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DESCRIPTION OF THE PROBLEM 

 
The US civil infrastructure is aging and has been identified as an area of critical need. ASCE 

estimates that current deterioration trends can have disastrous consequences in terms of costs 

($520 billion by year 2040), and socioeconomic impact (loss of ~ 400,000 jobs nationwide) [1].  

In 2009, approximately 25% of bridge fleet in the US was identified as structurally deficient or 

functionally obsolete [2].  

Majority of them are typical bridges, consisting of a concrete deck supported by steel girders 

(stringers). It is evident that sustainable preservation of existing infrastructure represents a goal 

that is essential for future vitality of the US economy and the prosperity of the US society. With 

aging infrastructure, it becomes crucial to make informed decisions about maintenance and 

preservation actions, as well as renewal of civil structures. Structural Health Monitoring (SHM) 

can be an important aid in this decision process, but in spite of its great potential, SHM is not 

applied in a widespread or generic manner, which is essentially due to the lack of reliable and 

affordable monitoring solutions. Consequently, there is a demand for monitoring methods that 

are not specific to individual structures, are reliable and robust on-site, and applicable to typical 

bridges. Two monitoring parameters that enable creation of such methods are 1) the location of 

the neutral axis and 2) deformed shape, as these parameters are universally present in beam-

like structures. 

Hence, the overall objective is to research and develop universal SHM methods based on 

strain monitoring using series of parallel long-gauge fiber-optic sensors (so called parallel 

topologies). In particular, two basic parameters are studied in detail: 1) the location of the 

neutral axis based on dynamic strain measurements and a probabilistic data analysis, and 2) 

the deformed shape of individual girders based on static and dynamic strain measurements. 

Information about these parameters assessed at several locations of the bridge can then be 

used to assess global structural behavior and health condition. Changes in these parameters 

over time can indicate variation in structural behavior due to change in operational conditions or 

damage.  

Determination of these two parameters was successfully researched in the frame of 

previous UTC award (see report CAIT-UTC-012 [3]); however, in order to complete the 

methods, it is necessary to transform the data describing the parameters into actionable 

information to the end user (owner or manager of the structure). Therefore, it is crucial to create 

robust data analysis algorithms for damage identification (i.e., detection, localization, 

quantification, and prediction of structural capacity) and structural identification (i.e., evaluation 

of performance in terms of serviceability), which are major challenges in SHM in general. The 

robustness of the above algorithms strongly depend on the uncertainties associated with 

methods, and their evaluation is crucial for an accurate interpretation of data.  

Thus, the objectives of this project are to explore, understand and quantify (deterministically 

or statistically) the uncertainties in determination of the position of neutral axis and the deformed 

shape, where the latter are determined based on series of parallel long-gauge sensors. To 

achieve this aim, numerical modelling, experimental analysis, and field validation on a real 

bridges were performed. 
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APPROACH 
 

Several sources of uncertainties related to the determination of the position of the neutral 

axis were identified [3]: (i) uncertainty of measurement of the SHM system, (ii) the magnitude of 

the measured strain, (iii) number and position of sensors, (iv) bi-axial bending, (v) gauge length 

of sensors, (vi) the change in axial strain, (vii) the size of SHM data sets, (viii) dynamic effects, 

and (ix) the position of the load on multi-girder systems. Due to time constraints, the scope of 

the project is limited only to factors (i)-(v), while other factors will be studied in the future 

research. The evaluation of uncertainty in determination of the position of the neutral axis was 

performed within the scope of this research (a) by exploring analytical expressions for 

influences (i)-(v), (b) by comparison with statistically analyzed data from real structures 

(Streicker Bridge and US202/NJ23 overpass), (c) by comparison with FE simulations (Abaqus), 

(d) by testing and validation in laboratory on small scale specimen, and (e) by validation on 

large scale physical model and real structures. Overall uncertainty is determined using the 

propagation formulas [4-5]. 

The accuracy in determination of deformed shape depends on [3]: (i) uncertainty of 

measurement, (ii) the gauge length of the sensors, (iii) the number and position of the sensors, 

(iv) loading pattern, and (v) the double integration method. The methodology presented for the 

neutral axis research, i.e., the above methods (a)-(e), are also applied in the analysis of the 

uncertainties of the deformed shape. 

METHODOLOGY 

 

The project was realized in the period of January 1st, 2014 to December 31st, 2015. The 

work plan consisted of four tasks: 1) Creation of numerical models, 2) Creation of algorithms for 

determination of uncertainty in neutral axis position, 3) Creation of algorithms for determination 

of deformed shape, 4) Laboratory testing, and 5) Field validation.  

 

Task 1) Numerical simulations:  

Small scale specimen (~1.6-m long), large scale specimen (~10-m long) and real 

structures (US202/NJ23 overpass in Wayne, NJ and Streicker Bridge in Princeton, NJ) 

were used for research and validation purposes. These structures were presented in 

detail in the next section. 

 The aim of Task 1 was to generate numerical models of these structures for the 

purposes of comparison with measurements, structural identification, and damage 

detection. The small scale specimen is a simple structure and beam-theory was used to 

model its behavior. Numerical models of the large scale specimen and US202/NJ23 

overpass and Streicker Bridge were created in Finite Element software package 

‘Abaqus’.  

 

Task 2) Creation of algorithms for determination of uncertainty in neutral axis position:  

The aim of this task was to create algorithms for determination of uncertainty for 

the factors (i)-(v) described in previous section. Algorithms were tested by using and 

comparing the results obtained from both numerical simulations and tests. Final 

validation was performed using data from US202/NJ23 overpass. 
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Iterative improvement of numerical models created in Task 1) was made through 

this task based on test results and results from field (US202/NJ23 overpass). 

 

Task 3) Creation of algorithms for determination of uncertainty in deformed shape:  

The aim of this task was to create algorithms for determination of uncertainty for 

the factors (i)-(v) described in previous section. Algorithms were tested by using and 

comparing the results obtained from both numerical simulations and tests. Final 

validation was performed using data from Streicker Bridge. 

Iterative improvement of numerical models created in Task 1) was made through 

this task based on test results and results from field (Streicker Bridge). 

 

Task 4) Laboratory testing:  

The aim of this task was to create data-sets for calibration of numerical models 

presented in Task 1 and testing the algorithms created in Tasks 2 and 3. 

Small scale testing specimen was completely built along with testing frame (see 

description in the next section); fiber optic sensors and LVDT displacement meters were 

installed and several types of test performed including: free vibration, forced vibration, 

incremental static, quasi-static, and dynamic load test; frame enabled change in 

structural system of the specimen, so cantilever and simply supported beam 

configurations were tested. 

Large scale specimen was already equipped with monitoring system in the frame 

of an earlier research and data collected under static and dynamic load. That data is 

used in innovative manner in this project, with the purposes as described above. 

 

Task 5) Field monitoring:  

Two structures were used in field validation of the algorithms, US202/NJ23 

overpass and Streicker Bridge. 

Monitoring of the US202/NJ23 overpass consisted of approximately eight 

measurement sessions per year, performed during the project; data collected in the past 

were also available for the project purposes. One session contained ten ‘events’, and 

each ‘event’ consisted of collecting data from long-gauge fiber optic strain sensors 

during passage of a heavy vehicle over the overpass.   

Monitoring of the Streicker Bridge was continuous, with interruptions when the 

reading unit was needed in the lab or to perform monitoring sessions at US202/NJ23 

overpass and Streicker Bridge. Data collected in the past were also available for the 

project purposes. 

The measurements from both structures were used to calibrate and improve the 

numerical models developed in Task 1. Algorithms developed in Tasks 2 and 3 were 

implemented and validated. Feedback was used to improve and fine tune the algorithms. 

 

FINDINGS 

 

Numerical modelling 

 

In order to use small scale specimen (~1.6-m long), large scale specimen (~10-m long) 

and real structures (US202/NJ23 overpass in Wayne, NJ and Streicker Bridge in Princeton, NJ) 

for research and validation purposes, their numerical models had to be developed first. Brief 

description of numerical models is presented as follows. 
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Small scale specimen 

Small scale testing specimen was designed and constructed for laboratory validation 

purposes, see Figure 1. The specimen was 9.5-mm thick, and 254-mm wide aluminum plate, 

with length of 1.6 m. The frame for the specimen was designed and constructed, Fiber Bragg-

Grating (FBG) long-gauge strain sensors and LVDT displacement-sensors were installed and 

calibrated. Furthermore, structural identification was performed through controlled static test, 

and as a result Young’s modulus and moment of inertia were determined. The test frame allows 

for change in configuration, i.e., the following structural systems were created and tested: (1) 

cantilevered beam, (2) simply supported beam, and (3) beam with a roller on one side and fixed 

end at the other end. Small scale specimen was modelled using elementary equations of linear 

theory of structures (see Figure 1).  

 

 

 

 

 

 

 

 

 

 

Figure 1. Left: the small scale testing specimen; the photo shows beam in a cantilevered 

configuration, with load at the free end. Right: examples of beam configurations with main 

geometrical and mechanical properties [8]. 

 

The small scale specimen was primarily used in evaluation of uncertainty of deformed shape 

as determined from series of parallel sensors. 

 

Large scale specimen 

 

A large scale composite concrete-steel model bridge specimen was created as part of the 

Automated Nondestructive Evaluation & Rehabilitation System (ANDERS) Program at Rutgers 

University. The specimen consists of a 9-m by 3.6-m reinforced concrete deck at 2% grade, 

supported by three W16x57 steel I girders. Artificial minute damage was inserted into the slab 

by placing plastic sheets at locations of interest in advance of the casting of the concrete deck. 

The monitoring system included three sets of four parallel long-gauge fiber optic strain sensors 

and matching temperature sensors at two locations of minute damage, and one healthy 

reference location. The large scale specimen was monitored through a series of static and 

dynamic loading events. The cross-section of the specimen during lifting and the final 

arrangement of the structure simply-supported on permanent supports are shown in Figure 2. 

 

 

 

 

 

 

Figure 2. Left: The cross-section of the large scale composite bridge specimen in factory. Right: 

The bridge specimen simply supported on permanent supports [8]. 
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FEM software Abaqus was used to construct a finite element model for the large scale 

bridge specimen. Solid elements were used to simulate the concrete slab and the steel I girders. 

The model incorporated 12 steel C-shaped diaphragms connected to the three steel I girders, 

as well as longitudinal and transverse rebar embedded into the concrete slab. Fiber-optic strain 

sensors were simulated as truss elements and inserted inside the concrete slab or connected to 

the flanges of the steel I girders at locations of interest. The final mesh contains 155,647 nodes 

and 122,264 elements. The material properties used in the FEM model include the following: 

steel members with Young’s modulus of 203 GPa, Poisson’s ratio of 0.3; concrete members 

with Young’s modulus of 34 GPa, Poisson’s ratio of 0.2. Finite element analysis was used to 

predict the healthy location of the neutral axis, and to simulate behavior of the structure in the 

presence of minute damage. Figure 3 shows the cross-section of the structure in FEM and the 

FBG sensors attached to the steel I girder. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Left: The finite element model of the large scale composite bridge specimen. Right: 

Modelling of the long-gauge fiber-optic strain sensors connected to girder flanges [9]. 

 

The large scale specimen was primarily used in the evaluation of uncertainty of neutral axis 

position under various loading events. 

 

 

US202/NJ23 Overpass, Wayne, NJ 

 

US202/NJ23 Overpass close to Wayne, NJ, is typical composite concrete-steel structure 

built in 1980’s. The Span 2 of the US202/NJ23 overpass consists of a skewed concrete slab 

(~18 m x 35 m) supported on eight stringers. The span is simply supported at both ends. 

Girders No. 2 and No. 5 were equipped with three sets of parallel long-gauge FBG strain 

sensors each (total of 12 sensors), in frame of International Bridge Study project. The 

approximate locations of sensors are in the middles and quarters of corresponding girders as 

shown in Figure 4.  

The Finite Element Model (FEM) of the bridge was made using software Abaqus. This 

bridge was topic of the previous project [3], and description of numerical model as well as 

additional details regarding the bridge can be found in that report. The FEM consists of 55230 

shell elements and 55556 nodes. The finite element mesh has been prepared within the Marc 

MSC code due to the effectiveness of its preprocessor for managing the mesh details and 

connections between longitudinal, transversal, vertical, and horizontal components of the 

structure. Subsequently the mesh was exported to software Abaqus. System identification was 

performed using free vibration (dynamic loading) of the structure, and the following mechanical 
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parameters are determined: Young modulus of 210 GPa and Poisson’s ratio 0.3 for steel, and 

Young modulus of 30 GPa for the concrete slab, 35 GPa for the concrete piers and Poisson’s 

ratio of 0.2 for both. Details of the FEM are given in Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

              

Figure 4. Left: The US202/NJ23 overpass consisting of concrete slab supported on steel 

girders. Right: Detail of the sensor positioning at the top and the bottom [6].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Left: Side view of the 3D model. Right: Mesh details of the steel beams with stiffening 

transversal elements under the concrete slab [7].  

 

US202/NJ203 Overpass was mostly used for evaluation of uncertainties of the neutral axis. 

 

Streicker Bridge 

 

Streicker Bridge is a pedestrian bridge built at Princeton University campus in 2009, and 

was open for traffic in 2010. Structurally, it consists of five parts: the main span and four 

approaching structures called legs. The main span is a deck-stiffened arch with span of 25 m 

and variable deck size, while the legs are curved continuous girders approximately 40-m long, 

with constant cross-section. In all bridge components, the deck consists of prestressed high-

performance concrete deck, while the arch and the columns are built of weathering steel. A view 

to the structure is given in Figure 6. During the construction, series of FBG long-gauge strain 

sensors were embedded in a half of the main span and along entire south-east leg. View to 

sensors during the installation is given in Figure 6. 
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Figure 6. Left: View to the Streicker Bridge. Right: Embedding sensors in the Streicker Bridge.  

 

A simple FEM was created for southeast leg in the software SAP2000 using frame 

elements. The boundary conditions and geometrical properties of the model are shown in Figure 

7. The system identification was performed based on the test of the bridge, and the Young’s 

modulus was estimated to be 35.4 GPa. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. FEM of the Streicker Bridge [10].  

 

The model presented above was modified in frame of the project in order to be expanded to 

entire bridge. However, due to high stiffness of the deck-stiffened arch, and subsequent small 

strains, the former was excluded from analysis, and only the southeast leg was studied in this 

project.  

 

Streicker Bridge was used for evaluation of uncertainties of both the neutral axis and 

deformed shape. 

 

Creation of algorithms for determination of uncertainty in neutral axis position 

 

The following sources of uncertainty in determination of neutral axis are identified [3]:  

(i) Uncertainty of measurement of the SHM system,  

(ii) The magnitude of the measured strain,  
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(iii) Number and position of sensors,  

(iv) Bi-axial bending,  

(v) Gauge length of sensors,  

(vi) The change in axial strain,  

(vii) The size of SHM data sets,  

(viii) Dynamic effects, and  

(ix) The position of the load on multi-girder systems.  

 

The algorithm for influences (i)-(v) are presented in this subsection. Other influences will be 

studied in the future research. 

 

Error and Uncertainty propagation 

 

Error of measurement y is difference between measured value and true value of 

measurand, as shown in Equation 1. Relative error y is ratio between absolute error and true 

value of measurand, as shown in Equation 2. 

 

                                                            (1) 

 

                                            (2) 

 

Error is, by its definition, a deterministic notion. When analyzing the measurements it is 

frequently of interest to assess minimum (maximum negative) and maximum (maximum 

positive) error. These values are called Limits of Errors. 

 

Uncertainty of measurement u(A) is defined based on a confidence probability that error 

does not exceed some specified value. Standard uncertainty is defined as a standard deviation 

of the measurement error (probability of A < u(A) is approximately 68%). Uncertainty is, by its 

definition statistical / probabilistic notion. 

 

If the magnitude of observed parameter y is determined indirectly, as a function of several 

other directly monitored parameters x1, x2, … xn, i.e., y=y(x1, x2, … xn) (e.g., elastic strain in steel 

structure is difference between total strain and thermal strain), then the error in estimation of 

magnitude of observed parameter can be determined using the propagation formulas: 

 

 

                                                            (3) 

 

 

                                                              (4) 

 

 

 

(i) Uncertainty (error) of measurement of the SHM system 

 

There are three main sources of the uncertainty of an SHM system: (a) random uncertainty 

(or random error), (b) systematic uncertainty (or systematic error), and (c) drift (loss of stability 

of the SHM system).  
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Random uncertainty can be determined by statistical tests, and its value is frequently 

provided by the manufacturer of the SHM system in terms of repeatability precision (standard 

deviation of repeated measurements under non-variable conditions of measurement) and 

reproducibility precision (standard deviation of repeated measurements under variable 

conditions of measurement).  

 

Systematic uncertainty is usually not provided by the manufacturer, but could be determined 

by comparison with a calibrated measurement system. The two typical forms of occurrence of 

the systematic uncertainty are (a) offset / bias in measurement (the measurement is off from 

true value of measurand for a constant value) and (b) offset / bias in calibration constants (the 

calibration constants that transforms the encoding parameter into the measurand and are off by 

a constant value; for example, in the case of linear relation between the encoding parameter 

and the measurand the systematic uncertainty will be proportional to the magnitude of the 

measurand).  

 

Drift represents a of measurement stability. It can be is mostly due to the nature of the SHM 

system, the ageing of components of the SHM system, and manufacturing errors. If it occurs 

slowly, in long term, it may be difficult to detect it and to quantify it.  

 

While the value of the random uncertainty (or error) of an SHM system is frequently provided 

by the manufacturer of the SHM system, the values of systematic uncertainty (or error) and the 

drift of are usually not provided by the manufacturer and they should be evaluated by an 

independent calibration. However, previous research [3] demonstrated that static, long-term 

measurements, cannot be effectively used for the purposes of evaluation of location of the 

neutral axis, and that rather short-time dynamic measurements (e.g., due to passage of a very 

heavy vehicle), or very short-term static measurements (e.g., during the test of the bridge) 

should be used. In this way, the uncertainties related to systematic bias in measurement and 

drift can be practically eliminated, and the only potential bias in calibration constants should be 

further evaluated. 

 

Additional source of uncertainty of an SHM system is influence of temperature variations to 

both the sensor and the monitored structure. In the specific case of sensors used in this 

research, i.e. the FBG sensors, the encoding parameter is back-reflected wavelength of the 

light, and each strain sensor is equipped with two FBG sensing elements, the first sensitive to 

both strain and temperature, and the other sensitive to temperature only. The sensor 

appearance is shown in Figure 8.   

 

 

 

 

 

 

 

 

Figure 8. Schematic representation of the FBG sensor used in the project [6]. 

 

The relationship between the strain, temperature, and wavelengths of FBGs, as measured 

by SHM system are given in Equations 5 and 6. 
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(5) 

 

 

 

(6) 

 

 

where the symbols in the equations are the following: 

 
Symbol Description 

Δ𝜆𝜀 Change in wavelength measured by strain FBG [nm] (due to combined change of 
strain and temperature) 

Δ𝜆𝑇 Change in wavelength measured by temperature FBG [nm] (due to change of 
temperature) 

Δ𝜀𝑡𝑜𝑡 Change in total strain [] 
Δ𝑇 Change in temperature [°C] 

𝐶𝜀 Strain calibration constant for strain FBG, typical value 0.0012 nm/ 
𝐶𝑇,𝜀 Temperature calibration constant for strain FBG, typical value 0.01 nm/°C 

𝐶𝑇 Temperature calibration constant for temperature FBG,  typical value 0.01 nm/°C 
 

In order to determine location of the neutral axis, it is first necessary to determine the 

change in elastic strain measured by the sensor. Total strain change measured by sensor is the 

sum of strain changes of each strain component, as given per Equation 7: 

 

εtot=εE+εT+εR =εE+TT+εR                                                 (7) 

where the symbols in the equations are the following: 

 
Symbol Description 

Δ𝜀𝑡𝑜𝑡 Change in total strain [] measured by sensor, after thermal compensation (Eq. 6) 
Δ𝜀𝐸 Change in elastic strain []  
Δ𝜀𝑇 Change in thermal strain []  
Δ𝜀𝑅 Change in rheological strain (creep and shrinkage) []  

𝑇  Thermal expansion coefficient of monitored material [/°C] 
 

As mentioned above, short-time dynamic measurements (e.g., due to passage of a very 

heavy vehicle), or very short-term static measurements (e.g., during the test of the bridge) 

should be used to evaluate location of neutral axis. In both cases the rheological strain can be 

neglected as the involved time period is short and insufficient to for rheological strain to develop. 

Thus, Equation 7, for short-time dynamic and short-term static measurements the expression for 

elastic strain change is given by Equation 8 (obtained by combining Equations 5, 6 and 7): 

 

εE=εtot-TT=                                                                                               (8) 

The uncertainty of measurement of the SHM system can now be calculated applying to 

Equation 8 the propagation formulae given in Equation 3 or Equation 4.    

Moreover, for short-time dynamic measurements, that involve time period of typically less 
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than one minute, temperature change will be very small. It has can be proven that for 

temperature change less than 0.1, influence of temperature can be neglected, and the second 

term of right-hand side of Equation 8 can be omitted [4].  

 

(ii) Uncertainty (error) due to the magnitude of the measured strain 

 

Uniaxial bending is predominant in bridge structures under traffic load. In uniaxial bending 

the neutral axis is independent of the vertical axis, i.e., it is horizontal. For that reason, a simple 

and affordable SHM system with only few sensors (minimum two) per cross-section, can be 

used evaluate location of the neutral axis, as shown in Figure 9.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Left: example of cross-section equipped with two sensors for evaluation of the location 

of the neutral axis; Right: strain diagram in cross-section due to bending; labeling: εt and εb 

elastic strain values at the top and bottom sensor, h – distance between sensors, y0 – location of 

the neutral axis; and d – distance from top sensor to the bottom of the cross-section [8]. 

 
The neutral axis is parallel to the horizontal principal axis of the cross-section, and it 

intersects the y-axis at y0, i.e., at location of zero elastic strain. Thus, the location of the neutral 

axis is given by the following equation: 

hd
h

y
tb

b
o 


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


                                   (9) 

The uncertainty in evaluation of the location of the neutral axis due to uncertainty of the 

elastic strain measurements can be found by applying the propagation formulae given in 

Equations 3 or 4 to Equation 9. For example, by applying Equation 3, the uncertainty is 

evaluated as follows: 
  

  (10) 

 

where y0, is uncertainty in location of the neutral axis and c= εt / εb is ratio between strain at the 

top of the cross-section and the bottom of the cross-section and  is uncertainty in elastic strain 

measurement.  

The influence of the magnitude of the elastic strain measurement to the uncertainty of 
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evaluation of location of the neutral axis is schematically shown in Figure 10.  

 

 

 

 

 

 

 

 

Figure 10: Schematic representation of the influence of the elastic strain magnitude to the 

uncertainty of evaluation of the location of the neutral axis [8]. 

 

The figure shows that larger magnitude of measured strain (left figure) implies lower 

uncertainty (y2 <y1), i.e., better accuracy. This is actually numerically described by Equation 

10. To relationship between the uncertainty and strain magnitude is presented in normalized 

diagrams in Figure 11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Normalized uncertainty in neutral axis location as a function of |δε/ε
b
| (left) and |δε/ε

t
| 

(right) for different values of c [8]. 

 

−1<c<0 −1<c<0 

c<-1 c<-1 
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Figure 11 shows linear dependence, thus larger magnitude of the monitored strain, inversely 

proportionally smaller is uncertainty. 

 

(iii) Uncertainty (error) due to number and position of sensors 

 

A minimum of two sensors are needed per cross-section in order to determine the location 

of the neutral axis, as shown in Figure 9. If only two sensors are used, then the expression for 

determining the location of neutral axis is given in by Equation 9, where d and h are parameters 

that define the positions of sensors. The uncertainty in location of the neutral axis due to 

uncertainties in positions of the sensors d and h is then obtained by combining the 

propagation formulae given in Equations 3 or 4 with the Equation 9. 

  

However, in some cases there may be more than two sensors installed per cross-section 

that can be used for evaluation of the location of the neutral axis. In that case, the best fit line for 

strain distribution across the cross-section should be found first. In general, this may be made 

by using simple least-square method, but this would not account for uncertainties presented in 

previous subsections (due to magnitude in elastic strain and positions of sensors). In order to 

account for all these uncertainties, other techniques are needed, and the algorithm researched 

by [11] is used. This algorithm is based on least-squares and maximum-likelihood analysis, and 

it assumes that the uncertainty in each variable (strain or location of sensors) follows a normal 

distribution. The best fit line is expressed as y=ax+b, and the algorithm evaluates the 

coefficients a and b through iteration of Equations 11-14: 

 

XbYa         (11) 
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Y , Xi is the observed strain, Yi is the location of the sensors,  

and Wi is a function of the weights on the observed strain and sensors locations. 
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where XXU ii  , YYV ii  , and i  is a function of the weights on Xi, Yi, Ui and Vi. 
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x  and xi, yi are the least-square-adjusted points, expectation values of Xi and Yi. 
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The above algorithm evaluates the intercept of the strain distribution and its uncertainty, i.e., 

the neutral axis location and its uncertainty.  

 

(iv) Uncertainty (error) due to bi-axial bending 

 

The previous sections discussed a beam-like structure in which only uniaxial bending is 

expected. In real-life settings, the structure can experience biaxial bending, and an error in the 

evaluation of the location of the neutral axis may be introduced depending on the location of the 

sensors with respect to the principal axes of the cross-section. This case is schematically 

represented in Figure 12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Schematic representation of a multi-girder bridge with a concrete slab showing 

biaxial bending due to transverse location of the load with respect to the observed cross-section 

[8]. 

 

If two or more parallel strain sensors are available, they are placed in the same vertical 

plane which is not located on the minor axis of the cross-section (see example for two sensors 

in Figure 12) the location of the neutral axis can be inaccurately determined due to bi-axial 

bending. Figure 13 shows that a cross-section under bi-axial bending actually has a sloped 

neutral axis causing the two parallel sensors to locate the neutral axis too high (or low 

depending on the orientation of the sensors and applied bending).  

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Schematic representation of the error in measurements using a parallel topology with 

two sensors under bi-axial bending (to simplify the presentation, the case presented in the figure 

assumes no normal force) [8]. 

 

In order to simplify the analysis, the origin of the coordinate system is located at the centroid 
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of the cross-section, and the position of the neutral axis at the minor principal axis is denoted 

with y0
C, where the C stands for centroid. The equation of neutral axis y, under bi-axial bending 

and normal force is given in Equation 15. 

 

                         (15) 

where σ(x,y) is the stress within the cross-section, M
x
 and M

y
 are bending moments about the 

major and minor axis respectively, I
x
 and I

y
 are the moments of inertia about the major and minor 

axis respectively, and x and y are coordinates of points as per Figure 13. Equation 15 shows the 
dependence of the neutral axis on the distance from the minor axis x.  

 

In the absence of normal force (N=0), Equation 15 transforms to:  

 y
C

o
(x)= 

M
y

M
x
 

I
x

I
y
x.                                                                    (16) 

For sensor installed at location x=x
s
, the uncertainty in the estimation of the neutral axis 

location given as:  

 δy
S

o
= 

M
y

M
x
 

I
x

I
y
x
s
.                                                                    (17) 

Dependence of normalized uncertainty  y
S

o
/x

s
 from the ratio M

y
/M

x
 for different ratios of I

x
/I

y
 

is shown in Figure 14. The figure assumes that the x-axis and the y-axis are the major and minor 

axis respectively, and consequently, I
x
>I

y
 and M

x
>M

y
.  

 

 

 

 

 

 

Figure 14: yS
0/xs as a function of the ratio My/Mx for different ratios of Ix/Iy [8]. 

The figure shows that the uncertainty due to bi-axial bending can be significant. This 

uncertainty can be minimized by installing at least three non-coplanar sensors in the cross-
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however, increases the cost of the monitoring system, and the trade-off between the cost and 

improvement of accuracy should be well evaluated prior to installation of the sensors.  

 

(v) Uncertainty (error) due to gauge length of sensors 

 

The value of a measurement carried out using long-gauge strain sensor represents an 

average strain value along the sensor’s gauge length, which is illustrated in Figure 15 and 

described by Equation 18. 

 

 

 

 

 

Figure 15. Schematic representation of long-gauge sensor in an inhomogeneous material [12]. 
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where: A and B are points defining the gauge length of the sensor with coordinates xA and xB; C 
is midpoint of the sensor with coordinate xC=(xA+xB)/2; Ls=xB-xA is the gauge length at reference 
time, before the deformation is applied; uA and uB are x-axis component of displacements of 

points A and B after deformation is applied; C,s – average strain in point C measured by sensor; 

x,s(x) – strain distribution along the x-axis of the sensor; Δwd,i – dimensional change of i-th 

(xi[xA,xB]) discontinuity (crack opening, inclusion dimensional change, etc.) in direction of x-

axis, after the deformation is applied. 
 

Terms at the right side of Equation 18 show that the measured strain C,s depends on the 

strain distribution x(x) between points A and B, and the number and the dimensional changes of 
discontinuities Δwd,i (size of crack openings or dimensional changes of inclusions) between 
points A and B.  

 
In the case of non-linear strain distribution between A and B, the first term on the right side 

of Equation 18 is different from the real value of strain at midpoint C, and this difference in 

general increases  as the sensor’s gauge length increases.  The analysis performed in [12] 

shows that for typical strain distributions, the following relative errors C,s are introduced in the 

strain measurement: 
 

Linear distribution: C,s = 0;                                                                                             (19a) 
 
Parabolic distribution:                            , where LBeam is the length of the beam;              (19b) 

 

Bi-linear distribution:                           .                                                                              (19c) 
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The second term at the right side of Equation 18 exists only if the sensor is installed on 
inhomogeneous material, typically concrete. The biggest influence to the accuracy of the 
measurement is generated by usual cracking in reinforced concrete. In that case the error is 
estimated as follows [12]:   
 

(20) 
 
 
where wc is crack opening and Lc is distance between the cracks (typically less than 20 cm). 

 
The final uncertainty due to gauge length of the sensor is obtained by combining 

propagation formulae given in Equations 3 and 4 with those given in Equations 19 and 20. It is 
important to notice that Equation 19 shows that shorter sensor gives better accuracy for non-
linear distribution of strain, but longer sensors give better accuracy for inhomogeneous material 
(cracked reinforced concrete). Thus, the gauge length of sensors has to be determined as a 
compromise between two requirements.  
 
Creation of algorithms for determination of uncertainty in deformed shape 
 
The accuracy in determination of deformed shape depends on [3]: 
  

(i) uncertainty of measurement,  
(ii) the gauge length of the sensors,  
(iii) the number and position of the sensors,  
(iv) loading pattern, and  
(v) the double integration method.  

 
Evaluation of uncertainties related to the above points (i), (ii) and (iii) are similar to the 

evaluations presented previously for the neutral axis, and therefore, they are not repeated in this 
section. 
 
Background 

 
Assuming linear behavior of the structure, including the validity of Bernoulli's hypothesis, 

vertical curvature in a cross-section, , is determined from two strain measurements, as follows: 

 
h

tb 



  (21) 

where b and t are the strain values at the bottom and top of the cross-section, and h is the 

distance between the sensors (see Figure 9). In a beam with constant bending stiffness EI, the 

curvature is proportional to the moment, M(x): 
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)(   (22) 

where E is Young's modulus and I is moment of inertia.  

The curvature is equal to the second derivative of the deformed shape, and thus the later 
can be evaluated by double integration of the former, as expressed in Equation 23: 
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where C1 and C0 are constants of integration dependent of boundary conditions. 

 Displacement of a beam depends on deformed shape and rigid body movement. Difference 
between deformed shape and displacement is shown in Figure 16. Strain sensors measure 
internal state of the structure, and consequently they can evaluate only the deformation, and not 
the rigid body movement. Thus, for deformed shape, we can adopt the boundary conditions 
v(0)=0 and v(l)=0, where l is the length of the beam.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16. Deformed shape, rigid body movements, and vertical displacement [8]. 
 
If the expression for distribution of curvature along the beam is known, then the deformed 

shape can be determined analytically by double integration of Equation (23). However, in real 
structures, analytical expression for curvature is not known, and the double integration has to be 
performed using numerical integration methods. The two simplest and most frequently used 
methods are rectangle rule and the trapezoid rule. These two methods are used in this 
research. 

 

Suppose the monitoring system measures the curvature, , according to Equation 21 at n+1 
points along a beam with length l, i.e., in points denoted with 0, 1, … n, as shown in Figure 17.  

 

 

 

 

 

 

 

Figure 17: Curvature distribution due to concentrated forces F1 and F2, uniform load q, and 
concentrated couple M, on a beam equipped with parallel sensors at n+1 points [8]. 
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To simplify the implementation of the methods, the sensor positions are made equidistant, 

i.e., nlx   is the distance between the sensor locations (see Figure 17). Then, the deformed 

shape vR at sensor location  nixi ,...,2,1,0,  , determined by using the rectangle rule, is given 

by Equation 24.  
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The deformed shape determined by the trapezoid rule, vT, at sensor location xi is given by 

Equation 25: 
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 (25) 
 
The two integration methods described by Equations (24) and (25) are independent from the 

load case. However, analysis of possible load cases could be useful to evaluate the uncertainty 
in double integration. Typical curvature distributions in real structures are combinations of linear 
(constant slope), bi-linear with change in slope (“broken line”), and parabolic curvature, as 
shown in Figure 18.  Linear distribution of curvature (Figure 18A) is consequence of two 
concentrated moments applied at the ends of the beam. A “broken line” distribution is 
consequence of a concentrated force (see Figure 18B). Parabolic distribution is caused by 
uniformly distributed load (see Figure 18C).  

 
Figure 18. The three most common curvature distributions – linear, constant slope, and “broken 
line” – and corresponding load cases [8].  

 
The uncertainties associated with these three load patterns are evaluated along the 

uncertainties of double integration in the next subsection.  
 

(iv) and (v) Uncertainty (error) due to loading pattern and double integration 
 
The accuracy of the double integration methods depends on the load pattern and the 

locations of the sensors. The error due to the numerical double integration is obtained for each 
load pattern by subtracting the analytical solution from the beam theory from the evaluations 
obtained from Equations 24 and 25. For each load pattern, the error term has the following form: 
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where C is a constant that depends on the load pattern and numerical integration method.  
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Table 1 summarize the error terms using the rectangle rule and trapezoid rule for typical 
load patterns shown in Figure 18.  
 
Table 1. Error terms for rectangle and trapezoid rule for typical curvature distributions.  
 

Curvature 

Integration method 

Rectangle rule Trapezoid rule 

Linear vR = 0 vT = 0 
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As an example, Figure 19 shows the error terms as a function of the number of sensor 
locations, n, for beam length of 10 m. Typical criteria for allowed deformation in beams (l/250 and 
l/500) are also indicated in the figure, to help assess the number of sensors needed to evaluate 

these criteria.  
 
Figure 19 shows that the trapezoid rule systematically underestimates the deformation and 

rectangle rule systematically overestimates it (when compared to linear analytical solution). The 
two approaches can therefore be considered as a lower and upper bound of the deformed 
shape. Hence, Table 1 and Figure 19 can actually be used at the design stage of the SHM 
system to determine the required number and locations of sensor along the beam needed to 
meet the desired accuracy in determination of deformed shape. 

 
Figure 19. The error terms for double integration by the rectangle rule and trapezoid rule [8].  
 
Laboratory testing 
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The goals of previous two tasks were to determine uncertainties involved in determination of 
neutral axis and deformed shape, with the final aim of this project to create algorithms for 
evaluation and determination of the uncertainties of these two parameters, as evaluated from 
series of parallel long-gauge strain sensors. The performance of algorithms is validated in 
laboratory settings and it is presented in this section. 
 
Neutral axis  
 

In order to provide a rigorous evaluation of the neutral axis location by directly including the 

uncertainty analysis, a weighted mean, w, is used. The reciprocals of the squared values of 
uncertainties determined in previous section are used as the weights in calculating the mean: 

   

 

.

 (27) 

 

The uncertainty in the estimate of the neutral axis location, w, is then calculated as the 

weighted average variance of the data, w
2: 

 

 

,

 (28)

 

 

where N represents the number of non-zero weights. 

 
Laboratory evaluation has been performed on the large scale specimen described in 

Numerical Modelling section. In addition, it is important to note that the specimen had two points 
of artificially induced damage – a delamination was simulated above Girder A by embedding a 
horizontal plastic sheet of Letter Size during the pouring of concrete, and crack was simulated 
by embedding vertical plastic sheet above Girder K. The middle girder, Girder F was intact. 
Schematic of simulated damage location is given in Figure 20. 

 
 
 
 
 
 
 
 
 
 

 
Figure 20: Schematic representation of large scale specimen and locations of simulated 
damage [13]. 
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Validation is performed in two steps. First, simplified approach is taken by individually 
analyzing the composite girders taking into account the steel girders and contributing areas of 
concrete (see Figure 20). Then, more detailed analysis was performed using numerical 
modelling. 

 
For simplified approach, first the location of the centroid was evaluated from geometric and 

material properties of the cross-section of the specimen, and then it was compared with location 
of the neutral axis determined from various tests. The contribution to the uncertainty in the 
centroid location from each of these properties was quantified. The results from this analysis for 
one cross-section are shown in Figure 21.  

 

 
Figure 21. Schematic representation of the cross-sectional parameters needed for evaluation of 

the location of the centroid (left); the contributions of various parameters to the uncertainty of 

the location of the centroid, ycentroid (right) [13]. 

The comparison between the centroid and the neutral axis location was performed using Z-
score test.  Figure 22 demonstrates the concept, were ycentroid is the location of the centroid 

determined from material and geometrical properties and w is the location of the neutral axis 

determined from measurements.  

 

Figure 22. The centroid of the cross-section, ycentroid, and the neutral axis location determined 

from measurements, w, along with their associated uncertainties are compared with a Z-score 

hypothesis test [13]. 

The hypothesis is that the difference between ycentroid and w is zero, i.e. the centroid and 
neutral axis location are not different, and the cross-section is healthy. The Z-score is 
determined according to Equation 29: 

 
 

                                                                                             (29) 

centroidw y

wcentroidy
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where w
2 is the weighted average variance of the measurements and ycentroid is the uncertainty 

in the centroid determined from Figure 21.  

Several events produced bending in the specimen and allowed for evaluation of the neutral 
axis location. These events are (i) lifting of the specimen in the factory, (ii) placing on temporary 
supports, (iii) second lifting, (iv) partial lifting, (v) placing on truck for transport, (vi) final 
placement on site. These events are shown in Figure 23. 

 

           
 

           
Figure 23: Various events that introduced bending in the specimen [13]. 
 

Neutral axis is compared with location of centroid in Figure 24. 
 

       

Figure 24: Comparison between the location of neutral axis and the centroid [13].  
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Figure 24 shows good agreement between the location of the neutral axis and the centroid 
at Girder F which was not damaged, but it shows discrepancies at locations of damage, 
indicating that damage can be detected. 

  
Additional tests were performed in close-to-real conditions by putting the truck on the 

specimen (see Figure 25), and then Z-score test was performed to all available data. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 25: View to truck on the large scale specimen in close-to-real conditions [13].  
 
Results of Z-score tests are shown in Table 2. Neutral axis is determined using either only 

sensors installed on the steel, or on concrete, or using all sensors (see the second column of 
the table). The following confidence thresholds are proposed for this analysis: 

 

≤ 10% There is highly significant difference between the centroid and the neutral axis location. 

 

≤ 20% There is significant difference between the centroid and the neutral axis location. 

 

Table 2: The probability that the centroid and neutral axis location are not. Bold numbers are 
lower than 10%, italicized numbers are between 10% and 20% [13].   
 

  Lift 1 Lift 2 Lift 3  Tests 

    
During 
lifting 

After 
lifting 

Fully 
lifted 

Partially 
lifted 

On 
truck 

On 
supports   

A 

steel 0 0 2 6-40 48 95 12 

concrete 1 1 0 3 17 0 0 

all 16 2 0 5 88 10 1 

F 

steel  74 85 100 25 35 94 72 

concrete 73 68 100 65 62 79 84 

all 94 53 56 86 70 44 70 

K 

steel 3 0 6 12 79 64 33 

concrete 3 4 11 16 73 1 6 

all 5 5 16 14 48 14 20 
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Table 2 is graphically represented in Figure 26. The table and figure confirm that there is a 
good agreement between the location of the neutral axis and centroid at healthy Girder F. This 
practically validates the evaluation of uncertainties, which was the aim of this section. 

 
In addition, the damaged Girders A and K have a higher likelihood that the neutral axis and 

centroid are not the same. For Girders A and K, more than 75% of the predications show less 
than 20% likelihood that the neutral axis and centroid coincide, which practically indicates 
damage detection. 

 
Figure 26: Results of Z-score tests - the probability that the centroid and the neutral axis 
location coincide for Girders A, F, and K [13].  
 

Table 2 and Figure 26 show that the location of the neutral axis is sensitive to minute 
damage occurring if form of delamination and cracking in the concrete slab. However, according 
to linear theory of structures and the literature review, the neutral axis location at damaged 
location of the specimen is expected to move down, and not up as shown in Figure 24.  

 
To better understand the behavior of the neutral axis in composite beam structures in the 

presence of damage, numerical modelling was used to test the sensitivity of the neutral axis 
movement to the damage using the finite element model of the large scale specimen (see the 
section on numerical modelling).  

 
Prescribed minute damage in the large scale specimen was incorporated into the finite 

element model as seams inside the mesh of the concrete slab. A sensitivity analysis was 
performed on the neutral axis position as the width and depth of the crack in the concrete slab is 
varied. The neutral axis position for each damage scenario was extracted by located the 
position of zero strain in the cross-section of the structure at midspan. Figure 27 summarizes a 
comparison of the neutral axis position from each damage scenario to that of the healthy 
structure. 
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Figure 27: Neutral axis position sensitivity analysis – crack size [9]. 

As shown in Figure 27, the neutral axis moves to lower positions at the sensor location at 
Girder K, which is very close to the position of the prescribed crack. Also, damage induced 
within the tributary area of Girder K does not affect the neutral axis position at other girder 
locations, which indicates that the variation is fairly local. Furthermore, it is observed that 
upward movement of the neutral axis occurs inside the concrete slab on either side of the crack 
location, and the maximum shift of neutral axis position appears to be proportional to the size 
and severity of damage.  

 
Based on this sensitivity analysis, depending on the size of the damage and the relative 

position of the strain sensors, both upward and downward movement of the neutral axis can be 
detected. This conclusion justifies the trends observed from sensor measured neutral axis 
positions for the large scale specimen and the US202/NJ23 overpass (see the next section). 

 
In a subsequent sensitivity analysis, the impact on the neutral axis due to imperfect support 

conditions was studied. In structural design and analysis, the support conditions of structures 
are often assumed to be idealized. However, imperfect support conditions are likely to occur 
due to factors such as uncertainties and errors in the fabrication process, malfunctioning of 
supports, as well as differential support settlements. In typical beam-like structures, differential 
displacement of a few millimeters at support locations can alter reaction forces and induce 
noticeable strain redistribution in the overall structure. Therefore, although imperfect support 
condition may not be considered as direct physical damage to the bridge superstructure, 
locations of high support reactions are likely to induce physical damage in the structure over 
time.  

 
Three damage scenarios were simulated using the finite element model of the large scale 

specimen where the structure is simply supported and placed under self-weight. For each of the 
three damage scenarios, the support reactions at one of the girder locations was removed to 
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create redistribution of reaction forces. The neutral axis position was extracted from the model 
of the damaged structure, as shown in Figure 28. 

 

Figure 28: Neutral axis position sensitivity analysis – imperfect support condition [9]. 

Based on the results from Figure 28, it can be observed that for Scenarios 1 and 2, where 
reactions from a side support were removed, the neutral axis position moves upward near the 
center of the cross-section, and downwards near Girder K and Girder A. For scenario 3, when 
reactions from Girder F are removed, the neutral axis moved downward locally near the closest 
sensor location, and upward at the Girders A and K.  

 
According to these results, imperfect support conditions can cause bi-directional movement 

of the neutral axis in a multi-girder beam structure, which could have contributed to the bi-modal 
and upward shifts of the neutral axis observed from the analysis of sensor data.  

 
So far, the analysis of the neutral axis has been focused on comparing the measured 

neutral axis position at sensor locations to that of the predicted healthy neutral axis position. In 
this section, the effect of damage on the distribution of the neutral axis measured by different 
sets of sensors at a given location of interest will be studied.  

 

Figure 29: Dispersion of neutral axis in healthy and damage sections [9]. 
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As shown in Figure 29, in a healthy composite section, the strain sensor readings are 
expected to follow a linear strain profile, and the neutral axis position would be unique. 
However, in the presence of damage, the section would have a non-linear strain profile, and the 
position of neutral axis measured depends on the sensor set used. Therefore, when sensor data 
is available from three or more strain sensors at each location of interest, the dispersion of the 
neutral axis position measured by different sensor sets can be used for damage detection.  

 
The Z-score test, which compares the agreement of two distributions, can be calculated 

using the mean (xi) and variance (si) of the neutral axis position measured by two sensor sets, 

as shown in Equation 30, which is practically identical with Equation 29, with changed 
arguments. Assuming healthy structural behavior, the neutral axis measured by the two sets of 
sensors shall be identical, which corresponds to a Δ value of zero. 

 

𝑍 =  
(𝑥1−𝑥2)−  Δ

√(𝑠1)2+(𝑠2)^2
                                                   (30) 

The P value, which represents the probability that the neutral axis positions measured by the 
two sets of sensors are not different, can then be calculated based on the Z-score. The range of 
the P value is 0 to 100%, where a high P value represents the healthy linear strain behavior, and 
a low P value indicates damage in the monitored section.  

 
This method was applied to neutral axis measurements of the large scale specimen, when 

the structure was placed on temporary supports. The mean and standard deviation of the 
neutral axis position at each girder location measured by concrete and steel sensor sets were 
used for the analysis, as shown in Figure 30 below. The P value at the reference location was 

calculated to be 96%, which confirms healthy behavior. At Girders A and K, where minute 
damage was located, the P values were calculated to be 5% and 2% effectively, which indicates 

damaged behavior.  
 
Based on these results, the dispersion of the neutral axis is very effective for predicted 

minute crack and delamination in composite structures, and has great potential as a damage 
indication parameter.  
 

 

Figure 30: Dispersion of neutral axis – large scale specimen [9]. 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwiR2IaX7tTMAhVF8j4KHSBMCFYQFggoMAE&url=https%3A%2F%2Fen.wiktionary.org%2Fwiki%2F%25CE%2594&usg=AFQjCNHpR2JqMbC-2JkrN1wIPLhiR1BNoQ&sig2=Oa7etY_dQnb36UPZWqHooA&bvm=bv.121658157,d.cWw
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Based on these results, the dispersion of the neutral axis is very effective for predicted 

minute crack and delamination in composite structures, and has great potential as a damage 
indication parameter.  

 

Deformed shape  
 
The accuracy in prediction of uncertainty deformed shape was assessed on a small scale 

specimen described in the section on numerical modelling. Five fiber Bragg-grating (FBG) fiber-
optic strain sensors with gauge length of 10 cm were installed on the top of the specimen with 
equal spacing. Four LVDT displacement meters were used to measure deflection and to 
perform necessary transformation of deflection to deformed shape. Assuming linear behavior of 
the specimen, and taking into account the absence of normal force in the specimen, it was 
possible to calculate curvatures at each instrumented cross-section from measurements. Two 
configurations were tested, a cantilever and simply supported beam. Both concentrated and 
uniformly distributed force were applied, as shown in Figure 31.  

 

          
 (a) Cantilever beam (b) Simply supported beam 

Figure 31. Small scale specimen testing setup [8]. 

 

The specimen in cantilevered-beam configuration was loaded at the free end with three 
loads, 1P = 5.8 N, 2P = 11.6 N, and 3P = 17.4 N. The measurements were taken with the FBG 
sensors and LVDT’s. The measured curvatures were in good agreement with linear theory of 
beams, see Figure 32a. Then, Equations 24 and 25 were used to evaluate the deformed shape 
as shown in Figure 32b. The curvature diagram in Figure 32a is linear and therefore no error is 
expected from the double integration (see Table 1). The uncertainty from the mechanical strain 
measurement was in the order of 0.01-0.05 mm and thus practically invisible in the figure, 
thereby validating the procedure for evaluation of deformed shape and the associated 
uncertainty analysis.  

 
 (a) Curvature (b) Displacement 

Figure 32. The curvature and deformed shape of the small scale specimen loaded in 

cantilevered-beam configuration [8]. 
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The configuration of the small scale specimen was rearranged into simply supported beam, 

and it was loaded with 1P = 29.9 N, 2P = 59.4 N, and 3P = 89.2 N, close to the middle of the 
span. Figure 33a confirms good agreement between measured and analytically determined 
curvature. Excellent agreement is obtained as well between deformed shapes calculated using 
Equations 24 and 25, and analytical solution, i.e., thereby validating the procedure for 
evaluation of deformed shape and the associated uncertainty analysis. 

 
 

 
 (a) Curvature (b) Displacement 

Figure 33. The curvature and deformed shape of the small scale specimen loaded 

approximately at the middle of the span, simple-beam configuration [8].  

Several other tests were conducted on the simple-beam configuration, with different load 
cases, that combined concentrated forces and uniformly distributed force. The results and the 
load cases are presented in Figures 34 and 35. 

 

 
 (a) Curvature (b) Deformed shape 

Figure 34. The curvature and deformed shape of the small scale specimen loaded with 

concentrated force at various locations, or with combination of forces, simple-beam 

configuration [8].  
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 (a) Curvature (b) Deformed shape 

Figure 35. The curvature and deformed shape of the small scale specimen loaded with 

combination of concentrated force and uniformly distributed force [8].  

These above examples practically validated the evaluation of deformed shape and 
associated uncertainties in laboratory conditions.  

 

On-site validation 

The goals of the previous task was to validate in laboratory settings the algorithms for 
evaluation of uncertainties in determination of the neutral axis and deformed shape. Their 
validation in on-site conditions is presented in this section. 
 
Neutral axis  
The algorithms for determination of uncertainties in the position of the neutral axis were 
validated on both, the US202/NJ23 overpass and Streicker Bridge.  
 

Figure 36 shows the mean and standard deviation of the neutral axis location at midspan of 
Girder 5 of the US202/NJ23 overpass for the measurement sessions performed over 4 years. 
The histogram presented over the cross-section (to the left) shows a typical distribution of the 
neutral axis location during one measurement session (session from March 2013 presented in 
the figure). Diagram to the right shows the uncertainties as calculated by algorithms developed 
in this project. An excellent agreement is obtained, which validates the algorithms. 
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Figure 36: Evaluation of uncertainties in determination of location of the neutral axis at midspan 

of girder 5 of the US202/NJ23 overpass [8].  

A load test was performed on the southeast leg of the Streicker Bridge in March 2011, and 
the collected data was used to evaluate the uncertainties in location of the neutral axis. The load 
was applied to the bridge by means of four golf-carts with passengers. First, the load was 
gradually increased by bringing the cars one by one, and then it was gradually decreased by 
removing the cars one by one. The neutral axis location was evaluated after each step of load. 
As an example, the results for location P11 are shown in Figure 37.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 37: Evaluation of the location of the neutral axis and associated uncertainty [8]. 
 

During the first two load steps, the uncertainty is high due to low strain magnitude. Similar 
result is confirmed in the last two load steps. The results of the test validated the algorithms for 
evaluation of uncertainties. 
 

Deformed shape 
The algorithms for determination of uncertainties in the deformed shape were validated on 
Streicker Bridge. In April 2014 a load test was performed using an approximately four-metric-ton 
truck that was positioned in the middle of the longest span of the southeast leg. Direct 
measurements of vertical displacement along the bridge, needed for validation of algorithms, 
were not available except in one point at the middle of the longest span. Therefore, the 
deformed shape as determined from the SHM system were compared to a Finite Element Model 

Test March 2011 
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(FEM) simulation of the test. The FEM was calibrated, based on known input and strain 
measurements. The results of the comparison are presented in Figure 38, along with the 
uncertainties in determination of deformed shape evaluated as per algorithms developed in this 
project. 
 

 
 (a) Curvature (b) Displacement 

Figure 38. Deformed shape of the southeast leg of Streicker Bridge as obtained from SHM and 
FEM [8]. 
 

To further validate the results, an independent, laser-based displacement measurement was 
performed by a research group from Columbia University. The measurement, included in Figure 
37, observes a similar displacement predicted by the FEM, thus confirming that it captures well 
the behavior of the bridge. The results of the test practically validate the algorithms for 
evaluation of uncertainties in deformed shape, since the FEM and deformed shape determined 
from SHM are always within uncertainty limits. 
 

CONCLUSIONS 

 

Several major conclusions can be drawn from this project: 

 

1. The literature review revealed a need for better understanding of uncertainties involved 

in determination of neutral axis and deformed shape of beam-like structures. This finding 

justified research carried out in this project. 

 

2. Algorithms for evaluation of uncertainties in determination of location of the neutral axis 

were created and validated both in laboratory settings and real-life settings. The 

uncertainties associated with the following phenomena were studied: 

 Uncertainty of measurement of the SHM system,  

 The magnitude of the measured strain,  

 Number and position of sensors,  

 Bi-axial bending,  

 Gauge length of sensors,  

 

The uncertainties associated with the following phenomena will be studied in the future: 

 The change in axial strain,  

 The size of SHM data sets,  

 Dynamic effects,  

 The position of the load on multi-girder systems. 
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3. Algorithms for evaluation of uncertainties in determination of deformed shape based on 

double integration of the curvature were created and validated both in laboratory settings 

and real-life settings. The uncertainties associated with the following phenomena were 

studied: 

 Uncertainty of measurement,  

 The gauge length of the sensors,  

 The number and position of the sensors,  

 Loading pattern,  

 The double integration method.  

 

The determination of deformed shape based on conjugate beam method will be studied 

in the future. 

 

4. Neutral axis and deformed shape are universal parameters found in every beam-like 
structure. Thus, the results of this project are practically applicable to large variety of 
structures, as follows: 

 evaluation of uncertainties is paramount in setting the thresholds for detection of 

unusual behaviors (detection of damage or alteration in performance)  

 possibility to predict uncertainties enables and informs quantitative design of 

sensor network (required density of sensors to achieve desired uncertainty)   

 the network consisting of parallel sensors is used for both determination of 

position of neutral axis and deformed shape, thus the same sensor network 

enables determination of both parameters, which makes it very efficient  

 to apply the methods, it is not necessary to know the loads on the structure or to 

stop the traffic, which makes both methods easy to apply,  

 neutral axis and deformed shape are well known parameters in structural 

engineering, and the SHM methods based on these parameters are easily 

understood by structural engineers.  
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RECOMMENDATIONS 

 

This project have demonstrated that it is possible to evaluate accurately the uncertainties in 

determination of position of neutral axis and deformed shape of beam-like structures using a 
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network of parallel sensors. The following recommendations are proposed based on experience 

and results from the project: 

 

1. Location of the neutral axis: minimum two parallel sensors in a cross-section should be 

used to evaluate the location of the neutral axis; however, in the case of composite 

steel-concrete structures, redundancy is recommended, and more accurate results are 

obtained if pair of sensors is embedded in concrete slab, and another pair of sensors is 

installed on steel girder; this configuration demonstrated higher sensitivity to minute 

damage. 

 

2. Minimization of uncertainty in location of the neutral axis:  

a. to minimize uncertainty related to monitoring system, a proper installation of the 

monitoring system is needed (good strain transfer from the structure to sensor), 

and repeated dynamic measurement are recommended (to minimize thermal 

compensation and temperature influence to the structure); 

b. to minimize uncertainty related to strain magnitude, the sensors within a 

monitored cross-section should be as distant as possible from the centroid of 

stiffness; 

c. to minimize uncertainty related to gauge length of sensors, the gauge length 

should be determined based on principles presented in literature [12]; 

d. to minimize influence of bi-axial bending, three or more non-coplanar sensors 

should be installed in the cross-section; however, this increase the cost;   

 

3. Deformed shape: both trapezoid and rectangle rule should be used for double-

integration of curvature – the former will provide the lower limit (by absolute value) and 

later the upper limit of estimation of deformed shape;  

 

4. Minimization of uncertainty in determination of deformed shape: 

a. parallel sensors should be placed in equidistant cross-sections along the 

structure; this simplifies the evaluation of uncertainties; 

b. to minimize uncertainty related to strain magnitude, the sensors within a 

monitored cross-section should be as distant as possible from the centroid of 

stiffness; 

c. number of cross-sections to be instrumented by sensors should be determined 

so that the uncertainty fall below acceptable limit; 

d. points 3a and 3c from above apply to this point too. 

 

5. Since the same sensor network enables monitoring of both, neutral axis and deformed 

shape, it is recommended to consider both parameters simultaneously when designing 

the sensor network. 
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