoramic scanners rotate 360 degrees around the mounting axis, and scan 180 

degrees vertically to provide seamless and total coverage of the surroundings. 

 Single axis scanners also rotate 360 degrees but are limited to a 50-60 vertical 

swath. 

 Camera scanners point in a fixed direction with limited angular range both 

horizontally and vertically. 

Like during many other extreme events, geospatial products and tools are an essential 

part of every stage of disaster management during Hurricane Sandy, from planning 

through response, and recovery to mitigation of future events. But unlike many other 

extreme events where the available spatial data are often limited in size and type, 

Hurricane Sandy has seen a surge of massive remotely sensed data sets. These data 

sets are generally imagery and point cloud data. These data can be more broadly 

defined as low-dimensional, spatio-temporal datasets, in which data elements are 
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defined at points in a 2D/3D spatial coordinate system and over time. The specific data 

sets considered in this study include various airborne lidar data sets collected at 

different points of time before and after the landing of Hurricane Sandy. First, airborne 

lidar data dated back to 2010 exist for most part of the New York-New Jersey 

metropolitan area and are archived in data repositories including Digital Coast and 

USGS Click. Second, on October 29, 2016, the day before Hurricane Sandy landed in 

New Jersey, the USGS Coastal and Marine Geology Program collected airborne lidar 

data along the New Jersey Coast using its Experimental Advanced Airborne Research 

LiDAR-B (EAARL-B) system. Immediately after the landing of Hurricane Sandy, NOAA 

collected airborne imagery followed by USGS EARL-B airborne lidar data collection. 

During the period of November 11-24, 2012, USACE conducted another wave of 

airborne lidar data collection along the New Jersey and New York coastal line. During 

the period of December 5-9, 2012, Rutgers conducted mobile lidar scanning of severely 

impacted coastal communities in the state of New Jersey and New York City. 

Throughout the disaster response period, street-level images of storm damage have 

also been collected by various damage assessment teams and citizens. Some of them 

were distributed through social media channels such as Facebook and Twitter. During 

the disaster recovery stage, more geospatial data sets have also been collected for the 

purpose of assessing recovery progress and future vulnerability. These data sets 

include 2014 USGS airborne lidar data collection along the coastal lines in the northeast 

region and mobile lidar data collection in Ocean County, New Jersey in 2016. 

Collectively, these data sets are too massive to be efficiently managed and processed 

to derive scientific insights into ways of improving coastal resilience. 

Identify data sharing and integrative analysis needs 

For years, federal government has tried painstakingly to reduce duplicative and improve 

capability of geospatial data. Even though large infrastructures such as National Spatial 

Data Infrastructure (NSDI) has been built, data sharing remains a formidable challenge 

and desperate need (Koontz 2003). Data sharing and integration is an essential step in 

data aggregation for centralized decision making. It is not possible to obtain the useful 

information from a single data source or processing solution that will satisfied the need 

for all decision makings. In emergency cases, decision makers might be reluctant to use 
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geospatial information due to a lacking of familiarity or insufficient information 

(Alexander 2002; Brucewicz 2003; Wang and Yuan 2010). To better make decision-

making information available, data sharing is the key step. One example is the visitation 

for disaster response. Experts need enrich details of visions to develop and validate 

their experience-based judgements. The importance of information sharing and 

integration in disaster situation cannot be overstated. It addresses to the need for the 

decision makers to have a thorough understanding of the disaster area Visualization. It 

also helps maximize the response in the human visual system and increase the saliency 

of the object (Quartulli et al 2013). 

Sufficient or even abundant information are needed to compare, cross-validate, fuse 

together so that the information details and accuracy can be improved. Comparison 

analysis or change detection often require revisit of the same sensor or combination 

data from different sensors. In terms hurricane damage, flooding depth can be 

estimated using geo-registered LiDAR data from different time frame or paired SAR and 

other geospatial data such as DEM. In addition, data captured from different platforms 

need to fuse so that different resolution can be achieving; the shortcoming of certain 

platforms can be overcome. For example, data collected from ground based platforms 

are often with higher resolution, enrich vertical details while data from air-based 

platforms are featured with fast collection time and larger scales. Another example is 

the fusion of image with LiDAR: 3D geospatial information provided by LiDAR can add 

the third dimension to the colorized images using algorithms such as SFMS. Moreover, 

even crowdsourcing data are potentially helpful in understanding the disaster situation, 

the correctness are highly doubtful (Gupta et al 2013). Similar situation is confronted 

when using other geospatial data. Data sharing and integration can provide good 

reference for the data to cross-validate so that the false message can be filtered out. 

Most of the current studies use in situ geospatial information, there is few real time or 

near real time operations portal for hurricane disaster analysis or natural disaster in 

general. Thanks to the state of art sensing technology, massive data can be generated 

in disaster environment. At the same time, extracting meaningful information from this 

data are computation prohibited from one spot within a narrow time window. Especially 

when multi-tasks are required, the conflict between limited computing resources and the 
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urgent demand for information is highly obvious. To solve this problem, data sharing is 

essential so that data can be distributed to nearby available in field or in house 

computing resources. 

Data analysis needs vary significantly from disaster to disaster. This is partially due to 

the availability of data and resources. In the following, we provide a list of analytic 

applications with the data sets identified in the Task 1. 

Airborne lidar applications 

Wide-area change detection for damage assessment  

One important analytics application of airborne lidar data is damage assessment based on 

wide-area change detection between pre- and post-event lidar data. As long as the pre- and 

post-event are aligned in precision, the differences between pre- and post-event data often 

indicate changes in terrain conditions and man-made structures, which are often associated 

with storm damages. For example, Figure 1 clearly shows eroded dunes (in blue and cyan 

color) and deposited debris on the streets (in red color).  

 

Figure 1 Ortley Beach Change Detection Performed using Pre- and Post- Airborne lidar 

Debris volume quantification 

Large-scale natural disasters such as major hurricanes often generate a tremendous 

amount of debris that overwhelms the capacity of disaster response organizations and 

creates roadblocks on the path to recovery. For example, Superstorm Sandy destroyed 

over 650,000 homes and leaving 8.5 million people without power, while generating 

over 10 million cubic yards of debris in New Jersey alone. The challenge of debris 

removal following a natural disaster lies in the difficulty of accurately estimating the 

volume of debris and executing debris removal in an effective and efficient manner 

while minimizing impacts on natural environment and complying with legal 
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requirements.  Airborne lidar can be used gather information to help the process of 

debris removal and recycling, and monitoring after major disasters (Figures 2 and 4). 

 

Figure 2 An Overlay of Pre-Sandy and Post-Sandy Airborne LiDAR Data and Post-
Sandy Airborne Imagery 

 

Figure 3 Volume differences generated by subtracting post and pre cleanup conditions 
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Figure 4 Sample debris volume calculation of a specific area 

Ground-based lidar systems 

Virtual Disaster Site 

The high-resolution, three-dimensional images generated by mobile LiDAR can be used 

to create a virtual reality of the damaged communities (Figure 5). A similar approach 

has been used with airborne LiDAR data. Traditional post-hurricane damage 

assessment is a foot-on-ground house by house approach according guidelines such as 

ATC-45 Field Manual: Safety Evaluation of Buildings after Windstorms and Floods. 

Several types of evaluations including rapid safety evaluation, detailed safety 

evaluation, and engineering evaluation will be performed on buildings and residential 

homes to determine whether the structure is safe for re-occupancy. These evaluations 

are typically performed in different time periods after a disaster strikes. In many cases, 

the decisions on structure safety are difficult to make since little quantitative information 

about the extent of damages is available. Most of the damage data are data merely 

done by visual estimation without any precise measurement. The availability of 3D 

mobile LiDAR data can potentially change these common ways of damage assessment.  

 

Figure 5 A LIDAR-based Virtual Disaster Site 
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Change Detection 

In general, damage assessment with 3D mobile LiDAR data can be done using change 

detection at different scales. At a larger scale, change detection can be performed on 

large blocks of LiDAR data to identify damaged structures. Using New Jersey’s Ortley 

Beach as an example, we used pre-disaster airborne LiDAR data as the baseline and 

post-disaster mobile LiDAR data as the post-event data. We generated Digital Terrain 

Models (DTM) from the pre- and post-event data, then performed change detection on 

the generated DTMs. Figure 6 shows the change detection results. By examining the 

change detection results, houses that were 100% damaged can be readily identified 

(the red parts in Figure 6).  

 

Figure 6 Change Detection Results for Ortley Beach, NJ 

Damage Assessment 

Beyond visualization, the mobile LiDAR point clouds and imagery provide rich 

information for residential building damage assessment. First of all, it can be used to 

conduct accurate measurement on the damaged buildings to extract desired damage 

information (Figure 7). In addition, it can be integrated with other geospatial data 

sources to reveal what has changed due to hurricane events. An example of integrating 

mobile LiDAR point clouds with pre-disaster airborne imagery is shown in Figure 8. 

 

’ 

Figure 7 Per Building Level Damage Information Extraction 
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Figure 8 Integrating Mobile LiDAR and Pre-Event Airborne Imagery for Displacement 
Measurement 

Flooding Scenario Reconstruction 

Determining storm surge heights is an important task after a major hurricane 

event. This information is not only a crucial piece of knowledge that can be used by 

coastal engineers to improve storm surge prediction models but also reveals the extent 

of flooding damages to assets. Building inspectors often determine storm surge heights 

through examining debris trace and water markers on structures and trees. Figure 9 

(left), for example, shows the debris traces on the fence. For a typical mobile LiDAR 

system, photo imagery was geo-referenced and calibrated to the center of IMU. Also the 

projection between imagery and point clouds is fixed and determined through a bore-

sight procedure. As the result, each pixel in an image has known geospatial 

coordinates. Therefore, geospatial coordinates of the debris traces as shown in Figure 

6a can be quickly determined. In this way, the flooding scenario can be reconstructed 

for visualizing the extent of flooding and its impact on assets (Figure 9).  

The three-dimensional images of the flooded community can also be examined in 

close details by coastal engineers to study wave, surge, and wind damage 

mechanisms.  Wave and surge models have been shown to result in increasing errors 

as they move overland arising from two major factors: (A) Increased dissipation 

overland is not fully accounted for in standard models, particularly for water waves; and 

(B) Overland wind stress will be partially absorbed by canopy elements like trees and 

houses and will not entirely reach the water surface, with strong implications for surge 

and waves. The mobile LiDAR data provides a data set with unprecedented detail and 

accuracy to support the study of the impact of canopy factors on wave dissipation 

process. These will provide the increased predictive accuracy and detail during surge 

events needed to make decisions for sustainability.  
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Figure 9 The Reconstructed Flooding Scenario for Ortley Beach 

Visualization of Resiliency Rebuilding Requirements 

In the aftermath of Hurricane Sandy, FEMA released new Advisory Base Flood 

Elevation (ABFE) maps for many parts of Jersey Shoreline Communities. These new 

ABFEs are developed based on sound scientific studies, and are released in the hope 

of assisting shoreline communities to build stronger and more resilient structures in the 

face of future storm events. These ABFEs will have profound impact on the cost of flood 

insurance for residents living in the flood zone. However, to meet the new ABFE, 

houses have to be elevated; roads have to be rebuilt; and utilities have to be adjusted. 

The adoption of the new ABFE incurs significant but unknown cost. To many shoreline 

residents, the risk and the extent of future flooding to their homes are not clear; the 

benefits of elevating their houses cannot be fully appreciated. Also, the tradeoff 

between flood insurance cost and mitigation measures is uncertain. 

Mobile LiDAR offers an opportunity to scan buildings and other infrastructure at 

ground level, and to overlay the new Advisory Base Flood Elevation (ABFE) maps on 

the converted visual digital data to better understand the extent to which they should be 

raised to prevent future flooding.  Incorporating effective resiliency measures into the 

rebuilding of critical infrastructure and housing is a high priority, as will choosing the 

most cost-efficient investment strategy across the impacted area.   

In this study, we used canopy classification methods include, but are not limited 

to classifying points by height from the ground and depicting them visually by color, to 

overlay geospatially accurate digital copies of the recently released FEMA-NJ State 

Advisory Base Floor Elevation (ABFE) maps onto to the local streets and homes, 

businesses and infrastructure that were captured in the mobile scans. The results 

visually projected the location of the advisory minimum first floor elevation on the 

exterior of existing buildings and over other types of infrastructures. For example, 
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Figures 10 displayed LiDAR data for a residential community in Rockaway, NYC and 

one of its vital transportation links (Crossbay Bridge). The new 100 year flood elevation 

plane was overlaid on these LiDAR data for visual identification of the future risk of 

flooding to individual homes (Figure 10), the community, and its transportation link 

(Figure 10). These visual representations are a clear and powerful risk communication 

means. This new approach of visualizing and analyzing mobile LiDAR data provides city 

planners and transportation agencies with a great visual tool to understand the 

vulnerability of communities and transportation infrastructures and the resiliency 

rebuilding needs.  

 

Figure 10 The New ABFE 100-year Flood Plane overlaid on Rockaway Homes 

Successful Applications of Cloud-based Data Infrastructure for Geospatial Data 

Management 

In this study, one primary data set of concern is point cloud data set. Currently, 

management of large point cloud data sets and their derived data products relies on file-

based solutions: point cloud data are divided into tiles based on a predetermined spatial 

boundary template, and each tile is stored into a file in a common file format such as the 

ASPRS LAZ format. For large geospatial point cloud data sets, this could create a large 

number of files. For example, AHN2, which contains 640 billion points, is stored and 

distributed in more than 60000 LAZ files. The file-based solutions provide a rigid way of 

managing point cloud data sets, which often have varied resolution and coverage. Often 

the data have to be accessed in the native projection and discretization of the sensors 

(e.g. tiles), causing unnecessary computational overhead. The rigidity also creates 

significant challenges for query and runtime optimizations in a unified framework. 
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Transferring and processing of large point cloud data sets can be accomplished in many 

different ways. The following table shows three common ways how large geospatial 

data sets can be stored, shared, and processed.  

Table 1 Data Storage, Sharing, and Processing Mechanisms 

 Advantages limitations 

Portable storage device 
Delivery to local 
centralized computing 
resource 

It is the traditional method for 
data backup and transfer. It is 
free from the concerns of cyber 
security. For the localized data 
sharing, portable storage 
device often offers a higher 
speed.  

1 Not efficient in terms of 
long distance data 
sharing or among 
multiple users. 
2 Requires large amount 
of Portable storage 
device when the data is 
volumetric.  

Cloud computing on 
nearby distributed 
mobile computing 
nodes 

Mobile devices are widely 
available and the computation 
and communication 
capabilities of 
mobile devices improve 
tremendously. It enriches the 
underlying resource pool and 
enable use mobile devices as 
a source of computing power 
and storage. 

i) the insufficient 
computing capabilities 
and unavailability of 
complete data on 
individual mobile devices 
and ii) the prohibitive 
communication cost and 
response time involved 
in offloading data to 
remote computing 
resources such as cloud 
datacenters for 
centralized computation 
(Viswanathan et al 2015) 

Cloud computing on big 
computation 
infrastructures 

It has capabilities that enable 
the scalable, extensible and 
interoperable utilization of 
regional, national and 
international production 
distributed cyberinfrastructure. 

1 High width band 
internet are required to 
connect to these 
cyberinfrastructures; 
2 Special network 
interface are required to 
connect to these 
facilities. 

 

Large collections of 3D geospatial data sets such as point cloud or airborne imagery are 

often partitioned into tiles, and each tile is stored in a file. Data processing tasks in a 

given workflow can run in parallel on each individual tiles, leading to the so-called 

“embarrassingly parallel” problem. Distributed computing frameworks such as Hadoop 

and Spark have been recently studied to explore their capability in managing large 
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geospatial data sets and carrying out certain processing tasks. For example, some of 

these studies focus on generation of Digital Elevation Models (DEM) (Krishnan, et al 

2011; Jian et al 2015; Růžička et al 2017; Hegeman et al 2014). Others implemented 

the concept of parallel or distributed computing into other applications such as Generate 

Octree for visualization (You et al 2014), Change Detection (Liu et al 2016), Feature 

Extraction (Guo et al 2015) and Geographic Data Storage (Hanusniak et al 2016). A 

more complete list of these applications is shown Table 2.  

Table 2 Distributed Computing for Geospatial Data Processing 

Application Archetype Reference 

Generation of digital 
elevation model (DEM) 

Hadoop Krishnan, et al 2011; Jian et al 
2015; Růžička et al 2017; Hegeman 
et al 2014 

Generate Octree for 
visualization 

Hadoop You et al 2014 

Change Detection Spark Liu et al 2016 

Feature Extraction 
(polygon retrieval) 

Hadoop Guo et al 2015 

Geographic Data Storage Hadoop Hanusniak et al 2016 

Requirement Modeling on Cloud-based Geospatial Data Analytics for Time 

Sensitive Applications  

In this task, we approach the problem from two perspectives. First, we characterized the 

amount of data that need to be processed in order to derive valuable insights into better 

disaster response strategies. Second, we conducted a comprehensive review on data 

processing needs in post-disaster situations. In the following, we detail our findings in 

each effort. 

Although big data do not purely mean the large volume of data, data volume remains 

a major concern in disaster response and recovery missions, where how large the 

amount of data generated often determines what kind of protocols to be used for 

storage and transferring and how much computation resources is required to process it. 

We systematically analyzed the volume of the above data sets. Table 3 provides a quick 

summary about the volume of some typical data sets used in disaster response and 

recovery phases during Hurricane Sandy. 
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Table 3 Volume of Hurricane Sandy related 3D disaster data sets 

  Data collection date Data Volume 

Archived airborne lidar Archived 29.6GB 

USGS EARL-B lidar  10/29/12 2.1GB 

USGS EARL-B lidar 10/31/12 2.1GB 

USACE lidar 11/19/14 21.2 GB 

Rutgers mobile lidar 12/01/12 575GB 

USGS CMGP lidar 2014 105GB 

Photos for SFM reconstruction Streaming 20GB 

Rutgers mobile lidar 2015-2016 15TB 

While the potential of large geospatial data sets in disaster management is well known, 

these large data sets often remain peripheral information during natural disasters 

(Brucewicz 2003; Alexander 2002). These value-added products that can be derived out 

of these geospatial data sets are not used in decision making due to the fact that 

minimum consideration has been placed on the time requirements, i.e., how fast these 

data need to be processed (Lippitt et al 2014). Given the fact that decision making in 

disaster response is time sensitive, information derived from remote sensing data 

sources is also time sensitive, and therefore remote sensing in disaster scenarios is 

time sensitive (Lippitt et al 2014; Hodgson et al). Based on this, information extraction 

from large geospatial data sets has a limited temporal utility windows (Lippitt et al 2014; 

Hodgson et al). The timeframe for collecting and analyzing the information needed to 

make decisions differs from one organization to another and can vary according to the 

type of disaster considered (slow onset vs sudden onset). On a regional and field level, 

the decisions need to be taken faster, in the majority of the cases within 48 hours. 

Globally, and if there is no presence on the ground, the respondents claim that the 

timeframe ranges from 6 hours to 7 days. In another paper, Hodgson et al. surveyed 

many emergency response organizations in the United States, and developed several 

very important curves (2014) regarding how the value of information regarding various 

damage impacts degrades as the time goes on (Figure 12). These charts are extremely 

useful in terms of providing a realistic bounds for processing requirement. 
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Figure 11 Information Value vs. Time (adapted from Hodgson et al. 2014) 

Web-based Disaster Data Collection, Visualization, and Processing: Examples 

and Case Studies 

Case Study 1: Fusion of Geo-Tagged Crowdsourced Post-Storm Damage Photos with 

Mobile LiDAR Data for Storm Surge Height Measurement 

We introduce a new data fusion method that fuses disaster photos from a variety of 

sources (field teams, volunteers, and Internet) with mobile lidar data for accurately 

obtaining high water mark information without performing field measurement. Because 

of the pervasive use of mobile devices, disaster photos are now often widely shared and 

available on the Internet. Many of these photos provide first-hand information on the 

extent of disaster, some of them way before the arrival of field teams. The new method 

will promote a crowd source-based approach for collecting critical hurricane impact 

parameters 

The technical rationale behind our proposed approach is local feature-based image 

matching and 3D alignment of point clouds with photos from heterogeneous sources, 

such as disaster assessment teams, social media, and etc. We assume the photos 

taken from sources other than the mobile lidar system itself are geo-tagged as the 

pervasive use of GPS capable mobile devices. Figure 13 outlines the detailed workflow 

in our proposed approach.  The major components are GPS based screening, image 

matching, and VGI and lidar data fusion. To develop and validate all the methods 

involved in this workflow model, we used several data sets acquired during Hurricane 

Sandy.  
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Figure 12 Proposed Surge Height Estimation Approach 

GPS-based Screening 

 Running local feature-based image matching between the entire set of mobile 

lidar imagery and survey photos is prohibitively expensive, even if it is only for individual 

communities. Considering both mobile lidar imagery and survey photos have embedded 

GPS information, albeit at different positional accuracies, one logic step is to group 

them into subsets - a step we referred to as GPS-based screening. Another motivation 

behind the screening is that it is well-known that building structures often have similar 

local features that tend to confuse the local feature based image matching methods. By 

dividing the photo sets into smaller subsets, this source of confusion can be greatly 

reduced.  

The mobile lidar imagery in this research is organized according to the vehicle 

trajectories. Thus, the trajectory information was used as one source of information to 

pair with field survey photos. The detailed steps for GPS screening are shown in Figure 

3. An essential step in this approach is projecting the GPS traces of VGI and mobile 

lidar photos onto one map frame which has grid sizes spanning 0.002 latitude and 0.001 

longitude. The subsequent photo matching will be only carried out within each grid. In 

this way, computational effort and complexity can be greatly reduced.  

 

Figure 13 GPS-based Screening of Images from Different Sources 
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Image Matching 

 This step involves registration or alignment of VGI photos with mobile lidar 

imagery.  The mobile lidar imagery has known projection properties to lidar point clouds. 

Therefore, once the relationship between mobile lidar imagery and VGI photos can be 

derived, 3D information of water marks in a common chosen coordinate system can be 

calculated.  However, manually finding the paired mobile lidar imagery for each VGI 

photo is not an easy work. To automatically detect images which captured damages of 

the same structures, a SIFT (Scale-invariant feature transform) based method for 

automated image matching was employed (Figure 15). This method is capable of 

finding images which display similar scenes based on local image features. Figure 4 

shows some example matching of damage images from two different data sets used in 

this research. It can be seen that the method is robust to view angle and illumination 

variances.  

 

Figure 14 SIFT-based Matching between VGI photos and Mobile Lidar Imagery 

VGI and Lidar Data Fusion 

This step involves 3D alignment of VGI images with mobile lidar imagery. Once pairs of 

mobile lidar imagery and VGI images are identified, it is straightforward to relate VGI 

photos to point cloud data since there is known correspondence between mobile lidar 

imagery and lidar point clouds. Once this is accomplished, there are three steps 

involved in recovering the coordinates of high water marks.  
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 The first step is to compute the Projection Matrix P between each point in a lidar 

point cloud Pw and each pixel in a VGI image Pc. Currently, this projection is solved 

with the assistance of manual inputs of several correspondences between VGI image 

pixels and lidar point clouds. We used the camera calibration with 3D objects method 

developed by Zhang (2004). More specifically, the feature points of the building in both 

lidar point cloud and images are manually detected in exactly the same order as shown 

in Figure 5, and are saved Pc and Pw. The 2D pixel is denoted by 𝑃𝑐 = [𝑥, 𝑦]𝑇, and 3D 

point is denoted by 𝑃𝑤 = [𝑋, 𝑌, 𝑍]𝑇 . Write the point coordinate as homogeneous 

coordinate format as 𝑃𝑐 = [𝑥, 𝑦, 1]𝑇 and 𝑃𝑤 = [𝑋, 𝑌, 𝑍, 1]𝑇. The relationship between Pw 

and Pc could be expressed as  

𝑠𝑃𝑠 = 𝑨[𝑹 𝒕]𝑃𝑤 (1) 

where  

𝑨 = [

𝛼 𝛾 𝑢0

0 𝛽 𝑣0

0 0 1
] 

is the intrinsic matrix and 𝑷 = 𝑨[𝑹 𝒕]  is the projection Matrix. Based on (1), the 

correspondence between 𝑃𝑤 and 𝑃𝑐 could be written as: 

[
𝑋𝑖 𝑌𝑖 𝑍𝑖 1 0 0 0 0 𝑥𝑖𝑋𝑖 𝑥𝑖𝑌𝑖 𝑥𝑖𝑍𝑖 𝑥𝑖

0 0 0 0 𝑋𝑖 𝑌𝑖 𝑍𝑖 1 𝑦𝑖𝑋𝑖 𝑦𝑖𝑌𝑖 𝑦𝑖𝑍𝑖 𝑦𝑖
] 𝑷 = 𝟎 

where  

𝑷 = [𝑝11, 𝑝12, … , 𝑝34]𝑻 

For the n selected feature points, stack all equations as: 

𝑮𝑷 = 𝟎 

𝑮 = [𝑮1
𝑇 , . . . , 𝑮𝑛

𝑇]𝑇 

The Projection Matrix 𝑷  is the eigenvector of 𝑮𝑇𝑮  associated with the smallest 

eigenvalue. 

 The next step is to obtain the correspondence between LiDAR Point Cloud and 

Image. Since the Projection Matrix is a 3 by 4 matrix, which is non-invertible, the image 

cannot be projected onto the LiDAR directly. Instead, the LiDAR Point Cloud is 

projected onto the image using the computed Projection Matrix 𝑷. For each point of the 

LiDAR Point Cloud 𝑃𝑤𝑖, we find out where it is projected in the image 𝑃𝑐𝑗 and construct 
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the correspondence between i to j. The correspondence is illustrated in Figures 16 and 

17. 

 The last step is to assign each point 𝑃𝑤𝑖 a RGB value from the image 𝑃𝑐𝑗. The 

lidar point clouds then have information on which points are projected onto the high 

water marks shown in the VGI images. These water marks can be directly measured in 

the lidar point clouds (Figure 18). 

 

Figure 15  Establishing Correspondence Between Point Clouds and VIG Images 

 
Figure 16 The correspondence between Lidar Point Clouds and VGI Images 

 

  
  

Figure 17 High Water Mark Measurement from VGI Images and Point Cloud Data 
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Case Study 2: Post-Disaster Damage Assessment of Natural Gas Pipeline 

Systems with Remotely Sensed Data 

In this case study, we demonstrate the use of cloud-based data sources for 

assessing gas line damages after major hurricane events. The entire framework is 

shown in Figure 19. To facilitate remote sensing based risk assessment, it is important 

to realize that a distributed approach would be necessary. This is due to several 

reasons: (1) most gas operators do not collect remote sensing data by their own; 

instead, they use publicly available data or hire contractors to do so; (2) most gas 

operators are reluctant to share data about the location and conditions of their assets as 

they are deemed sensitive: and (3) natural disasters are rare, meaning it is not 

economic for them to own software packages that can integrate remote sensing data 

and risk assessment models. Based on these observations, what we proposed is a 

distributed and cloud based business model. The workflow we proposed is:  the 

software packages are divided into two components: Web-based risk assessment 

model and a standalone software package that deals with processing collected remote 

sensing data and detect hazardous conditions posing threat to the natural gas pipeline 

system. Once a natural disaster strikes, the gas operator chooses the region of impact 

for analysis. The threat detection software gathers and processes available remote 

sensing data and detects salient threats. The geospatially referenced threat data are 

then extracted and sent back to gas operators. This step does not need detailed 

information about the locations and conditions of gas infrastructure assets. Then the 

gas operators upload encrypted gas facility data (through shuffling the data) and their 

relevant geospatially referenced threat information to the web-based risk assessment 

program to estimate spatially registered risk on their pipeline segments. This framework 

would not require the gas operators to purchase the risk assessment program and the 

threat detection program but only pay as you use. In the same time, it avoids the issue 

of exposing sensitive pipeline data to the third party. 
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Figure 18 Cloud-based Post Disaster Damage Assessment of Natural Gas Pipeline System 

With the cloud-based remotely sensed data, our approach is built on top of a 

data-driven risk assessment method. Natural gas pipeline failures during a natural 

disaster are often related to changes in the built environment (structures, terrain, etc.,) 

adjacent to pipelines. 4 lists common pipeline threats and related indicators caused by 

natural disasters. The remotely sensed data are used to detect and quantify these 

indicators. A framework for using these indicators to assess the risk of natural gas 

pipeline networks is shown in Figure 20. The rationales of this framework include the 

following: 1) for aboveground pipelines and gas meters, the assessment is conducted 

based on the assessment of building changes and damage; and 2) for buried pipelines, 

the main threats indicators are soil movement and flooding height. There are four types 

of building conditions considered in this framework. They are “no-damage”, “minor-

damage”, “major-damage”, and “total-damage”. The first two conditions lead to a 

decision to inspect the aboveground pipeline segments, while the latter two lead to a 

decision to replace them. Regarding underground pipeline facilities, the framework 

requires information including soil settlement, vertical soil movement, horizontal soil 

movement, and flooding heights to estimate pipeline strain in order to draw conclusions 

about the probability of failure. A Finite Element Analysis is then used to estimate the 
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potential pipeline strains once soil movement and flooding height are quantified. 

Calculated pipeline strains were further imported into a pipeline risk analysis program to 

estimate probability of failure. 

Table 4 Pipeline threat and related indicators 

Threat Cause Phenomenon Indicator 

Water 
Infiltration 

Pressure 
Head 

Water Level Resulting from Flood Water Elevation 
Above Ground 

Surface 

Underground 
Pipe Break 

Strain Soil Deformation Resulting From 
Flood, Landslide, Hurricane, and 

Earthquake 

Soil Displacement 

Above 
Ground Pipe 

Break 

Strain External Force from Flood, 
Landslide, Hurricane, Earthquake, 

Tornado 

Asset Displacement 

Exposed 
Pipe 

Soil 
Erosion 

Soil Erosion Resulting From Flood, 
Landslide, Hurricane, Earthquake 

Soil Displacement 

 

 

Figure 19 Proposed Post-disaster Pipeline Risk Assessment Framework 

CONCLUSIONS 

Preparing for and responding to natural disasters are involving an increasing amount of 

geospatial data collection and processing. These data are stored in a variety of 
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platforms such as widely distributed repositories, large data centers, and social media 

networks. Data volume, variability, and variety pose significant challenges in using 

these data sets effectively in time-sensitive applications. This study systematically 

investigated some fundamental aspects of geospatial disaster data including the 

composition of these data, the characteristics of these data, processing requirements, 

and available data infrastructure for managing, sharing, and processing these data sets.  

The result of this research indicates that despite the great potential of using geospatial 

data sets to support disaster response, most geospatial data have remained peripheral 

information due to the complexity and difficulty in processing them in time. Our analysis 

of geospatial data use in Hurricane Sandy supports this conclusion. Our empirical study 

also indicates there are a variety of processing patterns related to these data sets. 

Some of these processing have to be done in real-time, while some others can be done 

with more time but with higher accuracy and resolution. There is apparent trade-off 

between the accuracy and the time required for processing the growing volume of 

geospatial data.  It also appears that there is a lack of data infrastructure platforms for 

managing, sharing, and processing the growing volume and variety of geospatial data 

sets. The rising of big data processing platforms such as SPARK and Hadoop provides 

great opportunities to address these pressing data processing problems. Research 

along this frontier just start emerging, and will likely provide feasible solutions. On the 

other hand, massive point cloud visualization software such as POTREE is already 

shaping the workflow in managing, sharing, and analyzing large point cloud data sets. It 

is reasonable to expect that these kinds of software programs will soon integrate 

capabilities to visualization other types of geospatial data and provide capabilities in 

collaboratively working on distributed geospatial data sets. Given the rapid development 

in this existing field, cloud computing and distributed processing will become the 

dominant ways of processing future large geospatial data sets. 
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