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Introduction and Background 

Problem Description 

In the aftermath of the collapse of the Silver Bridge in December of 1967, the United States 

Department of Transportation began to maintain a database of bridge information called the 

National Bridge Inventory or NBI. This database was populated with static information about 

bridges (i.e., route carried, structural form and materials, etc.) as well as dynamic information (i.e., 

condition ratings for components, average annual daily traffic, etc). These data and how they are 

obtained is set forth in the National Bridge Inspection Standards. Every two years each structure 

is inspected, and dynamic data values are checked and updated if needed by each state department 

of transportation. The updated data is submitted annually for public consumption through the 

Federal Highway Administration. One of the more important dynamic data fields is the condition 

ratings for the major bridge components (e.g., the deck, superstructure, and substructure). For 

many years, this condition data was the primary source of information for predicting future 

condition of bridges. Condition ratings factor heavily into decisions regarding funding for repair, 

rehabilitation, and replacement of structures, despite many changes to the Federal formulas for 

determining disbursement of Federal funds to the states.  

Countless researchers have used NBI data to predict future condition using myriad approaches to 

deterioration modeling. Each approach has its own benefits and drawbacks, and as with any future 

prediction, there is no guarantee of accuracy until the future arrives – which negates the need for 

a prediction. This reframes the accuracy challenge into one of confidence. Given the variations 

between modeling approaches, there is no consensus ‘best’ deterioration model. The decision is 

left to the engineer or agency. Addressing this uncertainty is a primary objective of this research.   

Over the past three decades, states began collecting more detailed bridge element information, 

which goes from, for example, the superstructure level to the girder level. There is an intuit ive, 

hierarchical link between this information and component level condition. The same cannot be 

said for newer streams of bridge information that have become more popular over the same time 

period. These new streams of data, for example, may include nondestructive evaluation, vibration 

testing data, high resolution digital images, structural health monitoring, and finite element 
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models. Currently these data are not well integrated into the bridge management workflow utilized 

by most departments of transportation. On a bridge to bridge basis, more refined data can be used 

to inform specific decisions, but there is rarely if ever any effort to tie that into the general bridge 

knowledge base that is used for modeling future performance of structures.  

This deficiency represents a major challenge and threat to quantitative data-driven bridge 

management of structures because there is risk that when data becomes available it will not be 

readily integrated into bridge management practice and therefore viewed as irrelevant and 

unnecessary.   

The goal of this research is to establish a robust, flexible framework for integrating data collected 

from operating structures to provide reliable performance assessments and forecast remaining 

service life (i.e., descriptive relationships) for structures. We first focus on traditional deterioration 

modeling using the largest dataset available, the National Bridge Inventory condition ratings. We 

explore numerous approaches to deterioration modeling, comparing their ability to predict future 

condition based on training and validation datasets. We also explore novel approaches to 

combining these methods into a more robust, multiple model deterioration modeling technique. 

To combat the perceived challenge of integrating new, quantitative data streams, we present 

several actions. First, we explored existing frameworks in the civil engineering/technology space 

as options for this challenge. We develop an understanding of what types of data are available and 

how they relate, a bridge data ontology. Finally, we explore the notion of synthesizing structural 

health monitoring data for the purpose of develop techniques to integrate that data with standard, 

qualitative condition information.  

Approach  

The implemented approach for this research was as follows:  

• Literature Survey: A comprehensive review of the literature focused on deterioration 

modeling of bridges, multiple model approaches to predictions, and frameworks for 

integrating disparate data sources was conducted and synthesized. Within deterioration 

modeling, deterministic, probabilistic, mechanistic, reliability and artificial intelligence 

approaches are explored.  
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• Exploration of Existing Frameworks for Integrating Bridge Data: Two primary existing 

frameworks were considered. The first was the loosely titled “Smart City” framework, built 

on the notion that the Internet of Things and its integration into city services requires an 

interstitial software layer, much the same as integrating disparate data sources from a 

bridge into a management service would require. The second framework was Bridge 

Information Modeling, based on Building Information Modeling. This combines the spatial 

distribution of bridge elements and components and applies information to them in that 

context.  

• Data Management and Filtering for Deterioration Modeling: The heavy focus on the 

application of deterioration modeling approaches was using National Bridge Inventory 

data. This data is notoriously error-prone and inconsistent, simply because of the scale and 

the number of persons involved in collecting and maintaining it. Several specific NBI data 

challenges were addressed including developing a robust tool through which the data can 

be searched and filtered, as well as tying data from year to year (stored and shared in 

completely unrelated text files) at the bridge level.  

• Single Model Deterioration Modeling Approaches: We explore ten approaches to 

developing deterioration models primarily in the probabilistic category. Each approach 

develops a transition probability matrix which is used to estimate the probability of a state 

change, and to determine expected value at any time in the future. The transition probability 

matrices developed across approaches can vary even with the same supplied data. We 

explore this and offer some explanation as to why.  

• Multiple Model Deterioration Modeling Approaches: The ten approaches for single 

deterioration modeling share similar crossroads in their development process – mainly the 

transition probability matrix and the deterioration curve stages. We consider simple and 

implementable methods for combining these single approaches at those crossroads’ points. 

• Synthesize the Results and Develop Conclusions and Future Work: This research only 

begins to address the problem described above. While we were able to start reducing the 

systemic error associated with arbitrarily selecting a single model form for deterioration 

modeling, we were not successful in integrating disparate data sources.  
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The implemented approach of this research varied from the proposed approach substantially. The 

proposed approach to this project was to quickly establish a proposed framework and focus on 

refining that approach through the inclusion of additional data obtained through collaboration with 

the Texas Department of Transportation. A trial population of structures was to be identified as a 

demonstration testbed for the approach. This population would have varying levels of data, from 

qualitative component and quantitative element condition data to temporally-varying structural 

health monitoring data would be available. However, after conferencing with the El Paso District 

Office – Bridge Division, it became clear that data would not be provided beyond what is publicly 

available, and that we had over-estimated the market penetration of many of the new data streams 

into practice. As such we did not develop or adopt a specific framework for integrating disparate 

data sources, and instead focused on exploring multiple model deterioration modeling primarily 

using condition ratings from NBI. A primary logistical driver for this was difficulty with retention 

of graduate students.  

Methodology 

The section summarizes the methodology that was implemented for this project. We started by 

exploring traditional approaches for deterioration modeling for bridges in the literature, looking 

for areas of commonality or overlap. The three primary areas identified were as follows: 

• The explanatory variables that define the population of bridges 

• The transition probability matrix that is common to so many probabilistic approaches 

• The final deterioration curve 

For non-probabilistic approaches, there was often something analogous to the transition 

probability matrix, which defined the relationship between staying in a condition rating and 

moving.  

We focused on probabilistic approaches because of the commonality of the TPM. We explored 

two primary, and relatively simple approaches to combining the various single model approaches 

since the TPM was such a strong common point. The first was a combination of the TPM itself. 

The second was a combination of the deterioration model produced from each process.  

In the original scope, we aimed to integrate other sources of data into this calculation. We found 

this to be difficult for myriad reasons, including: 
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• The difficulty of finding actual data to use 

• The lack of resolution in the data selected  

• The challenge in establishing a relationship between data sources that reflects deterioration 

mechanisms  

Given that, and the complete lack of any effort to implement multiple model deterioration 

modeling without any additional data included, we focused on multiple model approaches to 

deterioration models.  

 

Organization of this Report  

The results of this research are presented in six chapters. Section 2 provides a survey and synthesis 

of the literature covering three distinct, but interrelated areas: 

• Common and Uncommon Sources of Bridge data 

• Traditional deterioration modeling for bridges 

• Multiple model approaches 

• Existing frameworks for integrating disparate data 

Section 3 discusses bridge data (existing and novel sources), with a focus on those data streams 

relevant to deterioration modeling, and how they are managed and filtered. Section 4 presents the 

application and comparison of ten approaches to deterioration modeling each applied on an 

individual basis. Section 5 explores multiple model approaches to this challenge, and Section 6 

provides conclusions and future work.  
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Survey of the Existing Literature 

This literature review includes several overarching subject areas which all are related to the 

overarching goal of the project. These areas are: 

1. Sources of Bridge Data 

2. Deterioration modeling for bridges 

3. Multiple model approaches  

4. Frameworks for integrating disparate data 

 

One notion that repeatedly comes up in deterioration modeling literature is explanatory variables. 

These are essentially filter criteria that an engineer assumes drives deterioration behavior in 

populations of bridges. By selecting historical data for structures with similar values of explanatory 

variables, it is assumed that the historic deterioration behavior is predictive of future behavior for 

similar structures. The importance of these variables and the decision of which to consider cannot 

be overstated. Further discussion is provided in Section 3.   

 

Common Sources of Bridge Data  

The three primary common sources of historical bridge data that are the National Bridge Inventory 

data, National Bridge Element data, and original construction documentation. In addition, some 

states maintain maintenance records but these are not generally publicly available. The latter two 

are not publicly available while the former two are, generally. 

National Bridge Inventory (NBI) 

The NBI database contains the broad information of bridges available on the national level. The 

Federal Highway Administration (FHWA) bridge inspection program regulations were established 

by the Federal-Aid Highway Act of 1968. The NBIS was enacted as part of the Federal-Aid 

Highway Act of 1970. Bridges are one of the important elements in the highway transportation 

system. These structures are expected to be safe. The safety of bridges was issued by the collapse 

of the Silver Bridge located at the Ohio River in 1967. The Secretary of Transportation was 

required to develop and implement the National Bridge Inspection Standards (NBIS) for 
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estimating the deficiencies of existing bridges. The NBIS requires visual inspection biennia l ly. 

The bridge owners are responsible for the inspections and the collected information is required to 

report to FHWA for maintaining the data in the National Bridge Inventory (NBI) database (FHWA 

2004).  

NBI contains 116 items include the followings (Ryan et al. 2012). 

● Identification – bridges are identified by location codes and descriptions. 

● Structure material and type – bridges are grouped by structural material, the number 

of spans, and design type.  

● Age and service – information includes the built year and functionality of a bridge. 

● Geometric data – information includes the structural dimensions of a bridge. 

● Inspection – information includes the inspection date and the condition ratings of 

bridge components. 

In the inspection items, condition ratings are determined as compared to the as-built condition and 

assigned by bridge inspectors using a 0 to 9 rating scale. The inspectors determine the ratings based 

on engineering expertise and experience (Ryan et al. 2012). The general guideline of condition 

rating for bridge components are described in the 1995 edition of the FHWA Coding Guide in 

Table 1 (Ryan et al. 2012). 
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Table 1. Condition rating codes and descriptions for bridges 
Codes Descriptions 

N Not applicable 

9 Excellent condition 

8 Very good condition – no problems noted 

7 Good condition – some minor problems 

6 Satisfactory condition – structural elements show some minor deterioration 

5 Fair condition – all primary structural elements are sound but may have minor 

section loss, cracking, spalling or scour 

4 Poor condition – advanced section loss, deterioration, spalling, or scour 

3 Serious condition – loss of section, deterioration, spalling, or scour have 

seriously affected primary structural components. Local failures are possible. 

Fatigue cracks in steel or shear cracks in concrete may be present. 

2 Critical condition – advanced deterioration of primary structural elements. 

Fatigue cracks in steel or shear cracks in concrete may be present or scour may 

have removed substructure support. Unless closely monitored it may be 

necessary to close the bridge until corrective action is taken. 

1 “Imminent” Failure condition – major deterioration or section loss present in 

critical structural components, or obvious vertical or horizontal movement 

affecting structure stability. Bridge is closed to traffic, but corrective action 

may put bridge back in light service. 

0 Failed condition – out of service; beyond corrective action. 

 

National Bridge Element Data 

For standardizing a data system, the FHWA revised the standards including a detail description 

of elements of a bridge and produced a manual, Commonly Recognized (CoRe) Structural 

Elements. The manual was accepted as an official American Association of State Highway and 

Transportation Officials (AASHTO) manual in 1995.  Table 2 describes a guideline used in 
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evaluation of element condition rating (Congress 2012). In 2011 The AASHTO Guide Manual 

for Bridge Element Inspection was published. It included four standardized condition states 

utilizing a 1-4 rating scale. The AASHTO element-level data are used to determine the condition 

ratings of bridge components in NBI.  
Table 3 describes the condition ratings of bridge elements. These condition states provide severity 

and extent (i.e. total element quantity) of deterioration of bridge elements (Congress 2012). 

Table 2. Condition status and description of bridge 
Codes Descriptions 

Good Element has only minor problems. 

Fair Structural capacity of element is not affected by deficiencies 

Poor Structural capacity of element is affected or jeopardized by deficiencies. 

 

Table 3. Condition state codes and description of bridge elements revised  
Code Description 

1 Good – No deterioration to minor deterioration 

2 Fair – Minor to Moderate deterioration 

3 Poor – Moderate to Severe deterioration 

4 Severe – Beyond the limits of 3 

 
The National Bridge Investment Analysis System (NBIAS) introduced in 1999 models the 

investment needs for bridge maintenance, repair, and rehabilitation incorporated analyt ica l 

approaches such as a Markovian modeling, optimization, and simulation. Also, the NBIAS model 

can perform an analysis of bridge conditions using element level data (Ryan et al. 2012). States 

were required to report element level data of all bridges to FHWA by the Moving Ahead for 

Progress in the 2lst Century legislation (MAP-21) signed into law in 2012 (Congress 2012).  
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Plans and Construction Documents and Maintenance Records 

State Departments of Transportation maintain records of their structures including as-built 

drawings, repairs and retrofits, and often regular maintenance records. These records are generally 

not publicly available 

 

Uncommon Sources of Bridge Data 

There are many techniques and technologies for assessing bridge condition quantitatively and 

qualitatively that are becoming more and more popular. There is a preponderance of literature 

discussing these applications on specific bridges. However, in the context of over 650,000 bridges 

nationwide, there are still relatively uncommon.   

Finite Element Model Data 

Finite element models of bridges are developed primarily for design purposes, or for determining 

a refined load rating (Golecki and Weidner 2018; White et al. 2012). To construct a model, 

structural material and geometric properties are imputed parameters separated by bridge 

component i.e. girders and deck in the FEM application of choice for prediction of deterioration 

and other values such as deflection, stress, and strain at expected loads. The first step to performing 

the load rating of a bridge is to conceptualize the structure, which drives the decision on what, if 

any model, should be used. White provides extensive research on what time of model to use for 

complex geometries including curved and skewed bridges (White et al. 2016).  

FEM provides many benefits including the modeling of bridges with different geometries and 

material properties in a less time-consuming fashion (Golecki and Weidner 2018). Since 

deterioration models are dependent on large amounts of data, automation of models would be 

required to match that scale. This level of modeling at scale for a population of bridges has not 

occurred yet.  

Nondestructive Evaluation  

 Nondestructive Evaluation (NDE) can be defined as the use of measurements taken using 

removable transducers and instrumentation to assess structural integrity (Cawley 2018). Based on 
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the different types of inspections originating from the American Association of State Highway and 

Transportation Officials (AASHTO) bridge inspection manual, one of the five basic bridge 

inspection types is the special inspection (AASHTO 2019). This inspection is performed to 

monitor the changing conditions or deficiencies of a bridge once it reaches poor condition rating.  

NDE is used for reinforced concrete deck deterioration evaluation. With three types of 

deterioration possible, corrosion, concrete degradation, and delamination, different NDE 

equipment types can be used for detection (Gucunski and Nazarian 2010; Hooks and Weidner 

2016). Some example NDE types with its description and detection details are listed below.  

1. Half Cell Corrosion Potential Measurement (HCC) 

a. Description: Detects and quantifies active steel corrosion and measures electric 

potential between reinforcement and reference electrode w/concrete surface. Not 

quantitative. 

b. Detection: Regions with a more negative potential indicate prob of corrosion. 

Values are influenced by concrete cover and corrosion activity. Other factors 

include moisture, temperature, ion concentrations 

2. Electrical Resistivity Measurement (ER) 

a. Description: Evaluates conditions for a corrosive environment 

b. Detection: The higher the electrical resistivity of concrete, the lower the corrosion 

current passing between the anodic and cathodic areas of RS. Water in concrete is 

necessary. Damaged or cracked areas increase porosity leading to preferred paths 

for the fluid and ion flow. Resistivity of less than 5 kohm*cm supports rapid steel 

corrosion; however, concrete has a high resistance to the current decreasing the 

corruption rate 

3. Ground Penetrating Radar (GPR) 

a. Description: Provides overall assessment of possible concrete degradation; 

evaluates conditions for a corrosive environment.  

b. Detection: Amplitude will be high when deck is in good condition and weak when 

delamination and corrosion are present. Moist concrete high in free chloride ions 

affect GPR signal. 

4. Ultrasonic Surface Waves  
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a. Description: Concrete degradation; provides information about concrete modulus 

degradation.  

b. Detection: Uses measurement of velocity of surface waves. Velocity is wavelength 

dependent; In bridge decks velocity is constant for a limited range of wavelengths. 

Variation in modulus does not necessarily mean deterioration (present during 

construction) needs to be periodically measured to identify deterioration. 

5. Impact Echo (IE) 

a. Description: Detects and characterizes different stages of delamination. Most 

commonly used for bottom of the deck and delamination. 

b. Detection: It can detect and assess delamination at various deterioration stages, 

from initial to progressed and ready to turn into spalls (Gucunski and Nazarian 

2010). 

6. Linear Polarization Resistance (LPR)  

a. Description: Measures corrosion rate instantaneously and only requires damage to 

the concrete cover in area of interest to produce an electrical connection with 

reinforcing steel. 

b. Detection: The relationship between electrochemical potential and electrica lly 

charged electrodes generated by the current estimate corrosion rate. 

7. Dye Penetrant Testing  

a. Description: Used for examination of metallic materials, nonporous, and both 

ferrous and nonferrous. Does not require electricity, black lights, or water to 

perform the test. 

b. Detection: Detects discontinuities, open to the surfaces, such as cracks, laps, 

laminations, seams, and cold shuts through leaks or gaps. 

8. Ultrasonic Testing (UT)  

a. Description: Transmits high-frequency sound energy through material in the form 

of waves.  

b. Detection: Locates and measures cracks or discontinuities in steel. In the 

identification of a discontinuity, a portion of the energy is reflected back and 

transformed into an electric signal, displayed on the equipment screen (Hooks and 

Weidner 2016). 
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Each of the NDE technologies mentioned have its own detection area with some complimenting 

others during the evaluation phase. For example, areas detected by the Ground Penetrating Radar 

as highly deteriorated are also shown as delaminated in the Impact Echo. Learning the correlation 

between the different NDE types can reduce the cost of inspection to arrive at a faster rehabilita t ion 

decision. 

Structural Testing and Structural Health Monitoring 

Structural testing and structural health monitoring (SHM) both aim to assess the integrity of a 

structure non-destructively. Structural testing gives information about a structure at a point in time. 

An example would be a load test of a bridge to determine lateral load distribution properties. SHM 

involves attached transducers over a period of time that enables frequent measurements during 

operation of the structure. Essentially, SHM is a continuous form of structural testing. The signals 

obtained are often interpreted by comparing them with previous measurements using a process 

commonly called baseline subtraction. Signal processing and anomaly detection lends itself to 

automation and machine learning applications (Cawley, 2018). 

 

Load testing is the most common form of structural testing. The performance of structural elements 

is generally determined by placing strain or deflection-transducer gages at critical locations along 

the bridge. The bridge is then incrementally loaded to induce maximum effects. The collected data 

can then be analyzed and used to establish the structural integrity and condition of each component 

as well as the load distribution. Bridge load testing will allow a satisfactory overall strength 

evaluation of short span bridges under assessment but would pose a challenge for long span 

bridges. The information provided will greatly increase the possibility of selective rehabilitat ion, 

rather than the current practice of replacing the entire structure (Moussa et al. 1993). 

 

Monitoring of large structures began with attempts to detect local anomaly from a small number 

of measurements, but is now often referred to as Structural Identification– developing a numerica l 

model of a dynamic system based on its measured response, with emphasis on assessment of the 

health and performance of the structure, as well as decision making regarding its maintenance 

and/or rehabilitation. This is applied to large structures such as bridges and is unlikely to be 

sensitive enough to detect localized anomaly reliably, unless it is extremely severe (Cawley 2018). 
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This technology is gradually gaining strides in the United States though at a slow rate, but there 

has been an increase in adoption in Asia (China, Japan, Korea) and some part of Europe. In 

Switzerland, the Z-24 bridge before complete demolition, was extensively instrumented and tested 

with the purpose of providing a feasibility benchmark for vibration-based SHM. A long term 

monitoring program was carried out, from November 11, 1997, until September 10, 1998, to 

quantify the operational and environmental variability present on the bridge and to detect damage 

(pier settlement, foundation tilt, spalling of concrete, landslide at abutment, concrete hinge failure, 

failure of anchor heads, and rupture of tendons) artificially introduced in the last month of 

operation. Every hour, eight accelerometers captured the vibrations of the bridge as sequences of 

65,536 samples (sampling frequency of 100 Hz), and other sensors measured environmenta l 

parameters, such as temperature at several locations (Figueiredo et al. 2019; Peeters and De Roeck 

2001).  

Synthesized SHM Data  

SHM systems are either perceived as, or actually are costly, and usually reserved large signature 

structures where the potential return on investment is easily understood. As the cost of these 

systems drops, there will be broader implementation. Unfortunately, until that happens, it is 

difficult to explore how to integrate SHM data into bridge management. One solution would be to 

use finite element models to generate synthesized SHM data.  

This practice is common in papers focused on damage detection. Damage detection efforts 

typically have a goal to validate an algorithm or sensing approach by creating a structural model, 

generating output (synthesized or simulated SHM data), and then “damaging the structure” by 

changing the model. New output is generated and compared, and the damage is located. Figueiredo 

used a combination of finite element models and machine learning to detect damage, making use 

of simulated data (Figueiredo et al. 2019). Bridge WIM data was used to develop a loading model 

which was applied to finite element models to generate simulated SHM data to calculate site-

specific dynamic application factors in Alabama (Zhao, Uddin, and Asce 2014). Zhang used partial 

least square regression on a bridge finite element model to extract virtual inclinometer readings to 

validate an approach to calculation of deflection for damage detection (Zhang, Sun, and Sun 2016).  

No references were identified where simulated data was used for the purposes of informing bridge 

management or deterioration modeling of bridges. 
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Non-contact Image Approaches  

Contrary to structural testing and health monitoring approaches, image approaches provide full 

field information. Often a full strain field can be detected and measured providing far more 

information than a traditional strain gage (Webb, Vardanega, and Middleton 2015). The Long-

Term Bridge Performance program developed the RABIT Autonomous Bridge Deck Inspection 

tool which combines numerous forms of Nondestructive evaluation with high resolution imaging 

which acts as the common contextual thread – along with position information – for all 

nondestructive techniques.   

Recently, numerous researchers have been using unmanned aerial systems (UAS) for bridge 

inspection and image assessment. The first full application occurred in Minnesota in 2015 

(Lovelace 2015). More recently, researchers have been working towards photogrammetr ic 

measurement from aerial systems. Ellenberg attempted deflection measurements for the first time 

using an Xbox Kinect sensor (Ellenberg et al. 2014). Reagan used a two camera, UAS mounted 

imaging system to conduct digital image correlation measurements of an abutment wall joint 

(Reagan, Sabato, and Niezrecki 2017). Harris investigated the use of numerous image-based 

methods on three bridges in Michigan, including multispectral, thermal, LiDAR, and 

photogrammetry (Harris, Brooks, and Ahlborn 2016).   

Efforts to effectively integrate these approaches into bridge management have not been published 

to date.  

Deterioration Modeling  

The Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA) marked the start of a new 

era in transportation in the United States. ISTEA required transportation agencies to take a more 

proactive approach to planning and asset management. This included a requirement for 

management systems for pavement, bridges, safety, congestion, public transportation, and 

intermodal systems. For horizontal transportation assets (i.e., bridges and pavement), deterioration 

modeling was an essential tool (Yanev and Chen 1993). Since ISTEA, Bridge Management 

Systems (BMS) have been utilized to inform decision-making regarding bridge projects such as 

maintenance, rehabilitation, and replacement (MR&R) under financial limitations (Agrawal, 

Kawaguchi, and Chen 2010). The goal of a BMS is to optimize the performance of the bridge 
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networks by implementing the planned MR&R events to the selected bridges. For optimizing the 

decision of selecting bridge projects, the reliability of the prediction of future condition state of 

bridges is required. The condition rating of bridges is the most vital variable to predict the future 

condition of bridges (Yi Jiang 2010). To estimate a future condition rating, a deterioration model 

is utilized. There are numerous approaches to develop deterioration models which all are 

defensible but provide different results. Here we consider deterministic, probabilistic, mechanis t ic, 

artificial intelligence, and reliability-based approaches to deterioration modeling. In some cases, 

more than one approach may be included in a single application. An example is a mechanis t ic 

approach that generates probability distributions of a variable defined by mechanis t ic 

relationships. The grouping herein is based on the primary method for predicting a future state 

(i.e., mechanistic for the example above).  

Deterministic Deterioration Modeling 

Deterministic approaches are the simplest method to obtain bridge condition predictions. In 

deterministic models, the most possible condition rating can be estimated as a function of age and 

other explanatory variables by a regression process. The same outcome can be obtained if the input 

variables are the same in deterministic models. Thus, the probabilistic nature of models is not 

considered (Kotze, Ngo, and Seskis 2015). When an analysis of each bridge does not make an 

analysis of bridge networks complicated or distorted, a statistical method is suitable to develop an 

equation of the rate of change in bridge conditions (Hyman and Hughes 1983). Deterioration rates 

can be developed by a statistical and regression analysis of data in deterministic models (Agrawal 

and Kawaguchi 2009).  In deterministic models the relationship between explanatory variables 

influencing bridge deterioration and the condition rating are illustrated by a statistical and 

regression analysis of data.  The average duration at each of condition rating states, the average of 

ratings at different age, and the minimum of ratings of an element are the common determinis t ic 

methods to estimate deterioration rates. (Agrawal and Kawaguchi 2009). Yanev and Chen 

estimated the future condition state of bridge deck in the New York City metropolitan area by 

linear regression analysis (Yanev and Chen 1993). The rate of change for each condition rating 

state was obtained and averaged. Also, the average of bridge condition ratings for all bridge ages 

was calculated. The non-linear regression method was applied to formulate a third order 

polynomial model to describe the relationship between the condition rating of bridge components 
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and the bridge age in Indiana through statistical and regression analysis by Jiang and Sinha (Y 

Jiang and Sinha 1989). The basic assumption of deterministic approaches is that the relationship 

between the future condition of bridges over time is certain. The models neglect the uncertainty 

and randomness of deterioration processes (Ranjith et al. 2013). Deterministic models have some 

limitations (Agrawal and Kawaguchi 2009): 

• The uncertainty due to intrinsic probabilistic nature of infrastructure deterioration and 

unobserved explanatory variables is not considered. 

• The average condition of a group of bridges without consideration of the current and 

historical condition of each bridge is calculated. 

• Bridge deterioration conditions are predicted by “no maintenance” approach because it is 

difficult to calculate the impact of MR&R activities. 

• The influence of interaction between components is not considered. 

• New deterioration rates should be calculated when new data are obtained.  

 

Probabilistic 

The condition states of bridge components/elements or the duration at each condition state are 

treated as random variables in probabilistic or stochastic models. Probability distributions are used 

to develop deterioration models (Kotze, Ngo, and Seskis 2015). Probabilistic deterioration models 

can be grouped into two categories: state-based and time-based models. In stated-based models, 

such as Markov chain, the probability of transition of a facility from one condition state to another 

in a discrete time is estimated, conditional on a set of explanatory variables. In time-based models, 

such as Weibull distribution function, the probability of the duration that a facility stays at a 

condition state is estimated, conditional on the same set of explanatory variables (Mauch and 

Madanat 2002). 
 

Markov Chain (State-based) 

A Markov process named after Andrey Markov, a Russian mathematician is a stochastic process 

that satisfies the Markov property, “memoryless”. A prediction for the future of the process only 

depends on the present state of a system. Markov used random walk and gambler’s ruin as the 
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examples of Markovian processes in his first paper published in 1906. These examples are the 

Brownian motion process and the Poisson process which are the main processes in the theory of 

stochastic processes. A Markov chain is one of Markov process that has a discrete state space 

(Leonard 2011). Markov chains are applied as statistical models to real world.  Markovian 

deterioration models have been utilized in modeling the deterioration of infrastructure facilit ies 

such as pavement (A. Butt et al. 1987; Carnahan et al. 1987; DeLisle, Sullo, and Grivas 2003; 

Golabi, Kulkarni, and Way 1982), storm water pipe (Micevski, Kuczera, and Coombes 2002), 

sewer pipe (Baik, Jeong, and Abraham 2006), bridge components (Bu et al. 2014; Hatami and 

Morcous 2015; Yi Jiang 2010; Yi Jiang, Saito, and Sinha 1988), bridge elements (Ranjith et al. 

2013; J. O. Sobanjo 2011), and culverts and traffic signs (Thompson et al. 2012). Markovian 

models are based on the following assumptions (Ranjith et al. 2013).  

● The deterioration process is homogenous with constant transition probability in an 

inspection period.  

● A condition state can transit to multi-state. For example, the condition rating can 

change to any lower condition rating in consecutive inspection period. 

● Transition probability matrices are based on stationary transition probabilities. 

● The deterioration process is assumed a continuous process within a discrete time 

interval and constant bridge population. 

● The future conditions of bridges are relied only by the present conditions. 
 
 
A Markov chain is a chain of random variables 𝑋𝑋𝑘𝑘, 𝑋𝑋𝑘𝑘−1, 𝑋𝑋𝑘𝑘−2, … which are finite with the 

Markov property. The probability of transition from the current state to the next state is 

 

𝑃𝑃𝑃𝑃{𝑋𝑋𝑘𝑘+1 = 𝑥𝑥𝑘𝑘+1|𝑋𝑋𝑘𝑘 = 𝑥𝑥𝑘𝑘 ,⋯ ,𝑋𝑋0 = 𝑥𝑥0} = 𝑃𝑃𝑃𝑃{𝑋𝑋𝑘𝑘+1 = 𝑥𝑥𝑘𝑘+1|𝑋𝑋𝑘𝑘 = 𝑥𝑥𝑘𝑘} Eq. 1 

 

If the process is time-independent, the Markov chain can be described as a matrix called the 

transition probability matrix (TPM). The Markov chain as applied to bridge performance 

prediction models is used by defining discrete condition ratings and obtaining the probability of 

transition from one condition rating to another in discrete time. This method is commonly used 
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when prior maintenance records are not available in a BMS database (Yi Jiang, Saito, and Sinha 

1988; Morcous and Lounis 2007).  

Weibull Distribution (Time-based) 

Weibull distribution is commonly used in reliability and lifetime distribution analysis due to its 

flexibility. It can take on the features of other form of distributions depending on the values of the 

parameters, shape (𝛽𝛽) and scale (𝛼𝛼) parameters. The probability density function is  

𝑓𝑓(𝑥𝑥) =
𝛽𝛽
𝛼𝛼
�
𝑥𝑥
𝛼𝛼
�
𝛽𝛽−1

𝑒𝑒−(𝑥𝑥 𝛼𝛼⁄ )𝛽𝛽  𝑓𝑓𝑓𝑓𝑃𝑃 𝑥𝑥 ≥ 0. Eq. 2 

 

Weibull survival models have been utilized in modeling the deterioration of infrastructure facilit ies 

such as pipe culverts, roadway lighting fixtures, pavement markings (Thompson et al. 2012), 

reinforced concrete bridge decks (Mishalani and Madanat 2002), bridge elements (Agrawal and 

Kawaguchi 2009), bridge decks (J. O. Sobanjo 2011), and bridge components (J. Sobanjo, Mtenga, 

and Rambo-Roddenberry 2010). Weibull models capture the effects of age and uncertainty more 

than Markov chain models.  

 

The Weibull survival function is 

 

𝑦𝑦𝑔𝑔 = 𝑒𝑒𝑥𝑥𝑒𝑒�−1.0 × (𝑔𝑔 𝛼𝛼⁄ )𝛽𝛽� Eq. 3 

 

where 𝑦𝑦𝑔𝑔 is survival probability at age 𝑔𝑔; 𝛽𝛽 is the shaping parameter, which determines the init ia l 

slowing effect on deterioration; and 𝛼𝛼 is the scaling parameter. 

 

𝛼𝛼 =
𝑇𝑇

(𝑙𝑙𝑙𝑙2)1/𝛽𝛽  Eq. 4 

 

where T is the median life expectancy from the Markov model. When 𝛽𝛽 is less than 1, the failure 

rate (also known as a hazard rate) is decreasing. When 𝛽𝛽 is equal to 1, the failure rate is constant. 

When 𝛽𝛽 is greater than 1, the failure rate is increasing. Increasing the failure rate indicates that a 
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component/element has been at a condition rating for a long time, so the component/element will 

transit to a lower condition rating in the next inspection period (Agrawal and Kawaguchi 2009). 

The shape parameter (𝛽𝛽) of 1 is equivalent to a Markov deterioration model, which the transit ion 

probability does not change with time. A bigger shape parameter means that the init ia l 

deterioration rate is slow, and then the deterioration rate increases faster as the age of a facility 

increases. Figure 1 shows the effect of the shape parameter on deterioration. The uncertainty of a 

failure rate decreases as the shape parameter increases (Thompson et al. 2012). 

 

 
 

Figure 1. Weibull probability density function with different shape parameters 

 
The average duration that a component/element stays at a condition rating, 𝐸𝐸(𝑇𝑇𝑖𝑖) is 
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𝐸𝐸(𝑇𝑇𝑖𝑖) = 𝛼𝛼𝑖𝑖𝛤𝛤 �1 +
1
𝛽𝛽𝑖𝑖
� Eq. 5 

 

where Γ is the Gamma function defined as Γ(𝑙𝑙) = (𝑙𝑙 − 1)!; 𝛼𝛼𝑖𝑖 and 𝛽𝛽𝑖𝑖 are scale and shape 

parameters at condition rating i respectively. The average durations for different condition ratings 

are calculated cumulatively (Agrawal and Kawaguchi 2009). 

Some or all of the components or elements in a given condition rating can transit to the next lower 

condition rating within a discrete interval. The duration or time at which p% of the 

components/elements will transit to lower condition ratings,  𝑡𝑡𝑝𝑝 is   

 

𝑡𝑡𝑝𝑝 = 𝛼𝛼[−𝑙𝑙𝑙𝑙(1− 𝑒𝑒)]1/𝛽𝛽 Eq. 6 

 

where 𝛼𝛼 and 𝛽𝛽 are the scale and shape parameters (Agrawal and Kawaguchi 2009). 

 

Mechanistic Deterioration Modeling   

The deterministic and probabilistic approaches are based on observation of bridge condition states 

using visual inspection, an inherently subjective process. This method relies on modeling the 

physical processes of bridge deterioration, focusing on corrosion of rebar in reinforced concrete. 

The passive film (oxide film) is formed the surface of the reinforcement during concrete hydration 

and protects the reinforcement from corrosion. The film is destroyed by chloride ions that penetrate 

into concrete from the surface of the concrete. Corrosion-induced models were applied to predict 

reinforced concrete bridge deck conditions. Morcous and Lounis applied Fick’s second law to 

estimate the corrosion initiation time and used the Monte Carlos simulation technique to generate 

the probability density function and cumulative distribution function of the corrosion initia t ion 

time (Morcous and Lounis 2007).  

𝐶𝐶(𝑥𝑥, 𝑡𝑡) = 𝐶𝐶𝑠𝑠 �1− 𝑒𝑒𝑃𝑃𝑓𝑓�
𝑥𝑥

2√𝐷𝐷𝑡𝑡
�� Eq. 7 
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where C(x,t) is the chloride concentration at depth (x) and time (t) 𝐶𝐶𝑠𝑠 is surface chloride 

concentration, D is diffusion coefficient of chlorides, and erf is error function. Roelfstra divided 

the deterioration of reinforced concrete due to corrosion into two phases, the initiation phase which 

chlorides penetrates in the reinforcement from the surface and the propagation phase which the 

reinforcement corrodes actively (Roelfstra et al. 2004). The deterioration curve generated from the 

proposed mechanistic model was compared with the curve developed by using Markov chain 

method. The difference between two curves because the corrosion initiation time was not 

considered in the Markov chain model. Hu and Nickless divided the corrosion process into three 

phases, the time of corrosion initiation at the rebar surface, the time to cracking initiation at the 

interface between concrete and rebar, the time for cracking to propagate to the concrete surface 

and selected a numerical model for each phase (Hu, Haider, and Jansson 2013; Nickless and 

Atadero 2017). The Monte Carlos simulation technique was implemented to estimate cumula t ive 

deterioration of an entire deck. The damage over the deck was mapped to condition rating scale 

described by the NBI. 

 

Artificial Intelligence Models for Deterioration Modeling 

Artificial intelligence (AI) techniques have been used to model the deterioration of infrastruc ture 

facilities such as neural network for storm water pipes (D. H. Tran, Perera, and Ng 2009), artific ia l 

neural network (ANN) for water mains, ensemble of neural network (ENN) for bridge elements 

and components (Bu et al. 2014; Lee et al. 2014; Li and Burgueño 2010), backward prediction 

models (BPM) for steel bridge structures and bridge elements (Lee et al. 2008; Pandey and Barai 

1995), multilayer perceptron (MLP) for abutment walls (Li and Burgueño 2010), and combinat ion 

of ANN and CBR for the Dickson Bridge (Morcous and Lounis 2005).  



 

Development of a Robust Framework for Assessing Bridge Performance using a Multiple Model 
Approach 
 

23 

 
Figure 2. Schematic diagram of ENN process (Winn and Burgueño 2013) 

 

An ANN is a computational model derived from the study of nerve cells or neurons in physiology. 

An artificial neuron contains receiving sites, receiving connections, a processing element and 

transmitting connections. Neural network models are stipulated by the net topology, node features, 

and training or learning processes. A multilayer perceptron has an input layer, an output layer, and 

a number of hidden layers (Pandey and Barai 1995). An ANN can generate accurate response even 

though there is noise or uncertainty in training data and evaluate the results of complex matters 

with a higher order of nonlinear behavior. An ANN learns to map the accurate input-output by an 

iterative procedure. In the learning process, the weighted connections between neurons are 

modified, and the error of the model reduced to produce more accurate results. If data are trained 

only to focus to reduce the errors, the ANN model might not generalize the connection between 

inputs and outputs. In the process, neurons receive inputs from the previous layer, computes an 

output through a pre-defined function, and sends the output to neurons on the next layer. An MLP 

method has one input layer, one output layer, and one or more hidden layers. Figure 2 describes 

the ENN process. An ENN consists of many individual MLP models and predict the outcomes by 

combining these models. The net input and output are formulated in Eq. 8 and Eq. 9 (Winn and 

Burgueño 2013).  
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𝑙𝑙𝑒𝑒𝑡𝑡𝑘𝑘 = �𝑤𝑤𝑘𝑘𝑘𝑘𝑥𝑥𝑘𝑘

𝑛𝑛

𝑘𝑘=1

 

 

Eq. 8 

𝑓𝑓𝑘𝑘 = 𝜑𝜑(𝑙𝑙𝑒𝑒𝑡𝑡𝑘𝑘) Eq. 9 

  

where 𝑙𝑙𝑒𝑒𝑡𝑡𝑘𝑘 is the net input; 𝑓𝑓𝑘𝑘  is the output; n refers to the input for which the weight refers, and 

k refers to the neuron under examination; the input 𝑥𝑥𝑛𝑛 is the output of neurons from the previous 

layer; 𝑤𝑤𝑘𝑘𝑛𝑛 is respective weight of 𝑥𝑥𝑛𝑛 (Winn and Burgueño 2013). Lee used an ANN-based BPM 

to generate unavailable historical bridge condition ratings for using limited bridge inspection data. 

Figure 3illustrates the process of BPM (Lee et al. 2014). The missing information such as condition 

ratings can be estimated by using the correlation between explanatory variables and condition 

states. The correlation can be obtained from the existing historical data by using ANN process 

(Huang 2010). 

 
 

Figure 3. Sketch of the BPM process (Huang 2010) 

 



 

Development of a Robust Framework for Assessing Bridge Performance using a Multiple Model 
Approach 
 

25 

Reliability-based Deterioration Models 

Bridge design is reliability-based procedure, but most approaches to predict bridge condition do 

not consider the reliability of performances of elements, components, or a system of a bridge. The 

safety of bridges can be measured by using the reliability index, 𝛽𝛽. A bridge is in excellent 

condition where 𝛽𝛽 ≥ 9.0, in very good condition where 9.0 > 𝛽𝛽 ≥ 8.0, in good condition where 

8.0 > 𝛽𝛽 ≥ 6.0, in fair condition where 6.0 > 𝛽𝛽 ≥ 4.6, and in unacceptable condition where 𝛽𝛽 <

4.6 (B. D. M. Frangopol, Kong, and Gharaibeh 2003). The performance function, g(t) for a given 

failure mode, the probability of failure of a system with several failure modes, Psys(t), and the 

reliability index, 𝛽𝛽(𝑡𝑡) associated with the failure state of the system are  

 

𝑔𝑔(𝑡𝑡) = 𝑃𝑃(𝑡𝑡) −𝑞𝑞(𝑡𝑡) 

 

Eq. 10 

𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) = 𝑃𝑃[𝑎𝑎𝑙𝑙𝑦𝑦 𝑔𝑔𝑖𝑖(𝑡𝑡) < 0],𝑓𝑓𝑓𝑓𝑃𝑃 𝑎𝑎𝑙𝑙𝑙𝑙 𝑡𝑡 > 0 

 

Eq. 11 

𝛽𝛽(𝑡𝑡) = 𝛷𝛷−1 �1− 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)� Eq. 12 

where 𝑃𝑃(𝑡𝑡) and 𝑞𝑞(𝑡𝑡) are the instantaneous resistance and load effect at the time instant t, 

respectively, 𝑔𝑔𝑖𝑖 (𝑡𝑡)is the performance function associated with the ith system failure mode, and Φ 

is the standard normal cumulative distribution function (Barone and Frangopol 2014). There are 

three methods to approximate the failure probability, the mean value first-order second-moment 

method, the first order reliability method, and the Monte Carlos simulation method (Akgül and 

Frangopol 2004). The time-dependent bi-linear and nonlinear reliability index models, 𝛽𝛽(𝑡𝑡) 

without maintenance are as follows: 

 

𝛽𝛽(𝑡𝑡) = �
𝛽𝛽0, 𝑓𝑓𝑓𝑓𝑃𝑃 0≤ 𝑡𝑡 ≤ 𝑡𝑡𝐼𝐼

𝛽𝛽0 − 𝛼𝛼1(𝑡𝑡− 𝑡𝑡𝐼𝐼), 𝑓𝑓𝑓𝑓𝑃𝑃 𝑡𝑡 > 𝑡𝑡𝐼𝐼
 Eq. 13 

 

𝛽𝛽(𝑡𝑡) = �
𝛽𝛽0, 𝑓𝑓𝑓𝑓𝑃𝑃 0≤ 𝑡𝑡 ≤ 𝑡𝑡𝐼𝐼  ,

𝛽𝛽0 − 𝛼𝛼2(𝑡𝑡 − 𝑡𝑡𝐼𝐼)− 𝛼𝛼3(𝑡𝑡 − 𝑡𝑡𝐼𝐼)𝑝𝑝 ,𝑓𝑓𝑓𝑓𝑃𝑃 𝑡𝑡 > 𝑡𝑡𝐼𝐼 ,
 

Eq. 14 
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where 𝛼𝛼1,𝛼𝛼2,𝛼𝛼3 are reliability index deterioration rates, 𝑡𝑡𝐼𝐼  is the deterioration initiation time, and 

p is a parameter related to the nonlinear effect in terms of a power law in time. An increase in p 

results in an increase in the rate of reliability index deterioration. The time-dependent condition 

index model, 𝐶𝐶(𝑡𝑡) at time 𝑡𝑡 ≥ 0 is following:  

 

𝐶𝐶(𝑡𝑡) = �
𝐶𝐶0, 𝑓𝑓𝑓𝑓𝑃𝑃 0≤ 𝑡𝑡 ≤ 𝑡𝑡𝐼𝐼𝐼𝐼

𝐶𝐶0 − 𝛼𝛼𝐼𝐼 (𝑡𝑡 − 𝑡𝑡𝐼𝐼𝐼𝐼 ),𝑓𝑓𝑓𝑓𝑃𝑃 𝑡𝑡 > 𝑡𝑡𝐼𝐼𝐼𝐼
 Eq. 15 

 

𝐶𝐶(𝑡𝑡) = �
𝐶𝐶0, 𝑓𝑓𝑓𝑓𝑃𝑃 0≤ 𝑡𝑡 ≤ 𝑡𝑡𝐼𝐼𝐼𝐼

𝐶𝐶0 − 𝛼𝛼𝐼𝐼 (𝑡𝑡 − 𝑡𝑡𝐼𝐼𝐼𝐼 ),𝑓𝑓𝑓𝑓𝑃𝑃 𝑡𝑡 > 𝑡𝑡𝐼𝐼𝐼𝐼
 Eq. 16 

 

where 𝐶𝐶0 is the initial condition,  𝛼𝛼𝐼𝐼  is the condition deterioration rate, 𝑡𝑡𝐼𝐼𝐼𝐼  is the condition index 

which is considered constant for a period equal to the time of damage initiation, and 𝐶𝐶(𝑡𝑡) is the 

condition at time t which is assumed to decrease with time. The reliability-based model with 

maintenance is as follows: 

𝛽𝛽𝑘𝑘(𝑡𝑡) = 𝛽𝛽𝑘𝑘,0(𝑡𝑡) + �∆𝛽𝛽𝑘𝑘,𝑖𝑖(𝑡𝑡)

𝑛𝑛𝑗𝑗

𝑖𝑖=1

, 
Eq. 17 

 

where 𝑙𝑙𝑘𝑘 is the number of maintenance actions associated with reliability index profile j, 𝛽𝛽𝑘𝑘 ,0(𝑡𝑡) is 

the reliability index profile without maintenance, and ∆𝛽𝛽𝑘𝑘,𝑖𝑖(𝑡𝑡)  is the additional reliability index 

profile associated with the ith maintenance action. The reliability index profile of the system is 

obtained by combining the reliability index profiles of all individual elements and limit states 

considered (D. M. Frangopol, Kallen, and Noortwijk 2004). 

 

Multiple Model Approaches  

There is a documented non-uniqueness issue with any given model solution to an experimenta l 

problem because the model is more detailed than the experimental data (Janter and Sas 1990). 

Further, any single model solution is prone to errors in modeling assumptions and measurement 

issues (Smith and Saitta 2008). While this is especially problematic in the bridge realm when it 
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comes to model-experiment correlation, the same issues arise with deterioration modeling and any 

prediction of future performance.  

Multiple model approaches address these issues by providing multiple feasible solutions to a given 

problem (Smith and Saitta 2008). Beck presented a probabilistic approach to identifying model 

solutions using a Markov Chain Monte Carlo sampling approach to explore the model parameter 

space (Beck and Au 2002). Though not explicitly designed to produce multiple models, the 

MCMC sampling generates a new model each iteration. Smith specifically produces models that 

exceed a threshold value based on the perceived error sources in the measurement and model 

(Smith and Saitta 2008). Zarate and Caicedo developed alternative solutions, or local minima, and 

allowed the selection between those solutions to be done through heuristics (Zárate and Caicedo 

2008). Dubbs employed a MCMC approach but retained all models and weighed them based on 

their ability to predict measured responses (Dubbs and Moon 2015). All of these applications adopt 

a single model form and vary parameters to create differing models. Reversible Jump MCMC 

(RJMCMC) allows for transition between model forms during parameter sampling, given a 

consistent set of parameters (Weidner 2012).  

In the deterioration modeling space, none of the approaches described above were applied. 

However, Thomas and Sobanjo implement a semi-Markov approach which utilizes both a Markov 

approach (state-based) and a Weibull approach (time-based) during different points in the 

deterioration curve  (Thomas and Sobanjo 2016).  

Frameworks for Integrating Disparate Data Sources 

In order to integrate novel sources of bridge data into bridge management through deterioration 

modeling and future condition predicting, a framework which establishes rules for integration is 

required. We considered two existing frameworks. The Smart City framework integrates 

distributed, heterogeneous sensing into city services. In our application, this would not explicit ly 

establish a physical, spatial or temporal relationship between data sources. The second approach 

as the Bridge Information Modeling framework which would explicitly establish a relationship 

between data streams.  
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Smart Cities 

The phrase “smart city” has been used interchangeably to describe a city that is digital through its 

managerial services and infrastructure monitoring. The main goal of a “smart” city is to create a 

strategy focused on mitigating problems generated by urbanization and population growth. The 

problems faced by cities not only include social and organizational such as diverse stakeholders 

and political complexity, but also include technical, physical and material problems. These 

technical, physical and material problems include resource scarcity, health concerns, air pollut ion, 

traffic congestion, and aging infrastructure (Chourabi et al. 2012). 

The Institute of Electrical and Electronics Engineers (IEEE) as well as the European smart cities 

classification standard define a smart city to include economy, people, living, governance, 

environment, and mobility (Zubizarreta, Seravalli, and Arrizabalaga 2016). The driving force of 

these pillars are a city’s citizens. A flourishing economy produced by includes productivity, 

entrepreneurship, market, and labor. Through communication between its citizens, changes that 

benefit the city can be made that affect the economy, government, and environment positive ly. 

The new, post-industrialized city is then considered a linked system with an effective combinat ion 

of digital telecommunication networks, embedded intelligence, and software (Chourabi et al. 

2012). 

Two layers that have commonly been present in cities are the services and the infrastructure layer. 

An additional layer critical to the classification of a smart city is the data layer or digitaliza t ion 

(Iglus 2017). This new layer works hand in hand with the other layers by complementing and 

completing them with data that is useful to serve society. This data can be acquired through the 

use of sensors, smart phones, and other means that utilize the internet. The linking of the three 

layers produce a phenomenon known as the Internet of Things (IoT) (Iglus 2017). Through the 

utilization of the IoT, citizen involvement in the government and services can be improved through 

the analyzing of user data. 

An evaluation of a handful of cities around the world representative of smart cities was performed 

by Anthopoulos with a comparison of each for further understanding of what makes a city “smart” 

(Anthopoulos 2017). Ten cities of varying population sizes including Seoul, South Korea, and 

Washington, D.C., USA were part of the study. The chosen city indicators were those with an open 

data website, smart services, and smart infrastructure. Interviews with officials in each city were 

also performed to understand the purpose of the active projects. After the evaluation and 
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comparison of the cities, the four objectives presented in each cities’ projects were scale, 

definition, sustainability, and the fringes. Scale summarized project scope and viewed the scope 

beyond urban innovation or climate change initiatives. Definition redefined the commonly used 

definitions of a smart city tailored to each city. Sustainability aimed to identify sustainab le, 

environmental efforts. Lastly, the fringes objective summarized future improvements i.e. 

innovation growth (Anthopoulos 2017).  

 

Evidence towards the development of the smart city of Seoul, South Korea began in the year 2014. 

The catalyst is argued to be one of two actions, the partnership between the local government and 

the local Information and Communication Technologies (ICT) industry or the implementation of 

green projects, electronic government service, and the “Owl Bus” bus service driven by data 

analytics (Anthopoulos 2017). An outline of Anthopoulos objectives specific for Seoul is 

condensed below. 

• Scale – Seoul’s steady development emphasized the importance of long-term planning as 

smart technology embedding in a city can extend to a decade. On the other hand, fast 

improvements can be implemented through mobility such as lanes specifically for 

pedestrian or buses. 

• Definition – Technology-based innovations and ecological friendly environments were the 

most prevalent descriptors from the smart cities definitions. Shortcomings from both 

aspects were the slow implementation of digitalization and the limited open space due to 

traffic and old buildings. 

• Sustainability – The adoption of technology was evident throughout the city’s residents as 

well as the shifting to ecofriendly choices such as recycling and walking. However, new 

construction was a preference instead of reusing existing buildings, negatively affecting 

green urban planning. 

• Fringes – Although the smart technology has been implemented in Seoul, poverty and 

technology is still ubiquitous. As competition between other cities is arising, the 

technological divide should decline.  

While Seoul represents the common smart city case in other cities studies such as Hong Kong, 

other cities follow a Washington, DC. path. Though there is a divide between social classes, there 

are mainly middle class and upper class. Smart services, open space, and smart mobility options 
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are prevailing along with slow local government involvement.  In summary, cities that combine 

local government and ICT industry for improvements in infrastructure, services and mobility are 

in the path to improving the quality of life of its users known as a smart city. 

Bridge Information Modeling (BrIM) 

Bridge Information Modeling or BrIM has emerged after the widely used tool of Build ing 

Information Modeling (BIM). BrIM is a modeling approach to deliver quality design projects 

through the planning, construction, and lifespan of a bridge through the sharing of accurate 

information and documentation. During the planning phase, the range of stakeholders can access 

the project for easier access to changes. Throughout the course of construction, the pre-fabrication 

phase as well as real-time deliveries of materials can be monitored. After the completion of the 

project, the as-built physical representation of the bridge can be accessed by different levels of 

collaborators and integrate bridge finite element analysis, wireless monitoring, and sharable cloud 

data. This modeling application is a holistic digital representation of the complete characterist ics 

of bridges that encourages the sharing of information throughout the bridges’ life critical decisions 

(Chipman et al. 2016). 

The Federal Highway Administration explored the existing BrIM models available in the market 

(Chipman et al. 2016). Each of the applications were rated based on market interest, certifica t ion 

of application in widely used engineering software, testing tools and files availability, and 

import/export data options. The three BrIM applications reviewed were LandXML, OpenBrIM, 

and Industry Foundation Classes (IFC). To evaluate the ease of use of the applications two bridges 

were used as part of the case study. The following description of the bridges is taken directly from 

Chipman (Chipman et al. 2016).  
 
• The first bridge evaluated is Pennsylvania Turnpike - Ramp 1195N over SR 51. This bridge 

follows a horizontal alignment consisting of circular and straight sections at a constant 

vertical grade, with varying super-elevation and varying cross-section. It consists of steel 

framing, with reinforced concrete abutments, piers, and decking. 

• The second bridge evaluated is the Van White Memorial Overpass in Minneapolis, MN. This 

bridge follows a horizontal alignment consisting of circular and straight sections with a 

parabolic vertical curve, with varying super-elevation and constant cross section. It consists 
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of a reinforced concrete box girder, abutments, and piers. As this bridge is situated in an urban 

area, it consists of decorative railings, walkways, and lighting, and makes use of geometry 

consisting of curved surfaces that cannot be described by polygons alone but requires B-Spline 

surfaces and Constructive Solid Geometry (CSG). 

The first step to evaluate was the modeling process in the applications. The difficulty of use as 

well as the time taken to model the bridges were the main focus in the step. It is common for 

models to be more time-consuming in the last details, however the layout of the bridge components 

i.e. girders and deck took several days to model. Another finding was the more complex a bridge, 

the more tedious of a task. Large model files were also a disadvantage, foreshadowing an elongated 

processing time in the next steps. After modeling from scratch, it was found that some BrIM 

applications such as IFC and OpenBrIM had example bridge models, which facilitated the 

modeling of new bridges with similar characteristics.  

The second step was the importing of the application file into existing software such as Autodesk 

Revit. The importance factor in this step was the acceptance of the type of file created in the BrIM 

application of choice for easy import.  

IFC was the best overall as it is the most accepted by vendors software developers followed by 

LandXML and OpenBrIM, respectively. IFC’s open file format and vendor validation and 

certification influenced the results. It started by modeling building details during its design, 

construction, and maintenance phase (Chipman et al. 2016). However, it may be used for bridge 

modeling as well, according to the FHWA. The only limitation viewed in using IFC was lack of 

positioning physical elements relative to alignment curves (Chipman et al. 2016). The two example 

bridges modeled from the case study, a steel and a concrete box girder bridge, can be viewed in 

the IFC’s Building Smart Alliance website. A continuing effort of expanding the interoperability 

throughout software vendors and the transportation community is in process.  
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Data Management and Preparation 

 

This chapter presents issues surrounding the organization, management, and manipulation of 

bridge data in support of the development of a robust framework for bridge management. An 

ontology of bridge data is developed in order to map out and understand the opportunities for 

integrating different sources of information into bridge management practice. A tool was 

developed for organizing and querying the NBI data which ties together data at the bridge level 

across all years of data availability. Finally, a discussion of the treatment and importance of 

explanatory variables is provided.  

 

Development of an Ontology of Bridge Data 

An ontology is a conceptual mapping of the relationships between concepts in a specific domain. 

In order to facilitate inclusion of uncommon and novel data sources in bridge management, it is 

critical to understand what types of data exist, the characteristics of that data, and how it is related 

to other data. Based on a review of the literature, the following data sources were identified and 

discussed in Chapter 2: 

• National Bridge Inventory  

• National Bridge Element  

• Plans and Construction Documents 

• Maintenance Records  

• Finite Element Models  

• Nondestructive Testing 

• Structural Testing 

• Structural Health Monitoring 

• High Resolution Images  

• Crowdsourced Data 

 

Several critical characteristics of bridge data are proposed. These characteristics are as follows:  
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• Qualitative versus quantitative: Is the data based on a subjective opinion or a measurement 

of some kind?  

• Discrete versus continuous – temporal: Does the data describe the bridge at a single point 

in time, or is the data continuous over time?  

• Discrete versus continuous - spatial: Does the data describe large portions of the or the 

entire structure, or single points on the structure?  

• Static versus dynamic: Does the data vary with time, or does it describe a time invar iant 

characteristic? 

• Real versus synthetic: Is the data generated using a model or other synthetic approach, or 

is it measured/taken based on the real structure? 

 

The ontology is presented in a series of tables which map the sources to their key characterist ics 

and establish relationships between data sources.  Table 4 shows the categories of data versus the 

key characteristics listed above. Table 5 shows a mapping of the data sources identifying 

relationships between disparate sources. From the ontology it is readily apparent that the National 

Bridge Inventory data is critical to collecting other streams of data. It is the foundational layer of 

information on which all of the data sources in the ontology are built. 
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Table 4 - Bridge Data Ontology: Key Characteristics 

Data Source Data Type: 
Qualitative or 
Quantitative? 

Temporal 
Condition: 
Discrete or 

Continuous? 

Spatial 
Distribution: 

Partial or  
Complete? 

Consistency: 
Static or  

Dynamic? 

Provenance:  
Real or 

Synthetic? 

National  
Bridge  

Inventory 

Both; 
Condition  

data is 
qualitative 

Discrete, but  
updated every 

year 

Complete  
at bridge 

level 

Both Real 

National  
Bridge  

Element  

Both; 
Qualitative  

assessments 
are  

quantified 

Discrete, but  
updated every 

year 

Complete at  
element 

level 

Both Real 

Plans and  
Construction  
Documents 

Quantitative Discrete  Complete Static Real 

Maintenance  
Records 

Both Discrete  Complete Static, but 
grows  

over time 

Real 

Finite  
Element  
Models 

Quantitative Discrete, but can  
represent 
different  

points in time 

Complete Dynamic Synthetic 

Nondestructive  
Testing 

Quantitative Discrete Partial Static, but will  
change 

between  
applications 

Real 

Structural  
Testing 

Quantitative Discrete Partial Static, but will  
change 

between  
applications 

Real 

Structural  
Health  

Monitoring 

Quantitative Continuous  Partial Static unless  
system 

configuration 
is changed 

Real 

High  
Resolution  

Images 

Quantitative Discrete Both  Static, but will  
change 

between  
applications 

Real 

Crowdsourced  
Data  

Qualitative Discrete Partial Dynamic Both 
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Table 5 - Bridge Data Ontology: Relationships Between Data 
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NBI Query Tool 

The Federal Highway Administration hosts the NBI data on their website (FHWA 2019). The NBI 

data is available from 1992 through 2018 in ASCII format. Each year is broken down by state. In 

recent years, files were available as delimited or non-delimited, though this practice began in the 

past ten years. In order to operate on the full available of historical NBI data for the United States, 

a few key challenges must be overcome.  

1. Managing the 1404 individual text files in which the data is contained 

2. Non-unique bridge identification numbers across states 

3. Manually connecting bridges across years accurately  

4. Adding and removing bridges from the database as they come into or go out of service 

5. Flexibility required for searching bridges.  

 

The solution created was a script developed in Python (Python 2019) that segments the NBI data 

by property. The NBI data contains up to 120 items in 445 characters per bridge. These properties 

can all be used to search and filter the bridges. Some typical search capabilities built into the query 

tool are: 

• Latitude and Longitude of bridges are used in a radial search based on a specific coordinate 

• Inequalities and intervals can be searched for numeric quantities 

• Classifications like bridge material, age, etc.  

 

The query algorithm begins by iterating over every file. The items of each bridge in each file are 

compared to the query criteria. The bridge is considered a match if all of the items for which 

criteria is specified match at least one of the specified criteria. Matching bridges are appended to 

a 3-dimensional tensor, whose coordinates can be denoted as x, y, and z. Each x of the tensor 

represents a bridge, and each y represents an item. The z coordinate represents time and navigat ing 

along this coordinate is representative of inspecting the time history of a bridge. When a structure 

number matches across different files, each year's data for that bridge is placed chronologica l ly 

along the z coordinate of the tensor. This creates a time history for each bridge. 
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Coordinate algorithm: 

The coordinate algorithm searches for bridges within a certain radius of a specified coordinate 

using spherical distance. This is the only search criteria which is not based on specific data already 

included in the NBI data files and requires a subsequent calculation, detailed below:  

  

𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑎𝑎𝑙𝑙𝑑𝑑𝑒𝑒  =  𝑎𝑎 × 𝑃𝑃 

where: 

𝑃𝑃 =  𝐸𝐸𝑎𝑎𝑃𝑃𝑡𝑡ℎ′𝑑𝑑 𝑃𝑃𝑎𝑎𝑑𝑑𝑑𝑑𝑟𝑟𝑑𝑑 

𝑎𝑎 = 𝑑𝑑𝑓𝑓𝑑𝑑−1(𝑑𝑑𝑑𝑑𝑙𝑙𝜑𝜑1) ∙ 𝑑𝑑𝑑𝑑𝑙𝑙𝜑𝜑2 ∙ 𝑑𝑑𝑓𝑓𝑑𝑑(𝜃𝜃1−𝜃𝜃2) + 𝑑𝑑𝑓𝑓𝑑𝑑𝜑𝜑1 ∙ 𝑑𝑑𝑓𝑓𝑑𝑑𝜑𝜑2  

𝜑𝜑1 = 90− 𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑙𝑙𝑡𝑡𝑒𝑒𝑃𝑃𝑥𝑥  

𝜑𝜑2 = 90− 𝑒𝑒𝑓𝑓𝑑𝑑𝑙𝑙𝑡𝑡𝑥𝑥 

𝜃𝜃1 = 𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑙𝑙𝑡𝑡𝑒𝑒𝑃𝑃𝑠𝑠  

𝜃𝜃2 = 𝑒𝑒𝑓𝑓𝑑𝑑𝑙𝑙𝑡𝑡𝑠𝑠 

Eq.   18  

 

 

The NBI query tool is available for use and improvement on GitHub at https://github.com/PASS-

Lab/MMDM/blob/master/QueryNBI.py.  

Importance of Explanatory Variables 

The bridge deterioration modeling processes explored in Chapter 2 were all dependent on 

identification of what is known as explanatory variables. These variables are characteristics of a 

population of bridges which are hypothesized to tie the performance of those bridges together, and 

allow one make assumptions about past data at the population level in order to make future 

predictions. Bridges are classified with explanatory variables in order to develop deterioration 

models.  

Morcous classified concrete bridge decks in Quebec, Canada with explanatory variables includ ing 

functionality, location, average daily traffic, percentage of truck traffic, and environments 

(Morcous, Lounis, and Mirza 2003). Wellalage grouped railway bridges in Australia by 

explanatory variables including structure material, number of tacks, average ton passed per week, 

https://github.com/PASS-Lab/MMDM/blob/master/QueryNBI.py
https://github.com/PASS-Lab/MMDM/blob/master/QueryNBI.py
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element type, environments, and span length (Wellalage, Zhang, and Dwight 2014).  Agrawal 

classified bridge elements in New York State, U.S.A. based on explanatory variables includ ing 

design type, location, structure material, ownership, annual average daily truck traffic, deicing salt 

usage, snow accumulation, environments, and functionality (Agrawal and Kawaguchi 2009). 

Huang identified 11 explanatory variables statistically relevant to concrete bridge deck 

deterioration in Wisconsin by using the ANN approach, a pattern classification problem (Huang 

2010). The explanatory variables included maintenance history, age, previous condition, district, 

design load, structure length, deck dimension, average daily traffic, skew, number of spans, and 

environments. Table 6 summarizes explanatory variables based on application. 

Table 6. Explanatory variables applied on bridge deterioration modeling 

Application Explanatory variables 

Bridge elements 

• Design type,  
• Location,  
• Structure material,  
• Ownership,  
• Annual average daily truck traffic,  
• Deicing salt usage,  
• Snow accumulation,  
• Environments, and  
• Functionality  

Bridge components 

• Functionality,  
• Location,  
• Average daily traffic,  
• Percentage of truck traffic,  
• Maintenance history,  
• Age,  
• Previous condition,  
• District,  
• Design load,  
• Structure length,  
• Deck dimension,  
• Skew,  
• Number of spans, and  
• Environments  

Railway bridge components 

• Structure material,  
• Number of tacks,  
• Average ton passed per week,  
• Element type,  
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• Environments, and  
• Span length  

 

In each case, there was no explicit analysis that led to decision to pick explanatory variables 

beyond engineering judgment and experience. However, the Federal Highway Administra t ion 

Long-Term Bridge Performance program explicitly noted that bridge decoupling performance and 

identifying causal relationships was one of the primary challenges to improving bridge 

performance. The following is taken from the FHWA LTBP Bridge Performance Primer (Hooks 

and Frangopol 2013):  

Experience has shown the performance of any specific bridge is dependent on 

complex interactions of multiple factors, many of which are closely linked and 
include the following: 

• Original design parameters and specifications, such as bridge type, 

materials of construction, geometry, and load capacity. 

• Initial quality of materials and of the as-built construction. 

• Varying environmental conditions of climate and air quality, marine 

environment, or even surrounding soil. 

• Incidence of corrosion or other deterioration processes. 

• Traffic volumes and frequency and weight of truck traffic carried by the 

structure. 

• Types, frequency, and effectiveness of bridge preservation, preventive 

maintenance, rehabilitation, and/or replacement actions. 

All of these factors combine to affect the condition and operational capacities of 

the bridge and its various structural elements at any given point in the life of the 

bridge. Measures such as those mentioned above can be used to evaluate the 

overall performance of a bridge or a group of bridges under different service 
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conditions. Researchers hope to show the qualitative or quantitative impact of a 

parameter or set of parameters on some specific aspect of bridge performance. 

Of the factors listed above, original design parameters, environmental conditions, and traffic 

effects are often included in explanatory variables for deterioration modeling. And yet, these 

factors are clearly influencing deterioration (as one major aspect of bridge performance) in 

indistinguishable manners. Disambiguating these factors to establish causal relationships was an 

overarching goal of this project that was not achieved.  

For the purposes of studying deterioration models, a set of explanatory variables was selected with 

the implicit acceptance that one or more variables may have been missed, or bridges that would 

provide value for deterioration predictions may have not been included.  

Section 6 presents future work suggestions including a strong need to investigate better approaches 

to determining explanatory variables.   
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Single Model Deterioration Modeling Approaches 

Data Review and Filtration 

Data describing Texas bridges spanning 2000 to 2010 year were collected from the National 

Bridge Inventory (NBI) database and reviewed. There were over 50,000 bridges in Texas from 

2000 to 2010 (Figure 4). In this research, the bridges were grouped by following characteristics.  

• Structure material - concrete 

• Design type – stringer/multi-beam or girder 

Figure 5 shows an example of bridges categorized by structure material. There were 27,154 

concrete bridges in 2010. The explanatory variables and data sets were randomly selected, and the 

environment was assumed to be similar throughout the state. The data were paired with two 

consecutive inspection periods, set A (2000 and 2002 year), set B (2004 and 2006 year), and set C 

(2008 and 2010 year). There were two reasons for pairing data. The first reason was to check 

whether a bridge was subject to the MR&R activities. If there is an increase of condition rating, 

the component might be repaired. All models applied to estimate a TPM are based on “do nothing” 

condition, which there are no MR&R activities on bridges. The second reason was that some 

models required bridges to be divided by condition rating groups. According to the Markovian 

property, the 2002, 2006, and 2010 data were considered as the present data and using the 2000, 

2004, and 2008 data, the bridges were grouped in this research. Figure 6 shows an example of 

bridge decks according to condition rating groups. There are 624 and 2,780 out of 3,887 decks in 

condition rating 8 and 7 respectively in 2008. The three data sets were used to check the 

consistencies of transition probability matrices and deterioration curves between different data 

sets. The reconstructed bridges were filtered if their condition ratings were not 9. These bridges 

were considered to be subject to the MR&R activities, not considered as new bridges. The bridges 

more than 60 years were eliminated. Their condition ratings were 7 or 8, so they could be 

maintained or repaired. After this bridge level filtering, the data were filtered in component level 
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to check each component to be subject to the MR&R activities. The bridge components were 

eliminated if they showed any in condition rating within two consecutive inspection periods. 

Figure 7 shows total number of bridges before filtering and number of bridge components after 

filtering. 

 

 
Figure 4. Total number of bridges in Texas from 2000 to 2010 
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Figure 5. Number of bridges according to structure material 

 

 
 

Figure 6. Number of bridge decks in 2008 by condition rating groups 
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Figure 7. Number of bridge components after filtering 

Regression Nonlinear Optimization (RNO) 

In RNO method, a transition probability matrix can be estimated by minimizing the absolute 

difference between the averaged actual condition rating at age, t and the estimated condition rating 

for the corresponding age obtained by the Markovian process. 𝑆𝑆(𝑡𝑡) is a third order polynomia l 

which is the best fit to actual data. The formula of objective function is (Jiang et al. 1988): 

𝑚𝑚𝑑𝑑𝑙𝑙�|𝑆𝑆(𝑡𝑡) −𝐸𝐸(𝑡𝑡,𝑃𝑃)|
𝑇𝑇

𝑡𝑡=1

 
Eq. 19 

𝑆𝑆(𝑡𝑡) = 𝐴𝐴 +𝐵𝐵𝑡𝑡 + 𝐶𝐶𝑡𝑡2 +𝐷𝐷𝑡𝑡3  Eq. 20 

𝐸𝐸(𝑡𝑡,𝑃𝑃) = 𝑄𝑄0 × 𝑃𝑃𝑡𝑡 × 𝑅𝑅 Eq. 21 

 
where:  

𝑇𝑇 = the largest age of the bridge in a data set; 

𝑆𝑆(𝑡𝑡) = the average condition rating at time, t; 

𝐸𝐸(𝑡𝑡,𝑃𝑃) = the expected value; 
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𝑄𝑄0  = the initial condition state, [1 0 0 0 0 0 0]; 

𝑃𝑃𝑡𝑡 = TPM at any time, t; 

𝑅𝑅 = the condition rating, [9 8 7 6 5 4 3]. 

 

The coefficients were obtained by using curve fitting tool in Matlab with 2010 data shown in Table 

7. These values were substituted Eq. 20 and it was used to estimate transition probabilities. Table 

8 presents the estimated TPMs of bridge components. The transition probability of staying the 

same in condition rating 5 is 0.49. It is lower than the values for the superstructure and substructure, 

0.95 and 0.94 respectively. In Figure 8, the condition rating of bridge components computed by 

Eq. 21 were plotted as a function of age. The plot shows three lines. Each line depicts a 

deterioration rate of bride deck (solid line), superstructure (dash line), and substructure (dot line). 

The deterioration rates of all three components are similar up to about 30 years. The substructure 

deteriorates faster after 30 years. 

  

 

Table 7. Coefficients of third order polynomials of bridge components with 2010 data 

Components A B C D 

Deck 9 -0.1860 0.005189 -0.00004650 

Superstructure 9 -0.2065 0.006108 -0.00005857 

Substructure 9 -0.1999 0.005767 -0.00005714 
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Table 8. Transition probability matrices of bridge components using RNO 

Deck 𝑃𝑃 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0.84

0
0
0
0
0
0

  

0.16
0.78

0
0
0
0
0

  

0
0.22
0.99

0
0
0
0

  

0
0

0.01
1
0
0
0

  

0
0
0
0

0.49
0
0

  

0
0
0
0

0.51
0.56

0

  

0
0
0
0
0

0.44
1 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

Superstructure 𝑃𝑃 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0.82

0
0
0
0
0
0

  

0.18
0.75

0
0
0
0
0

  

0
0.25
0.99

0
0
0
0

  

0
0

0.01
0.99

0
0
0

  

0
0
0

0.01
0.95

0
0

  

0
0
0
0

0.05
0.90

0

  

0
0
0
0
0

0.10
1 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

Substructure 𝑃𝑃 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0.83

0
0
0
0
0
0

  

0.17
0.77

0
0
0
0
0

  

0
0.23
0.99

0
0
0
0

  

0
0

0.01
0.97

0
0
0

  

0
0
0

0.03
0.94

0
0

  

0
0
0
0

0.06
0.88

0

  

0
0
0
0
0

0.12
1 ⎦

⎥
⎥
⎥
⎥
⎥
⎤
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Figure 8. Deterioration rate curves estimated using RNO with 2010 data 

 

Bayesian Maximum Likelihood (BML) 

 
From Bayesian theorem the conditional distribution of  𝜃𝜃 (an unknown variable set) given by  𝑌𝑌 

(a known data set of bridge condition ratings) is following 

 

𝑃𝑃(𝜃𝜃|𝑌𝑌) ∝ 𝑃𝑃(𝜃𝜃)𝐿𝐿(𝑌𝑌|𝜃𝜃) Eq. 22 

 

where  𝑃𝑃(𝜃𝜃|𝑌𝑌), 𝑃𝑃(𝜃𝜃), and 𝐿𝐿(𝑌𝑌|𝜃𝜃) are called a target distribution, prior distribution, and likelihood 

distribution respectively. From Bayes-Laplace “principle of insufficient reason” prior distribut ion, 

𝑃𝑃(𝜃𝜃) can be assumed to be a uniform distribution. Therefore, the target distribution can be 

proportional to the likelihood distribution (Wellalage, Zhang, and Dwight 2014). From the joint 

probability theory, the likelihood distribution can be expressed (H. D. Tran 2007). 

𝐿𝐿(𝑌𝑌|𝜃𝜃) = ��(𝐶𝐶𝑖𝑖𝑡𝑡)𝑁𝑁𝑖𝑖
𝑡𝑡

9

𝑖𝑖=1

𝑇𝑇

𝑡𝑡=1

 
Eq. 23 
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For easy computation the distribution function can be transformed into logarithm likelihood 

function as follows:  

𝑙𝑙𝑓𝑓𝑔𝑔[𝐿𝐿(𝑌𝑌|𝜃𝜃)] = ��𝑁𝑁𝑖𝑖𝑡𝑡 𝑙𝑙𝑓𝑓𝑔𝑔(𝐶𝐶𝑖𝑖𝑡𝑡)
9

𝑖𝑖=1

𝑇𝑇

𝑡𝑡=1

 
Eq. 24 

 

where T is the largest age in the data set, 𝑁𝑁𝑖𝑖𝑡𝑡  is the number of bridge components in condition state 

i at year t, and 𝐶𝐶𝑖𝑖𝑡𝑡 is the probability of condition state 𝑑𝑑 at year 𝑡𝑡. Since only transition probabilities, 

𝐶𝐶𝑖𝑖𝑡𝑡 are random variables, a vector of transition probabilities, 𝐶𝐶𝑖𝑖𝑡𝑡 can be obtained by maximizing 

log likelihood function,   𝑙𝑙𝑓𝑓𝑔𝑔[𝐿𝐿(𝑌𝑌|𝜃𝜃)]. 

 

𝐶𝐶𝑖𝑖𝑡𝑡 = [𝐶𝐶9𝑡𝑡  𝐶𝐶8𝑡𝑡  𝐶𝐶7𝑡𝑡  𝐶𝐶6𝑡𝑡  𝐶𝐶5𝑡𝑡  𝐶𝐶4𝑡𝑡] Eq. 25 

 
Table 9 presents the transition probability matrices of bridge deck, superstructure, and 

substructure. Figure 9 describes the deterioration rate curves of bridge deck (solid line), 

superstructure (dash line), and substructure (dot line) estimated by using Eq. 10. Up to 20 years 

the superstructure deteriorates faster than other components and after 20 years the substructure 

deteriorates faster than other components. 
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Table 9. Transition probability matrices of bridge components using BML 

Deck 𝑃𝑃 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0
0
0
0
0
0
0

  

1
0.93

0
0
0
0
0

  

0
0.07
0.99

0
0
0
0

  

0
0

0.01
0.99

0
0
0

  

0
0
0

0.01
1
0
0

  

0
0
0
0
0
1
0

  

0
0
0
0
0
0
1⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

Superstructure 𝑃𝑃 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0
0
0
0
0
0
0

  

1
0.80

0
0
0
0
0

  

0
0.20
0.99

0
0
0
0

  

0
0

0.01
0.99

0
0
0

  

0
0
0

0.01
1
0
0

  

0
0
0
0
0
1
0

  

0
0
0
0
0
0
1⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

Substructure 𝑃𝑃 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0
0
0
0
0
0
0

  

1
0.90

0
0
0
0
0

  

0
0.10
0.98

0
0
0
0

  

0
0

0.02
0.99

0
0
0

  

0
0
0

0.01
0.99

0
0

  

0
0
0
0

0.01
0.99

0

  

0
0
0
0
0

0.01
1 ⎦
⎥
⎥
⎥
⎥
⎥
⎤
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Figure 9. Deterioration rate curves estimated using BML with 2010 data 

 

Ordered Probit Model (OPM) 

The ordered probit model is used to model unobservable features of the population in social 

sciences. The facility deterioration is unobservable. However, the model can encapsulate it based 

on the assumption of being a constant unobservable variable. An incremental deterioration model 

can be generated from the observed condition rating as an “indicator” of the unobserved 

deterioration. The variable, 𝑍𝑍𝑛𝑛 is the number of transitions of condition state of bridge n between 

two successive inspection periods. It is assumed that the deterioration is constant within the same 

condition rating group, and each group has different deterioration mechanism.  Therefore, a 

different deterioration model is needed for each condition rating group. Madanat categorized the 

deterioration process of bridge decks into two steps (Madanat and Ibrahim 2002). The transitio ns 

from condition rating 9 to 7 were determined by the change of the electrical potential intensity and 

the chloride content amount. The transition from condition rating 6 to 5 is determined by the 

amount of spall of concrete. Based on the deterioration process of reinforced concrete defined by 

Hu and Nickless, the first step is related to the phase from corrosion initiation to cracking initia t ion 
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(Hu, Haider, and Jansson 2013; Nickless and Atadero 2017). The second step is related to the 

phase of cracking propagation to the surface. The unobserved deterioration of bridge, n in given 

condition state, i, 𝑈𝑈𝑖𝑖𝑛𝑛 can be expressed as a function of explanatory variable, 𝑋𝑋𝑛𝑛.  

 

𝑙𝑙𝑓𝑓𝑔𝑔(𝑈𝑈𝑖𝑖𝑛𝑛) = 𝛽𝛽𝑖𝑖′𝑋𝑋𝑛𝑛 + 𝜀𝜀𝑖𝑖𝑛𝑛  Eq. 26 

 

where 𝛽𝛽𝑖𝑖′ is a set of parameters in condition state i, 𝑋𝑋𝑛𝑛 is a set of explanatory variables for bridge 

n; 𝜀𝜀𝑖𝑖𝑛𝑛 is an error term (Madanat and Ibrahim 2002). Figure 10 illustrates the ordered probit model 

that Trans applied this model to estimate TPM of storm water pipe deterioration in Australia (H. 

D. Tran 2007). The deterioration is plotted as function of time. The deterioration curve, 𝑍𝑍𝑖𝑖 consists 

of two parts, deterministic (𝛽𝛽𝑖𝑖′𝑋𝑋𝑛𝑛) and random (𝜀𝜀𝑖𝑖𝑛𝑛) parts. 𝜃𝜃1 and 𝜃𝜃2  are thresholds and 1, 2, and 3 

indicate condition states (1 is corresponding to condition rating 9 in NBI).   

 
 

 Figure 10. Schematic illustrating the Ordered Probit Model (H. D. Tran 2007) 

 

Since  𝑈𝑈𝑖𝑖𝑛𝑛 is unobservable, the relationship can be expressed by using 𝑍𝑍𝑖𝑖𝑛𝑛 and between two 

thresholds, 𝛾𝛾𝑖𝑖𝑘𝑘  and 𝛾𝛾𝑖𝑖(𝑘𝑘+1) as follows (Madanat, Mishalani, and Ibrahim 2002): 
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𝑍𝑍𝑖𝑖𝑛𝑛 = 𝑗𝑗 𝑑𝑑𝑓𝑓 𝛾𝛾𝑖𝑖𝑘𝑘 ≤ 𝑈𝑈𝑖𝑖𝑛𝑛 < 𝛾𝛾𝑖𝑖 (𝑘𝑘+1) ; Eq. 27 

𝑍𝑍𝑖𝑖𝑛𝑛 = 𝑗𝑗 𝑑𝑑𝑓𝑓 𝑙𝑙𝑓𝑓𝑔𝑔𝛾𝛾𝑖𝑖𝑘𝑘 −  𝛽𝛽𝑖𝑖′𝑋𝑋𝑛𝑛 ≤ 𝜀𝜀𝑖𝑖𝑛𝑛 < 𝑙𝑙𝑓𝑓𝑔𝑔𝛾𝛾𝑖𝑖 (𝑘𝑘+1) −𝛽𝛽𝑖𝑖′𝑋𝑋𝑛𝑛; Eq. 28 

 

for j = 0, …, i. Based on the assumption that 𝜀𝜀𝑖𝑖𝑛𝑛 is a normal cumulative distribution, 𝐹𝐹(𝜀𝜀𝑖𝑖𝑛𝑛), the 

transition probability from condition state i to condition state i-j for a bridge in an inspection period 

can be written as follows (Madanat, Mishalani, and Ibrahim 2002): 

𝑒𝑒(𝑍𝑍𝑖𝑖𝑛𝑛 = 𝑗𝑗) = 𝐹𝐹�𝛿𝛿𝑖𝑖(𝑘𝑘+1) −𝛽𝛽𝑖𝑖𝑋𝑋𝑛𝑛� − 𝐹𝐹(𝛿𝛿𝑖𝑖𝑘𝑘 − 𝛽𝛽𝑖𝑖𝑋𝑋𝑛𝑛) Eq. 29 

 

where 𝛿𝛿𝑖𝑖𝑘𝑘 = 𝑙𝑙𝑓𝑓𝑔𝑔𝛾𝛾𝑖𝑖𝑘𝑘 . The parameter 𝛽𝛽𝑖𝑖 and thresholds 𝛾𝛾𝑖𝑖1 , 𝛾𝛾𝑖𝑖2 , … , 𝛾𝛾𝑖𝑖𝑖𝑖  can be obtained by optimizing 

the logarithm objective function as follows (Madanat, Mishalani, and Ibrahim 2002): 

𝐿𝐿𝑖𝑖∗ = ��𝑒𝑒(𝑍𝑍𝑖𝑖𝑛𝑛 = 𝑗𝑗)𝑑𝑑𝑛𝑛𝑗𝑗
𝑖𝑖−1

𝑘𝑘=0

𝑁𝑁𝑖𝑖

𝑛𝑛=1

 
Eq. 30 

 

𝑙𝑙𝑓𝑓𝑔𝑔(𝐿𝐿𝑖𝑖∗) = ��𝑑𝑑𝑛𝑛𝑘𝑘𝑙𝑙𝑓𝑓𝑔𝑔[𝑒𝑒(𝑍𝑍𝑖𝑖𝑛𝑛 = 𝑗𝑗)]
𝑖𝑖−1

𝑘𝑘=0

𝑁𝑁𝑖𝑖

𝑛𝑛=1

 
Eq. 31 

where:  

𝐿𝐿𝑖𝑖∗ is the likelihood function of the ordered probit model for condition state 𝑑𝑑 

𝑁𝑁𝑖𝑖 is total number of bridges in condition state 𝑑𝑑 in the data set 

𝑑𝑑𝑛𝑛𝑘𝑘  is equal to 1 if 𝑍𝑍𝑖𝑖𝑛𝑛 = 𝑗𝑗, and 0 otherwise. 

After the parameter and thresholds are obtained, the transition probabilities,  �̂�𝑒(𝑗𝑗|𝑋𝑋𝑛𝑛, 𝑑𝑑) for each 

bridge can be computed as follows (Madanat, Mishalani, and Ibrahim 2002): 
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�̂�𝑒(𝑗𝑗 = 0|𝑋𝑋𝑛𝑛, 𝑑𝑑) = 𝐹𝐹�𝛿𝛿𝑖𝑖1 − 𝛽𝛽𝑖𝑖′𝑋𝑋𝑛𝑛� 

�̂�𝑒(𝑗𝑗 = 1|𝑋𝑋𝑛𝑛, 𝑑𝑑) = 𝐹𝐹�𝛿𝛿𝑖𝑖2 − 𝛽𝛽𝑖𝑖′𝑋𝑋𝑛𝑛� − 𝐹𝐹�𝛿𝛿𝑖𝑖1 − 𝛽𝛽𝑖𝑖′𝑋𝑋𝑛𝑛� 

�̂�𝑒(𝑗𝑗 = 2|𝑋𝑋𝑛𝑛, 𝑑𝑑) = 𝐹𝐹�𝛿𝛿𝑖𝑖3 − 𝛽𝛽𝑖𝑖′𝑋𝑋𝑛𝑛� − 𝐹𝐹�𝛿𝛿𝑖𝑖2 − 𝛽𝛽𝑖𝑖′𝑋𝑋𝑛𝑛� 

⋮ 

�̂�𝑒(𝑗𝑗 = 𝑑𝑑|𝑋𝑋𝑛𝑛, 𝑑𝑑) = 1 −𝐹𝐹�𝛿𝛿𝑖𝑖𝑖𝑖 − 𝛽𝛽𝑖𝑖′𝑋𝑋𝑛𝑛� Eq. 32 

 

for j = 0, 1, 2, …, i. Then the probabilities of each bridge are grouped to estimate the mean value 

of transition probabilities, �̂�𝑒𝑖𝑖(𝑖𝑖−𝑘𝑘)
𝑔𝑔  as follows (Madanat, Mishalani, and Ibrahim 2002): 

�̂�𝑒𝑖𝑖(𝑖𝑖−𝑘𝑘)
𝑔𝑔 =

1
𝑁𝑁𝑔𝑔

� �̂�𝑒(𝑗𝑗|𝑋𝑋𝑛𝑛, 𝑑𝑑)

𝑁𝑁𝑔𝑔

𝑛𝑛=1

; 𝑗𝑗 = 0, … , 𝑑𝑑;𝑔𝑔 = 1, … ,𝐺𝐺 
Eq. 33 

 

where 𝑁𝑁𝑔𝑔 is the total number of bridges in group 𝑔𝑔 and G is the total number of groups (Madanat, 

Mishalani, and Ibrahim 2002). 

 

The parameters, 𝛿𝛿 and 𝛽𝛽 of bridge components with 2008-2010 data according to condition rating 

groups were obtained by optimizing the log likelihood function. Table 10 shows the values of 

parameters of bridge deck Table 11 presents estimated transition probability matrices of deck, 

superstructure, and substructure and Figure 11 shows the deterioration rate curves of deck (solid 

line), superstructure (dash line), and substructure (dot line) with 2008-2010 data. The substructure 

deteriorates slower than other components up to 20 years, and then it deteriorates faster than other 

components. 
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Table 10. Parameters, 𝛿𝛿 and 𝛽𝛽 of bridge deck with 2008-2010 data 

Condition Rating Group 𝛽𝛽 𝛿𝛿1 𝛿𝛿2 𝛿𝛿3 

𝑑𝑑 = 9 -1.41E-06 -5.88E+00 -2.37E-06 5.46E+00 
𝑑𝑑 = 8 1.25E-02 6.77E-01 2.73E+00 7.44E+00 
𝑑𝑑 = 7 9.21E-03 1.99E+00 3.25E+00 6.84E+00 
𝑑𝑑 = 6 -6.93E-03 1.35E+00 7.03E+00 3.00E+00 
𝑑𝑑 = 5 4.84E-02 4.23E+00 9.32E+00 3.00E+00 
𝑑𝑑 = 4 -2.40E+03 4.91E+01 2.00E+00 3.00E+00 

 

 

Table 11. Transition probability matrices of bridge components using OPM 

Deck 𝑃𝑃 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0
0
0
0
0
0
0

  

1
0.71

0
0
0
0
0

  

0
0.29

1
0
0
0
0

  

0
0
0
1
0
0
0

  

0
0
0
0
1
0
0

  

0
0
0
0
0
1
0

  

0
0
0
0
0
0
1⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

Superstructure 𝑃𝑃 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0
0
0
0
0
0
0

  

1
0.53

0
0
0
0
0

  

0
0.47

1
0
0
0
0

  

0
0
0
1
0
0
0

  

0
0
0
0
1
0
0

  

0
0
0
0
0
1
0

  

0
0
0
0
0
0
1⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

Substructure 𝑃𝑃 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0
0
0
0
0
0
0

  

1
0.85

0
0
0
0
0

  

0
0.15
0.99

0
0
0
0

  

0
0

0.01
1
0
0
0

  

0
0
0
0
1
0
0

  

0
0
0
0
0
1
0

  

0
0
0
0
0
0
1⎦
⎥
⎥
⎥
⎥
⎥
⎤
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Figure 11. Deterioration rate curves estimated using OPM with 2008-2010 data 

 

Poisson Regression (PR) 

 
The Poisson regression model describes events that occur randomly and independently overtime. 

Incremental bridge deterioration can be modeled as a function of the number of transitions in an 

inspection period by using the Poisson Regression method. From the model, transition 

probabilities of a data set of bridge components/elements can be obtained. Different deterioration 

models are needed for each condition state because mechanistic deterioration procedures are 

different.  The model estimates the deterioration of a bridge in an inspection period using the 

change in the condition states between two successive inspections.  In a continuous-time Markov 

process, a deterioration rate is a negative exponential distribution, so the Poisson distribution is 

applicable for the deterioration model. The Poisson mass function is as follows (Madanat, 

Mishalani, and Ibrahim 2002): 

𝑒𝑒(𝑍𝑍𝑖𝑖𝑛𝑛 = 𝑗𝑗) =
𝑒𝑒𝜆𝜆𝑖𝑖𝑛𝑛 𝜆𝜆𝑖𝑖𝑛𝑛

𝑘𝑘

𝑗𝑗!
, 𝑗𝑗 = 0,1,2,… , 𝑑𝑑; 𝑑𝑑 = 1,2, … , 𝑘𝑘 − 1 

Eq. 34 
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where 𝜆𝜆𝑖𝑖𝑛𝑛 is a deterioration rate in condition state 𝑑𝑑; 𝑗𝑗 is the number of transitions in condition state 

in an inspection period; 𝑘𝑘 is the highest condition state. The deterioration rate, 𝜆𝜆𝑖𝑖𝑛𝑛 as a function of 

explanatory variables is as follows (Madanat, Mishalani, and Ibrahim 2002): 

𝜆𝜆𝑖𝑖𝑛𝑛 = 𝑒𝑒(𝛽𝛽𝑋𝑋𝑛𝑛) Eq. 35 

 

where 𝛽𝛽 is a set of parameters and 𝑋𝑋𝑛𝑛 is a set of explanatory variables for a bridge, 𝑙𝑙. By optimizing 

the object function (log of the likelihood distribution), the 𝛽𝛽𝑖𝑖 can be obtained. The likelihood 

distribution and log of the likelihood are as follows (Madanat, Mishalani, and Ibrahim 2002): 

𝐿𝐿𝑖𝑖∗ = �
𝑒𝑒−𝜆𝜆𝑖𝑖𝑛𝑛 𝜆𝜆𝑖𝑖𝑛𝑛

𝑍𝑍𝑖𝑖𝑛𝑛

𝑍𝑍𝑖𝑖𝑛𝑛!

𝑁𝑁𝑖𝑖

𝑛𝑛=1

 
Eq. 36 

 

𝑙𝑙𝑓𝑓𝑔𝑔(𝐿𝐿𝑖𝑖∗) = �−𝜆𝜆𝑖𝑖𝑛𝑛 + 𝑍𝑍𝑖𝑖𝑛𝑛 𝑙𝑙𝑓𝑓𝑔𝑔(𝜆𝜆𝑖𝑖𝑛𝑛)
𝑁𝑁𝑖𝑖

𝑛𝑛=1

 
Eq. 37 

 

Substitute Eq. 35, then 

𝑙𝑙𝑓𝑓𝑔𝑔(𝐿𝐿𝑖𝑖∗) = �𝑍𝑍𝑖𝑖𝑛𝑛(𝛽𝛽𝑋𝑋𝑛𝑛)− 𝑒𝑒(𝛽𝛽𝑋𝑋𝑛𝑛)

𝑁𝑁𝑖𝑖

𝑛𝑛=1

 
Eq. 38 

 

𝑍𝑍𝑖𝑖𝑛𝑛 is the number of transitions of condition states in an inspection period. It is assumed the 

maximum value of 𝑍𝑍𝑖𝑖𝑛𝑛 is equal to 𝑑𝑑. The transition probabilities for each bridge, 𝑙𝑙 is as follows 

(Madanat, Mishalani, and Ibrahim 2002): 

𝑒𝑒(𝑍𝑍𝑖𝑖𝑛𝑛 = 𝑗𝑗|𝑋𝑋𝑛𝑛, 𝑑𝑑) =
𝑒𝑒−𝜆𝜆𝑖𝑖𝑛𝑛 𝜆𝜆𝑖𝑖𝑛𝑛

𝑘𝑘

𝑗𝑗!
, 𝑗𝑗 = 0,1,2, … , 𝑑𝑑 

Eq. 39 

 

For network-level, bridges in a data set are grouped into condition states. The average transition 

probability for each group is computed as follows:  
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𝑒𝑒𝑖𝑖(𝑖𝑖−𝑘𝑘)
𝑔𝑔 =

1
𝑁𝑁𝑔𝑔

� 𝑒𝑒(𝑍𝑍𝑖𝑖𝑛𝑛 = 𝑗𝑗|𝑋𝑋𝑛𝑛, 𝑑𝑑)

𝑁𝑁𝑔𝑔

𝑛𝑛=1

, 𝑗𝑗 = 0,1,… , 𝑑𝑑;𝑔𝑔 = 1, … ,𝐺𝐺 
Eq. 40 

 

where 𝑁𝑁𝑔𝑔 is the total number of bridges in group 𝑔𝑔 and G is the total number of facility groups 

(Madanat, Mishalani, and Ibrahim 2002). 

 

The parameters according to condition rating groups of bridge components were obtained by 
optimizing the log likelihood function and shown in Table 12. The transition probability matrices 
for deck, superstructure, and substructure are shown in  

 

 

 

 

 

 

Table 13. The deterioration rate curves in Figure 12 show the same pattern with ones estimated by 

using OPM. 

 

Table 12. Parameter, 𝛽𝛽 of bridge components with 2008-2010 data 

Condition Rating Group Deck Superstructure Substructure 

𝑑𝑑 = 9 0.240 0.129 0.147 

𝑑𝑑 = 8 -0.022 -0.013 -0.037 

𝑑𝑑 = 7 -0.087 -0.084 -0.061 

𝑑𝑑 = 6 -0.073 -0.075 -0.075 

𝑑𝑑 = 5 -0.088 -0.098 -0.107 

𝑑𝑑 = 4 -105.126 -250.745 -1026.686 
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Table 13. Transition probability matrices of bridge components using PR  

Deck 𝑃𝑃 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0
0
0
0
0
0
0

  

1
0.76

0
0
0
0
0

  

0
0.24

1
0
0
0
0

  

0
0
0
1
0
0
0

  

0
0
0
0
1
0
0

  

0
0
0
0
0
1
0

  

0
0
0
0
0
0
1⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

Superstructure 𝑃𝑃 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0
0
0
0
0
0
0

  

1
0.56

0
0
0
0
0

  

0
0.44

1
0
0
0
0

  

0
0
0
1
0
0
0

  

0
0
0
0
1
0
0

  

0
0
0
0
0
1
0

  

0
0
0
0
0
0
1⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

Substructure 𝑃𝑃 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0
0
0
0
0
0
0

  

1
0.84

0
0
0
0
0

  

0
0.16
0.99

0
0
0
0

  

0
0

0.01
1
0
0
0

  

0
0
0
0
1
0
0

  

0
0
0
0
0
1
0

  

0
0
0
0
0
0
1⎦
⎥
⎥
⎥
⎥
⎥
⎤
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Figure 12. Deterioration rate curves estimated using PR with 2010 data 

 

Negative Binomial Regression (NBR) 

In Negative Binomial Regression models, a disturbance term in the parameter of the Poisson 

distribution was introduced “overdispersion” situation that the variance of data was larger than the 

mean (Madanat, Mishalani, and Ibrahim 2002). 𝜆𝜆𝑖𝑖𝑛𝑛∗  is a random variable as a function of 

explanatory variables: 

 

𝜆𝜆𝑖𝑖𝑛𝑛∗ = 𝑒𝑒(𝛽𝛽𝑋𝑋𝑛𝑛+𝜀𝜀𝑛𝑛)  Eq. 41 

 

where 𝜀𝜀𝑛𝑛 is a random error term. A negative binomial probability distribution is as follows:  

𝑒𝑒(𝑍𝑍𝑖𝑖𝑛𝑛 = 𝑗𝑗) =
𝛤𝛤 � 1

𝛼𝛼𝑖𝑖
+ 𝑗𝑗�

𝛤𝛤 � 1
𝛼𝛼𝑖𝑖
�𝑗𝑗!

�
1

1 + 𝛼𝛼1𝜆𝜆𝑖𝑖𝑛𝑛
∗ �

1 𝛼𝛼𝑖𝑖⁄

�1−
1

1 + 𝛼𝛼𝑖𝑖𝜆𝜆𝑖𝑖𝑛𝑛
∗ �

𝑘𝑘

 
Eq. 42 
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where Γ( ) is gamma function, 𝛼𝛼𝑖𝑖 is rate of “overdispersion,” and 𝑍𝑍𝑖𝑖𝑛𝑛 is the number of transit ions 

of condition states in an inspection period. The likelihood distribution function of the negative 

binomial for condition state is as follows: 

𝐿𝐿𝑖𝑖∗ = �
𝛤𝛤� 1

𝛼𝛼𝑖𝑖
+ 𝑍𝑍𝑖𝑖𝑛𝑛�

𝛤𝛤 � 1
𝛼𝛼𝑖𝑖
�𝑍𝑍𝑖𝑖𝑛𝑛!

𝑁𝑁𝑖𝑖

𝑛𝑛=1

�
1

1 + 𝛼𝛼𝑖𝑖𝜆𝜆𝑖𝑖𝑛𝑛
∗ �

1 𝛼𝛼𝑖𝑖⁄

�1 −
1

1 + 𝛼𝛼𝑖𝑖𝜆𝜆𝑖𝑖𝑛𝑛
∗ �

𝑍𝑍𝑖𝑖𝑛𝑛
 

Eq. 43 

 
By optimizing the log of the object function, 𝜆𝜆𝑖𝑖𝑛𝑛∗  and 𝛼𝛼𝑖𝑖 can be estimated. 

𝑙𝑙𝑓𝑓𝑔𝑔(𝐿𝐿𝑖𝑖𝑛𝑛∗ ) = �𝑙𝑙𝑓𝑓𝑔𝑔�𝛤𝛤 �
1
𝛼𝛼𝑖𝑖

+ 𝑍𝑍𝑖𝑖𝑛𝑛�� − 𝑙𝑙𝑓𝑓𝑔𝑔�𝛤𝛤�
1
𝛼𝛼𝑖𝑖
�� − 𝑙𝑙𝑓𝑓𝑔𝑔(𝑍𝑍𝑖𝑖𝑛𝑛!)

𝑁𝑁𝑖𝑖

𝑛𝑛=1

+
1
𝛼𝛼𝑖𝑖
𝑙𝑙𝑓𝑓𝑔𝑔 �

1
1 + 𝛼𝛼𝑖𝑖𝜆𝜆𝑖𝑖𝑛𝑛

∗ �+ 𝑍𝑍𝑖𝑖𝑛𝑛𝑙𝑙𝑓𝑓𝑔𝑔 �1−
1

1 + 𝛼𝛼𝑖𝑖𝜆𝜆𝑖𝑖𝑛𝑛
∗ � 

Eq. 44 

 

Transition probabilities of condition states for each bridge can be estimated by applying the 

obtained parameter to the negative binomial probability distribution function, and a transition 

probability matrix can be obtained by the same process in the Poisson regression method (Madanat, 

Mishalani, and Ibrahim 2002). 

 
The parameters according to condition rating groups of bridge components were obtained by 

optimizing the log likelihood function and shown in Table 14. The transition probability matrices 

for deck, superstructure, and substructure are shown in Table 15. The deterioration rate curves in 

Figure 13 show the same pattern with ones estimated by using OPM and PR. 
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Table 14. Parameters, 𝛼𝛼 and 𝛽𝛽, of bridge components with 2008-2010 data 

Condition Rating 

Group 
𝛼𝛼 (Deck) 𝛽𝛽 (Deck) 

𝛼𝛼 

(Superstruc

ture) 

𝛽𝛽 

(Superstruc

ture) 

𝛼𝛼 

(Substruc

ture) 

𝛽𝛽 

(Substruc

ture) 

𝑑𝑑 = 9 0.01 0.40 0.01 0.13 0.01 0.16 

𝑑𝑑 = 8 0.01 -0.02 0.01 -0.01 0.68 -0.03 

𝑑𝑑 = 7 15.86 -0.07 18.84 -0.07 6.31 -0.05 

𝑑𝑑 = 6 0.91 -0.07 0.07 -0.59 7.16 -0.07 

𝑑𝑑 = 5 1.14 -0.62 1.15 -0.62 1.14 -0.62 

𝑑𝑑 = 4 1.15 -0.62 1.15 -0.62 1.15 -0.62 

 

 

Table 15. Transition probability matrices of bridge components using NBR 

Deck 𝑃𝑃 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0
0
0
0
0
0
0

  

1
0.76

0
0
0
0
0

  

0
0.24

1
0
0
0
0

  

0
0
0
1
0
0
0

  

0
0
0
0
1
0
0

  

0
0
0
0
0
1
0

  

0
0
0
0
0
0
1⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

Superstructure 𝑃𝑃 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0
0
0
0
0
0
0

  

1
0.56

0
0
0
0
0

  

0
0.44

1
0
0
0
0

  

0
0
0
1
0
0
0

  

0
0
0
0
1
0
0

  

0
0
0
0
0
1
0

  

0
0
0
0
0
0
1⎦
⎥
⎥
⎥
⎥
⎥
⎤
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Substructure 𝑃𝑃 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0
0
0
0
0
0
0

  

1
0.87

0
0
0
0
0

  

0
0.13
0.99

0
0
0
0

  

0
0

0.01
1
0
0
0

  

0
0
0
0
1
0
0

  

0
0
0
0
0
1
0

  

0
0
0
0
0
0
1⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

 

 
Figure 13. Deterioration rate curves estimated using NBR with 2010 data 

 
 

Proportional Hazard Model (PHM) 

 
In the proportional hazard model, the effects of explanatory variables can be explicitly expressed 

as hazard ratio in a transition probability matrix. The example format of a transition probability 

matrix is following (Cavalline et al. 2015). 
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𝑃𝑃 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑒𝑒99

𝐻𝐻𝐻𝐻9

0
0
0
0
0
0

   

1− 𝑒𝑒99
𝐻𝐻𝐻𝐻9

𝑒𝑒88
𝐻𝐻𝐻𝐻8

0
0
0
0
0

   

0
1− 𝑒𝑒88

𝐻𝐻𝐻𝐻8

𝑒𝑒77
𝐻𝐻𝐻𝐻7

0
0
0
0

   

0
0

1− 𝑒𝑒77
𝐻𝐻𝐻𝐻7

𝑒𝑒66
𝐻𝐻𝐻𝐻6

0
0
0

    

0
0
0

1− 𝑒𝑒66
𝐻𝐻𝐻𝐻6

𝑒𝑒55
𝐻𝐻𝐻𝐻5

0
0

   

0
0
0
0

1− 𝑒𝑒55
𝐻𝐻𝐻𝐻5

𝑒𝑒44
𝐻𝐻𝐻𝐻4

0

   

0
0
0
0
0

1 −𝑒𝑒44
𝐻𝐻𝐻𝐻4

1 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

Eq. 45 

 
where 𝑒𝑒99 , 𝑒𝑒88 , … , 𝑒𝑒44  are transition probabilities and 𝐻𝐻𝑅𝑅9,𝐻𝐻𝑅𝑅8, … ,𝐻𝐻𝑅𝑅4  are hazard ratios. 

In the model, the transition probability matrix consists of two parts: 

● Transition probabilities that obtained by the simplified Kaplan-Meier method 

● Hazard ratios associated with explanatory variables 

Transition probabilities and hazard ratios are estimated for each condition state. If a hazard ratio 

is less than 1, the deterioration process is slower. If a hazard ratio is greater than 1, the deterioration 

process accelerates. 

Hazard Ratio 

Hazard rate is the instantaneous rate from a condition state to another condition state. It can be 

expressed as a function of explanatory variables as follows: 

 

ℎ(𝑡𝑡, 𝑧𝑧) = ℎ0(𝑡𝑡)𝑒𝑒𝑧𝑧𝛽𝛽��⃗ = ℎ0(𝑡𝑡)𝑒𝑒(𝑧𝑧1𝛽𝛽1+𝑧𝑧2𝛽𝛽2+⋯+𝑧𝑧𝑛𝑛𝛽𝛽𝑛𝑛)  Eq. 46 

 

ℎ(𝑡𝑡, 𝑧𝑧) = ℎ0(𝑡𝑡)𝑒𝑒𝑧𝑧1𝛽𝛽  Eq. 47 

 

where 𝛽𝛽 is the regression coefficient associated with the hazard rate, z and ℎ0(𝑡𝑡) is the baseline 

hazard function. Hazard ratio is the ratio of the hazard rates, the relative risk of failure �ℎ(𝑡𝑡, 1)� 

to the value of baseline hazard function �ℎ(𝑡𝑡, 0)�.  
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𝐻𝐻𝑅𝑅 =  
ℎ(𝑡𝑡, 1)
ℎ(𝑡𝑡, 0)

= 𝑒𝑒𝛽𝛽(1−0) = 𝑒𝑒𝛽𝛽 
Eq. 48 

Kaplan-Meier Estimator 

Kaplan and Meier (KM) method is used to estimate non-parametric cumulative transition 

probability corresponding to transition times and events, 𝑇𝑇𝑃𝑃(𝑡𝑡𝑥𝑥) assumed one-step transition as 

follows (Archilla, DeStefano, and Grivas 2002): 

𝑇𝑇𝑃𝑃(𝑡𝑡𝑥𝑥) = 1− 𝑅𝑅�(𝑡𝑡𝑥𝑥) Eq. 49 

 

𝑅𝑅�(𝑡𝑡𝑥𝑥) = [(𝑃𝑃𝑥𝑥 − 1)/𝑃𝑃𝑥𝑥] × 𝑅𝑅𝑥𝑥−1  Eq. 50 

 

where 𝑅𝑅�(𝑡𝑡𝑥𝑥) is the reliability at 𝑡𝑡𝑥𝑥  equal to 𝑇𝑇𝑇𝑇𝑖𝑖𝑘𝑘𝑘𝑘, 𝑃𝑃𝑥𝑥  is order of times observed in a set of data. 

𝑇𝑇𝑇𝑇𝑖𝑖𝑘𝑘𝑘𝑘 is the time associated with one-step transition of bridge 𝑑𝑑 and component 𝑗𝑗 to condition rating 

𝑘𝑘. 

𝑇𝑇𝑇𝑇𝑖𝑖𝑘𝑘𝑘𝑘 =
��𝐹𝐹𝐶𝐶𝑅𝑅𝑘𝑘 − 𝐿𝐿𝐶𝐶𝑅𝑅𝑘𝑘"�+ (𝐿𝐿𝐶𝐶𝑅𝑅𝑘𝑘′ − 𝐹𝐹𝐶𝐶𝑅𝑅𝑘𝑘′ )�

𝑖𝑖𝑘𝑘

2
 Eq. 51 

 

where 𝐿𝐿𝐶𝐶𝑅𝑅𝑘𝑘" is last date a component was observed in a prior condition rating 𝑘𝑘". 𝐹𝐹𝐶𝐶𝑅𝑅𝑘𝑘/𝐿𝐿𝐶𝐶𝑅𝑅𝑘𝑘′ is 

first/last date a component was observed in initial condition rating 𝑘𝑘′ (Archilla, DeStefano, and 

Grivas 2002). 
 
HR ratios of bridge components according to condition rating group show in Table 16. The value 

less than 1 means that the deterioration rate is smaller than its baseline probability which obtained 

by Kaplan-Meier estimation. The value equal to 1 means that the probability is the same as its 

baseline probability. The value greater than 1 means that the deterioration accelerates.  
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Table 17 presents the estimated TPMs for bridge components. The deterioration rate curves for 

bridge deck (solid line), superstructure (dash line), and substructure (dot line) are plotted in Figure 

14. The superstructure deteriorates faster than other components. 

 
 
Table 16. Parameter, HR of bridge components with 2008-2010 data 

Condition Rating Group Deck Superstructure Substructure 

𝑑𝑑 = 9 1.00 0.67 0.50 

𝑑𝑑 = 8 1.32 2.01 1.53 

𝑑𝑑 = 7 1.13 1.52 1.38 

𝑑𝑑 = 6 1.10 1.37 1.03 

𝑑𝑑 = 5 0.93 0.61 1.38 

𝑑𝑑 = 4 1.00 1.00 1.00 

 

 

 

Table 17. Transition probability matrices of bridge components using PHM 

Deck 𝑃𝑃 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0.50

0
0
0
0
0
0

  

0.50
0.97

0
0
0
0
0

  

0
0.03
0.97

0
0
0
0

  

0
0

0.03
0.93

0
0
0

  

0
0
0

0.07
0
0
0

  

0
0
0
0
1
0
0

  

0
0
0
0
0
1
1⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

Superstructure 𝑃𝑃 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0.63

0
0
0
0
0
0

  

0.37
0.91

0
0
0
0
0

  

0
0.09
0.96

0
0
0
0

  

0
0

0.04
0.90

0
0
0

  

0
0
0

0.10
0
0
0

  

0
0
0
0
1

0.80
0

  

0
0
0
0
0

0.20
1 ⎦

⎥
⎥
⎥
⎥
⎥
⎤
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Substructure 𝑃𝑃 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0.71

0
0
0
0
0
0

  

0.29
0.96

0
0
0
0
0

  

0
0.04
0.97

0
0
0
0

  

0
0

0.03
0.96

0
0
0

  

0
0
0

0.04
0
0
0

  

0
0
0
0
1

0.95
0

  

0
0
0
0
0

0.05
1 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

 

 

 

 
Figure 14. Deterioration rate curves estimated using PHM with 2010 data 

 
 

Semi-Markov Model 

A semi-Markov model of the bridge deterioration is different than other models mentioned above. 

In the other models, time is not explicitly expressed in computation of transition probabilit ies. 

However, in a semi-Markov model, transition probability function is a function of time. In this 

research, a semi-Markov process followed a model formulated and developed by J. O. Sobanjo, 

(2011). 
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At any time 𝑡𝑡, the transition probability 𝑒𝑒𝑖𝑖𝑘𝑘(𝑡𝑡,Δ) out of a state 𝑑𝑑 into any lower condition state, 𝑘𝑘 

within a period Δ after time 𝑡𝑡, is following. 

𝑒𝑒𝑖𝑖𝑘𝑘(𝑡𝑡,𝛥𝛥) =
𝐹𝐹𝑖𝑖(𝑡𝑡 + 𝛥𝛥)− 𝐹𝐹𝑖𝑖(𝑡𝑡)

𝑆𝑆𝑖𝑖(𝑡𝑡)
 

Eq. 52 

 

where Fi(t) is the cumulative distribution function of a probability distribution function, 𝑓𝑓𝑖𝑖(𝑡𝑡) in 

state 𝑑𝑑 and Si(t) is the survivor function in state 𝑑𝑑. Therefore, 

𝑒𝑒𝑖𝑖𝑘𝑘(𝑡𝑡,𝛥𝛥) = 1−
𝑆𝑆𝑖𝑖(𝑡𝑡+ 𝛥𝛥)
𝑆𝑆𝑖𝑖(𝑡𝑡)

 
Eq. 53 

 

The probability of staying the same condition state 𝑑𝑑 is following 

𝑒𝑒𝑖𝑖𝑖𝑖(𝑡𝑡,𝛥𝛥) = 1− 𝑒𝑒𝑖𝑖𝑘𝑘(𝑡𝑡,𝛥𝛥) =
𝑆𝑆𝑖𝑖(𝑡𝑡+ 𝛥𝛥)
𝑆𝑆𝑖𝑖(𝑡𝑡)

 
Eq. 54 

 

The following assumptions are made to simplify the computation in bridge deterioration process. 

● The initial time is zeros in the initial state 𝑑𝑑. In other words, the age of a bridge is 

not considered in the initial state 𝑑𝑑. 

● There are no MR&R activities on bridges. 

● The condition rating of a bridge cannot be decreased more than two ratings in an 

inspection period. 
 
Then the semi-Markov process can be formulated as: 

𝑃𝑃𝑖𝑖𝑘𝑘(𝑡𝑡) = 𝑆𝑆𝑖𝑖(𝑡𝑡), 𝑑𝑑 = 𝑗𝑗, Eq. 55 

 

𝑃𝑃𝑖𝑖𝑘𝑘(𝑡𝑡) = ��𝑓𝑓𝑖𝑖𝑘𝑘(𝑥𝑥)𝑃𝑃𝑘𝑘𝑘𝑘(𝑡𝑡− 𝑥𝑥)
𝑡𝑡

𝑥𝑥=1𝑘𝑘

, 𝑑𝑑 ≠ 𝑗𝑗  
Eq. 56 
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where 𝑘𝑘 is an state between states 𝑑𝑑 and 𝑗𝑗. A transition probability can be computed within time Δ 

after time 𝑡𝑡 in state 𝑘𝑘. Pkj(t − x) can be rewritten as a function of the cumulative distribut ion 

function. 

𝑃𝑃𝑖𝑖𝑘𝑘(𝑡𝑡) = ��𝑓𝑓𝑖𝑖𝑘𝑘(𝑥𝑥) �
𝐹𝐹𝑘𝑘𝑘𝑘(𝑡𝑡 − 𝑥𝑥)− 𝐹𝐹𝑘𝑘𝑘𝑘(0)

1 −𝐹𝐹𝑘𝑘𝑘𝑘(0) �
𝑡𝑡

𝑥𝑥=1𝑘𝑘

, 𝑗𝑗 = 𝑘𝑘+ 1 
Eq. 57 

 

Therefore, 𝑃𝑃𝑖𝑖𝑘𝑘(𝑡𝑡) can be obtained by following equation 

 

𝑃𝑃𝑖𝑖𝑘𝑘(𝑡𝑡) = 1− (𝑃𝑃𝑖𝑖𝑖𝑖(𝑡𝑡) + 𝑃𝑃𝑖𝑖𝑘𝑘(𝑡𝑡))  Eq. 58 

 
In this report, the Weibull survival function was used, and the shape and scale parameters were 

obtained and shown in Table 18. The value of 𝛽𝛽 in condition rating 4 is infinite, so the transition 

probability of staying the same in condition rating 4 is assumed to be as 1.  Transition probability 

matrices were estimated for every year (Table 19). Transition probabilities of staying the same 

condition rating is decreasing as time is increasing. For example, the probability of staying in 

condition rating 8 at 1-year is 1 and it drops 0.06 at 60-year. Figure 15 shows deterioration rate 

curves of deck (solid line), superstructure (dash line), and substructure (dot line) estimated with 

2008-2010 data. Their deterioration rates are similar up to 10 years and after 50 years. 

 
Table 18. Parameters, 𝛼𝛼 and 𝛽𝛽 of bridge components: Deck with 2008 data 

Condition Rating Group Scale, 𝛼𝛼 Shape, 𝛽𝛽 

𝑑𝑑 = 9 3.72 8.34 

𝑑𝑑 = 8 38.36 2.34 

𝑑𝑑 = 7 40.91 3.25 

𝑑𝑑 = 6 47.18 6.22 

𝑑𝑑 = 5 48.74 7.33 

𝑑𝑑 = 4 52.00 Inf 
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Table 19. TPM at various years 

𝑃𝑃(0) =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
1
0
0
0
0
0
0

  

0
1
0
0
0
0
0

  

0
0
1
0
0
0
0

  

0
0
0
1
0
0
0

  

0
0
0
0
1
0
0

  

0
0
0
0
0
1
0

  

0
0
0
0
0
0
1⎦
⎥
⎥
⎥
⎥
⎥
⎤

 𝑃𝑃(1) =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
1
0
0
0
0
0
0

  

0
1
0
0
0
0
0

  

0
0
1
0
0
0
0

  

0
0
0
1
0
0
0

  

0
0
0
0
1
0
0

  

0
0
0
0
0
1
0

  

0
0
0
0
0
0
1⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

𝑃𝑃(10) =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0
0
0
0
0
0
0

  

0.98
0.96

0
0
0
0
0

  

0.02
0.04
0.99

0
0
0
0

  

0
0

0.01
1
0
0
0

  

0
0
0
0
1
0
0

  

0
0
0
0
0
1
0

  

0
0
0
0
0
0
1⎦
⎥
⎥
⎥
⎥
⎥
⎤

 𝑃𝑃(20) =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0
0
0
0
0
0
0

  

0.87
0.80

0
0
0
0
0

  

0.13
0.19
0.91

0
0
0
0

  

0
0

0.09
1
0
0
0

  

0
0
0
0
1
0
0

  

0
0
0
0
0
1
0

  

0
0
0
0
0
0
1⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

𝑃𝑃(30) = 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0
0
0
0
0
0
0

  

0.65
0.57

0
0
0
0
0

  

0.35
0.42
0.69

0
0
0
0

  

0
0.01
0.31
0.94

0
0
0

  

0
0
0

0.06
0.97

0
0

  

0
0
0
0

0.03
1
0

  

0
0
0
0
0
0
1⎦
⎥
⎥
⎥
⎥
⎥
⎤

 𝑃𝑃(40) = 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0
0
0
0
0
0
0

  

0.40
0.33

0
0
0
0
0

  

0.60
0.62
0.39

0
0
0
0

  

0
0.05
0.60
0.70

0
0
0

  

0
0
0

0.30
0.79

0
0

  

0
0
0
0

0.21
1
0

  

0
0
0
0
0
0
1⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

𝑃𝑃(50) = 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0
0
0
0
0
0
0

  

0.19
0.16

0
0
0
0
0

  

0.81
0.69
0.15

0
0
0
0

  

0
0.15
0.83
0.24

0
0
0

  

0
0

0.02
0.76
0.30

0
0

  

0
0
0
0

0.70
1
0

  

0
0
0
0
0
0
1⎦
⎥
⎥
⎥
⎥
⎥
⎤

 𝑃𝑃(60) = 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0
0
0
0
0
0
0

  

0.06
0.06

0
0
0
0
0

  

0.94
0.63
0.03

0
0
0
0

  

0
0.31
0.88
0.01

0
0
0

  

0
0

0.09
0.98
0.01

0
0

  

0
0
0

0.01
0.99

1
0

  

0
0
0
0
0
0
1⎦
⎥
⎥
⎥
⎥
⎥
⎤
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Figure 15. Deterioration rate curves estimated using semi-Markov with 2010 data 

 
 

Weibull Distribution Based Approach 

The data obtained from the National Bridge Inventory (NBI) shows a record of over 50,000 

highway bridges in the state of Texas from the year 1992 to 2017. Weibull distribution approach 

was used to model the deterioration rate of concrete decks with multi span girders over a ten-year 

period (2006 – 2016). The bridges were filtered with respect to deck condition ratings and further 

classified by age. 

In order to develop a Weibull based deterioration curve, the shape and scale parameters for each 

condition rating need to be determined. The frequency distribution chart Figure 17 presents the 

distribution of bridges for various condition rating (9 to 4) with respect to age of bridge. There 

are several things to note. First, the number of bridges in each condition rating in the data set 

varies substantially. Most bridges are rated between 8-6, and these distributions show a clear 

bimodal tendency with peaks at approximately 25 and 50 years. These shapes of distribution do 

not allow for clean calculation of the shape and scale parameters as discussed in Chapter 2 and 

depicted in Figure 1. Table 20 shows the tabulation of these parameters for this dataset. 

 

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70

C
on

di
tio

n 
Ra

tin
g

Age

Deck
Superstructure
Substructure



 

Development of a Robust Framework for Assessing Bridge Performance using a Multiple Model 
Approach 
 

71 

 

 
a.  

 
b.  

 
c.  

 
d.  

 
e.  

 
f. 

Figure 16 – Frequency Distributions of Age at Each Condition Rating 
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Note the marked jump in the scale parameter between condition rating 9 and 8. This is both a 

function of the small number of structures with a condition rating of 9 and the tendency in this 

dataset for bridges to dwell at condition rating 8. The mean age of these structures was 35 years 

old. The resulting polynomial best fit, shown in Figure 17, provides an impossible solution.  

 

Table 20: Weibull Distribution Parameters for Condition Rating 

Condition Rating Scale Parameter Shape Parameter 

9 1.95 3.81 

8 35.86 1.99 

7 40.85 2.87 

6 46.64 4.03 

5 49.40 5.0 

4 51.27 13.20 

 

 

 
Figure 17 - Weibull Deterioration Model 
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The deterioration curve shown from the Weibull prediction extends above a condition rating of 9 

which is both illogical and physically impossible in a relative sense. A bilinear approximation is 

shown to highlight the difference.  

Evaluation of Results 

Obtained TPMs and deterioration curves using RNO, BML, OPM, PR, NBR, PHM, and the mean 

value of these TPMs with the three data sets were compared with actual data by using the chi-

squared goodness-of-fit test to find which model estimates closer probability distribution to the 

actual value and measured the consistence between them by using the modal assurance criterion 

test to find whether TPMs and deterioration curves obtained by using different data sets are 

consistent. 

Chi-square goodness-of-fit Test 

The closeness of the predicted condition states and probability distributions were measured. 

Condition state distributions of the 2010 year were estimated with the initial condition distribut ion, 

𝑄𝑄0  obtained from the 2008-year data set by the Markovian process. The initial condition state 

distribution of bridge deck is 

𝑄𝑄0 = [0.001 0.161 0.715 0.112 0.011 0.001 0] Eq. 59 

 

The expected value of condition state distribution, 𝑃𝑃(2) at time, t=2 is computed as follows: 

 

𝑃𝑃(2) = 𝑄𝑄0 × 𝑃𝑃2 Eq. 60 

 

The chi-square is  

𝜒𝜒2 = �
(𝑅𝑅𝑖𝑖 − 𝐸𝐸𝑖𝑖)2

𝐸𝐸𝑖𝑖

𝑘𝑘

𝑖𝑖=1

 
Eq. 61 

 

where 𝑘𝑘 is number of observations; 𝑅𝑅𝑖𝑖 is actual condition state of the ith observation; and 𝐸𝐸𝑖𝑖 is 

expected value of the ith observation. The smaller chi squared value means the estimated value is 
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closer to actual value. Table 21 shows the results. The values of the chi-square test of bridge deck, 

superstructure, and substructure are 0.05 or less than 0.05 obtained from different models, except 

the value of bridge deck in PHM model. In other words, the estimated probability distribution is 

fitted over 95 % to the actual probability distribution. However, the probability distribut ion 

estimated using PHM for bridge deck is not fitted well to the actual distribution.  

 

Table 21. The values of chi-square of bridge components using different models 

Models Deck Super structure Sub structure 
RNO 0.02 0.01 0.10 
BML 0.01 0.01 0.02 
OPM 0.02 0.01 0.01 
PR 0.01 0.01 0.01 

NBR 0.02 0.01 0.01 
PHM 0.39 0.05 0.05 

 

Modal Assurance Criterion 

Modal Assurance Criterion (MAC) is used as a statistical indicator to compare of modes 

quantitatively in modal analysis. The MAC value represents the consistence of modes of two 

structures, which are mathematically represented as matrices. A MAC value is similar to 

coherence. This concept was applied to compute the consistence of TPMs and deterioration curves 

between the three data sets, set A, set B, and set C in this research. The value of the MAC is 

between 0 and 1. A value larger than 0.9 represents that the modes are consistent and a value closer 

to 0 represents that the modes are less consistent (Pastor et al. 2012).  

 

𝑀𝑀𝐴𝐴𝐶𝐶(𝐴𝐴,𝑋𝑋) =
�∑ {𝜑𝜑𝐴𝐴}𝑘𝑘{𝜑𝜑𝑋𝑋}𝑘𝑘𝑛𝑛

𝑘𝑘=1 �2

�∑ {𝜑𝜑𝐴𝐴}𝑘𝑘
2𝑛𝑛

𝑘𝑘=1 ��∑ {𝜑𝜑𝑋𝑋 }𝑘𝑘
2𝑛𝑛

𝑘𝑘=1 �
 

Eq. 62 

 

where {𝜑𝜑𝐴𝐴} and {𝜑𝜑𝑋𝑋 } are the two sets of vectors. The results are shown in  
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Table 23, Table 24 and Table 25. Some MAC values for TPMs are less than 0.9, but all MAC 

values for deterioration curves are 1, and are not shown. The values in RNO, BML, OPM, PR, and 

NBR are about 0.9 or more than 0.9. This means estimated transition probabilities using these 

models with different data sets are similar.  Some MAC values in PHM are lower than 0.9. In deck, 

the values of A&B and A&C are 0.73 and 0.67 respectively. In Table 22, the probabilities obtained 

with different data set are different. However, the deterioration rates using these TPMs are similar 

(Figure 18). From these results a consistent deterioration rate can be estimated using a model 
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mentioned in this research with any random data set if the same classifications of bridge 

components are applied. can be similar. 

 

 

Table 22. Transition probability matrices of decks using PHM with different data sets 
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Table 23. Modal Assurance Criterion Results for TPM of bridge deck 

Models A&B A&C B&C 
RNO 0.97 0.96 1.00 
BML 1.00 0.98 0.98 
OPM 0.97 0.97 0.91 
PR 0.99 0.97 0.94 

NBR 0.99 0.97 0.92 
PHM 0.73 0.67 0.95 

 

 

Table 24. Modal Assurance Criterion for TPM of bridge superstructure  

Models A&B A&C B&C 
RNO 0.99 1.00 0.98 
BML 1.00 0.98 0.98 
OPM 0.95 0.98 0.89 
PR 0.97 0.97 0.92 

NBR 0.96 0.97 0.89 
PHM 0.97 0.88 0.91 

 

 

Table 25. Modal Assurance Criterion for TPM of bridge substructure  

 

 
Models A&B A&C B&C 
RNO 1.00 1.00 1.00 
BML 1.00 0.99 0.98 
OPM 0.94 0.99 0.92 
PR 0.98 0.99 0.95 

NBR 0.98 0.99 0.95 
PHM 0.97 0.84 0.83 
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Figure 18. Deterioration rate curves of decks estimated using PHM with different data sets 
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Multiple Model Deterioration Modeling Approaches 

This chapter presents two approaches to multiple model deterioration modeling. The first approach 

utilizes the deterioration modeling approaches that involve a transition probability matrix – state-

based approaches – to create a single combined TPM. The second takes a similar approach at the 

deterioration curve stage.   

Multiple Approach with Markovian process 

To generate a reliable deterioration rate curve by the Markovian process the individual models 

included regression nonlinear optimization (RNO), Bayesian maximum likelihood (BML), 

ordered probit model (OPM), Poisson regression (PR), negative binomial regression (NBR), and 

proportional hazard model (PHM) were combined. Figure 19 describes the procedure of mult ip le 

model approach. The following steps are included: 

• The mean values of transition probabilities were computed by averaging the sum of each 

transition probability obtained from each model.   

• Using Eq. 10 with the transition probability matrix, a deterioration rate curve was 

generated. 

• The upper and lower boundary envelopes were estimated by  (1) checking the goodness-

of-fit for each curve (2) selecting the third order polynomial for all curves based on the 

value of 𝑅𝑅2, closer to 1 (3) applying the polynomial to each curve and obtaining the lower 

and upper boundary with 95% confidential interval (4) comparing the boundary values of 

each curve and (5) determining the lowest and highest values at any time. If the value 

showed lower than zero, the lower limit was zero. If the value increased, the upper limit 

was the value before increasing.  

Table 26 show the transition probability matrices for bridge deck, superstructure, and substructure 

respectively. Figure 20, Figure 21, and Figure 22 depict deterioration rate curves of bridge 

components. The graphs show three curved lines. Mean (solid line) is the deterioration curve 

obtained from averaging models mentioned above, LB (dot line) is the lower boundary, and UB is 

the upper boundary. The estimated future condition rating can be within the boundaries in 95% 

certainty. For example, the condition rating of a bridge deck at 40 years can be 4, 5, 6, 7, or 8. 
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Figure 19. Multiple model approach work flow chart  
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Table 26. Mean transition probability matrices of bridge components 
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Figure 20. Deterioration curve of deck using multiple approach with 2010 data 

 

 
Figure 21. Deterioration curve of superstructure using multiple approach with 2010 data 
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Figure 22. Deterioration curve of substructure using multiple approach with 2010 data 

 

Discussion of Multiple Model Approaches 
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Conclusions and Future Work 

Summary 

This report describes a research effort focused on developing a robust, flexible framework for 

providing reliable performance assessments and forecasting remaining service life for structures. 

The intention per the proposal was to integrate quantitative data into the framework, but the focus 

shifted to exploring a more robust approach to deterioration modeling that incorporated mult ip le 

models. This has more immediate impact on practice as it was discovered that the market 

penetration of uncommon data sources like structural health monitoring is not great enough to 

support exploration of the topic, nor are those entities using the technology readily sharing the 

data. 

There were serval deliverables for this project. An ontology of bridge data sources was developed. 

An open-source python tool for querying NBI data was created and is available on GitHub in 

perpetuity.  Finally, several approaches to multiple model deterioration modeling are presented. In 

depth conclusions and future work needs are presented herein.  

Bridge Data Ontology 

An ontology of bridge data sources was developed. The ontology serves as a starting point which 

can be built upon as the future of bridge engineering comes to fruition. The ontology is presented 

through some key characteristics reflecting the type of data, time factor, form factor, and other 

characteristics that serve to define and distinguish these data sources. The second portion of the 

ontology is the relationships between the data sources, which are hierarchical predominate ly. 

Those relationships are key to integrating these data streams in the future.  

Smart Cities  

The smart cities ideology is centered on the connectivity of a city’s services and infrastruc ture 

through digital telecommunications. This same concept can be integrated in the bridge community 

for tracking the condition and design changes in bridges. Through a comprehensive literature 

search, it was determined that the concept of smart cities was better suited to serve as a guiding 

principle than an implementable framework for this application. The key tenets of smart cities are 
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People, Living, Economy, Environment, Governance and Mobility with technology as a consistent 

thread throughout. There is a symmetry between these and structural performance. However, the 

broad definition of structural performance required to include these six tenets is not congruent with 

the definition of performance associated with deterioration modeling. To adopt this framework 

would be to introduce complexity unnecessarily.  

Bridge Information Modeling 

Bridge Information Modeling can be used as the documentation of bridge design plans where data 

can be tied to components, regions, or even specific points in the spatially accurate model. This 

data can be used to inform the development of bridge finite element models and can house results 

from those models. Experimental data from point in time experiments could be included as well. 

Existing CAD files and other software certified by the BrIM application of choice can be imported 

in the system for a less time-consuming modeling task. Multiple stakeholders can have access to 

the bridge BrIM project and easily share updates and changes. 

The challenges with BrIM as a framework for data integration in this context are twofold. First 

any data that varies with time adds an extra dimension to BrIM that appears to be less of a 

consideration. Second, simply tying data to a point in space on a bridge does not establish the 

relationships required to utilize that data together. There would have to be an effort to understand 

how data relates to one another mechanistic, probabilistically or hierarchically, which does not 

lend itself to automation or general application.   

 

Single Model Approaches 

Ten approaches for developing deterioration curves were implemented for a subset of Texas 

bridges using component level deterioration information from the National Bridge Inventory 

database. The results were fairly consistent across approaches. The Proportional Hazard Method 

tended to produce the most conservative results, likely because it does not rely only on past data, 

but also on a regression analysis of the explanatory variables which are used to define the dataset. 

This analysis served to accentuate the importance of the supplied data, as opposed to the selected 

model. In this case, the model predictions would all be similar to examining Figure 23 and simply 
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guessing that the condition rating would likely be a 7 or a 6 at age 50. Given the long outlook and 

large amount of uncertainty surrounding deterioration modeling, it could be argued that this is the 

more appropriate action. All of this serves to highlight the importance of the new bridge data 

sources discussed in the bridge ontology, and how they might serve to improve this process.  

Multiple Model Approaches 

A predicted future condition state with single model approach might not be reliable. The approach 

provides a single average value at each age. However, all bridges at the same age are not the same 

condition rating. For example, a concrete bridge deck at 50 years old, the estimated condition 

rating is 7 from PR, OPM, BML, RNO, NBR, and 6 from PHM. The average of the actual condition 

rating of the deck at 50 years old in 2010 data is 7. However, Figure 23 shows the number of bridge 

decks at each condition rating at 50 years old. A range of the condition rating is from 8 to 4. The 

range is within the boundaries obtained from the multiple model approach method.   

 

 

 
Figure 23. Number of bridge decks at 50 years by condition rating groups with 2010 data 
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• The relationships between explanatory variables and bridge deterioration should be 

investigated in depth. This step is treated in a very cursory manner in most deterioration 

modeling applications. Expert judgment is used to identify explanatory variables and little to 

no thought is given to the implications of that decision. This crucial preliminary step has 

influenced nearly all of the bridge deterioration literature. In this research, the choice of bridges 

clearly affected the results as most of the bridges clustered between 8 and 6 and did not provide 

strong data on which to make predictions.  

• Integrating many single model approaches within a given model type (i.e., probabilis t ic 

models) does not provide a substantial increase in the value of the prediction because of the 

broad range of outcomes that actually gets wider with each additional model including in the 

approach. There is a need to include different model families, like mechanistic models, to 

improve the results. This research focused on including different models within a family.  

• The primary challenges to this are identifying approaches that include both the temporal and 

spatial differences in the data to be included, as well as identifying the relationships between 

data sources that define their mathematical or categorical relationships.  

• Ensemble approaches provide promising results, but also have the potential to mask the 

deficiencies in the original data through overfitting. It is easy to end up with a model that 

overfits data and provides high accuracy without any indication of the potential variability in 

responses. These approaches should be explored in greater detail.   
 

All results from this project, and future on-going work, will be housed on GitHub at 

https://github.com/PASS-Lab/MMDM, and is available under the MIT Open Source License. See 

the repository for details.  

 

 

  

https://github.com/PASS-Lab/MMDM
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