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Abstract 

Vibration based damage detection methods are typically used in Structural Health Monitoring to keep track of 
the deterioration and identify the presence of damage in civil structures like bridges and buildings. The basic 
idea behind such methods is to monitor the variational pattern of certain features (e.g. natural frequencies, 
mode shapes, etc.) extracted from the measured structural response. The performance of these approaches 
predominantly depends on how well these features reflect the actual condition of the structure. In fact, modal 
parameters, such as natural frequencies and mode shapes are commonly used in monitoring the performance of 
bridges and buildings: however, in assessing the damage of such structures, these features could be misleading 
in pointing out the integrity status of the structure since they are highly influenced by the usual fluctuations 
in environmental and operational conditions. The effects of environmental and operational conditions could 
overshadow the occurrence of deterioration and damage, invalidating the purpose of the investigation. 

Recently an adaptation of Mel-Frequency Cepstral Coefficients as damage sensitive features for structural 
health monitoring of civil structures was addressed. Typically used in speaker recognition methodologies, these 
indices offer an extremely easy extracting process with a few user-defined parameters and a low computational 
burden and they have been shown to be an effective alternative to other features for damage detection problems. 

This report investigates the dependency of cepstral coefficients from the mechanical properties of structures 
and in detail on how they behave when these properties vary. In Chapter 1 the extraction procedure which 
needs to be followed to compute these features is presented. After introducing the theoretical background a 
brief introduction is made of the cointegration technique, which is a methodology that can be used to remove 
the environmental trend from monitoring data. In Chapter 3 and Chapter 4 two study cases are presented: 1) 
a numerical simulation of a cantilever beam subject to environmental variations both in undamaged as well as 
damaged conditions, and 2) the benchmark case of the Z24 bridge, a structure in Switzerland that was recently 
demolished and that was fully instrumented, during operational conditions as well as during demolition. 
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Chapter 1 

Cepstral Coefficients 

1.1 Introduction 

The Mel-Frequency Cepstral Coefficients are features commonly used in the field of speaker and speech recog-
nition. These are features that are extracted from the recorded voice signal and are used to characterize the 
”structure” of the vocal apparatus of an individual. Even though they are linked to the mechanical proper-
ties of a system, they are substantially different from other features generally in Structural Health Monitoring 
problems, such as modal frequencies or mode shapes, as they allow for consideration of the response property 
in both the frequency and time domain simultaneously. Since structural damage alters the structural response, 
it is reasonable to expect that the cepstral coefficients will also experience a variation and so, by tracking their 
variation over time, it will be possible to detect the occurrence of damage, its significance and the location of 
the occurrence. 

The cepstrum of a signal x(t) is defined as the inverse Fourier transform of the log-spectrum of x(t). Orig-
inally the cepstrum was born with the aim of finding a procedure able to filter the effects of echoes from time 
series and it was firstly introduced by Bogert [1] and his colleagues at Bell Laboratories in 1963. The discrete-
time formulation of the cepstrum and of its complex counterpart, the complex cepstrum, was lately addressed 
by Schafer and Oppenheim [2]. A compact version of the cepstrum was proposed in 1980 by Davis and Mer-
melstein [3], who suggested the use of the Mel-spectrum, named after the Melody scale, to get the cepstral 
representation of speech signals. The discrete set of coefficients extracted from the sampled speech signal were 
called Mel-Frequency Cepstral Coefficients. It is noteworthy that such representation of the cepstral features is 
a compact version of the real cepstrum, which preserve only information on the magnitude of the log-spectrum, 
while the information on the phase are lost. 

The first application of these coefficients for civil engineering applications was given by Zhang et al. [4], 
who used MFCCs to detect concrete delamination on a bridge deck by analyzing the MFCCs extracted from 
records of the impact sound produced by impacting the surface of the concrete slab with a steel bar. Recently an 
adaptation of Mel-Frequency Cepstral Coefficients as damage sensitive features feasible for SHM purposes was 
proposed by Balsamo and her colleagues [5]. These are the features herein explored, as their compactness and de-
correlation characteristics make them particularly suited to be used as damage sensitive features. Moreover these 
coefficients require very low user expertise to be extracted and analyzed, making them particularly convenient 
for implementation into automatic structural health monitoring procedures. In this chapter, the extraction 
procedure of an adaptation of MFCC features to best fit the characteristics of structural response time histories 
is explored. These features are extracted directly from the time histories of the structural response and are used 
in a statistical pattern recognition approach to infer damage occurrence. 

1.2 Feature selection 

In the following block diagram, a schematic representation of the extraction process of the cepstral coefficients 
(c[d]) from a given data sequence (x[n]) is shown. 
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The extraction process of cepstral coefficients is extremely simple and has low computational requirements. 
The cepstral coefficients can be extracted from a sampled signal x[n] applying the procedure defined in the flow 
chart in (1.2), the reader is referred to [5] for a detailed treatment of the subject. 

This section focuses on the steps that need to be followed in order to extract the cepstral coefficients from a 
sampled time history. In order to simplify the description of the process, the extraction methodology is applied 
to the time-history of the acceleration response of a single degree-of-freedom system. This will allow us to 
highlight the cepstral coefficients are linked to the structural properties of the system. 

The simulated system tested in this case is a 1-story shear-type system, modeled according to the common 
mass-spring-viscous damper chain. The baseline system is characterized by a stiffness, k0 = 6× 106 N/m, and 
mass, m0 = 2 × 103 Kg. The energy dissipation properties of the system are modeled through the Rayleigh 
damping mechanism. The acceleration response to a white Gaussian noise input is simulated. The input time 
histories, of mean 0 and standard deviation 1, are 2 minutes long, sampled at 0.005 s (fs=200 Hz). From an 
analysis of the power spectrum of the response, it is possible to see that the entire energy content is between 0 
Hz and 50 Hz. Since this example is just to highlight the extraction of the cepstral coefficients of the structural 
response, no measurement noise is introduced in the signal. 

1.2.1 Framing and Windowing 

In the preliminary step, each one of the Nth recorded time histories is framed into Nframes segments (each 
segment is called ”a frame”), which must be long enough so to be considered stationary. In each segment (or 
frame), Nsamples represents the number of samples or data points. Then, in order to reduce the riddle effects on 
the frame spectra due to the segmentation procedure (leakage phenomenon), non-rectangular windows (usually 
Hamming windows) are applied to each frame. 

The Hamming window is by far the most popular window used in speech processing. One reason for the 
popularity of the Hamming window is the fact that its spectrum falls off rather quickly, so it allows for better 
isolation of the predominant frequencies. However, its, so called, side-lobes (higher harmonics) stay quite flat 
and they cover most of the spectrum. Equation 1.1 shows the expression for the kth coeffcient of a K-point 
Hamming window: � �

2πk 
w[k] = 0.54 − 0.46 cos , for k = 0, ..., K − 1 (1.1) 

K 

In Figures 1.1, 1.2 and 1.3, the framing and windowing process for a single time history of the SDOF system 
under consideration are graphically presented. 

Figure 1.1: Acceleration Respon
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Figure 1.2: Framed Time History for the first 5 frames 

Figure 1.3: Windowed Framed Time History for the first 5 frames 

Subsequently, applying the Discrete Fourier Transform (DFT) the power spectrum is evaluated for each 
frame. 

1.2.2 Frequency warping 

In order to emphasize the parts of the spectrum that are more likely to represent the structural behavior, a 
frequency warping procedure is performed. Such a procedure allows to modify and scale the linear frequency 
scale with the objective of weighing more the area of the spectrum with the greatest energy content. The new 
modified frequency scale and the linear frequency scale are almost equivalent up to a cutoff frequency fc, after 
which their relation becomes logarithmic. This approach is quite similar to the one commonly done in speaker 
recognition but with a different cutoff frequency: in fact, this new scale mimics the trend of the Mel-scale used 
in acoustics, but working on a frequency range compatible with structural problems. This cutoff parameter is 
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defined by the user: in this specific example, the value of fc is set equal to 11 (Hz.). 

If Nframes is the number of frames obtained from one time history, at the end of this first stage for each of 
the Nth realization, there will be Nsamples × Nframes response windowed segments. Averaging the spectra of all 
such segments results in what will be referred to as an average spectrum. The average spectrum highlights the 
frequency range within which the greatest frequency content is observable. The cutoff frequency is then chosen 
as the upper bound of the portion of the averaged spectrum (Fig. 1.4). 

f̃ = fc log2(1 + 
f 
) (1.2) 

fc 

Fc

Figure 1.4: Averaged PS on all the frames 

Once the average spectrum is computed and the frequency rage is scaled accordingly, then the so-called 
”frequency warping” begins. The frequency warping step is performed by grouping together the Power Spectral 
values into M critical bands and weighting each group by a triangular weighting function. The number of critical 
bands, M, is set equal to 3ln(fs), where ln() represents the natural logarithm operation, while fs is the sampling 
frequency: this relationship is quite common in the speaker recognition research field and can be adopted also 
for structural problems. 

The triangular filters are constructed such that their centers are equally spaced on the frequency scale (f̃), 
given in Eq.(1.2), with each filter being symmetric with respect to its center (see Fig. 1.5). 
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Figure 1.5: Power Spectrum Amplitude and Weights of the triangular filter 
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Figure 1.6: Multiplication of Power Spectrum Amplitude and Weights of the triangular filter 

Consequently, the power spectrum of each frame is weighted by multiplying it by the triangular filter corre-
sponding to each mith frequency band (Fig. 1.7). After that, each contribution coming from this multiplication 
is summed up leading to the matrix H of dimensions M × Nframes. 
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Figure 1.7: Multiplication of Power Spectrum Amplitude and Weights of the triangular filter 
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Figure 1.8: Multiplication of Power Spectrum Amplitude and Weights of the triangular filter 
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Figure 1.9: Modified PS and Log Modified PS for frame 1 of the first degree of freedom 

1.2.3 Extraction of Cepstral Coefficients (CC) 

The cepstrum coefficients extraction procedure is completed applying to the logarithm of the modified spectra 
an D-points Inverse Discrete Cosine Transform (IDCT) so to obtain: 

M−1 

c[d, k] = am ln(H[m, k])cos[ 
X π(2d + 1)m 

] for d = 0, ..., D − 1 for k = 1, ..., Nframes (1.3) 
2M 

m=0 

1 2 where am is equal to , for m=0, and to otherwise. H[m] represents the mth point of the modified spectrum, M M 
where m=0,...,M-1 while c[d] is the dth cepstral coefficient, which could be collected in a coefficient vector for 
each kth frame c(k) ∈ RD×1 . 

From a purely educational point of view, we could compute the coefficients of IDCT independently for each 
cepstral coefficients (Fig. 1.11) in order to better appreciate how these coefficients modify the different frequency 
contribution of the newly modified log spectrum (Fig. 1.10). 

XM−1 

cIDCT [d] = amcos[ 
π(2d + 1)m 

] for d = 0, ..., D − 1 (1.4) 
2M 

m=0 
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Figure 1.10: Multiplication of DCT coefficients by the log of the modified spectrum per each frame 
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Figure 1.11: cIDT Coefficients of the Inverse Discrete Cosine procedure 
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Figure 1.12: applying the discrete cosine transform coefficients to the n frame 

Figure 1.13: applying the discrete cosine transform coefficients to the n frame 
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  Table 1.1:      Cepstral Coefficients for frame 1 

 c1  c2  c3  c4  c5  c6  c7  c8  c9  c10  c11  c12  c13  c14  c15 

 22,63  -10,42  2,59  -6,55  0,39  -4,14  0,51  -2,07  0,83  -1,04  0,56  -0,88  0,18  -0,49  -0,27 

                
                   

                  
                    

                   
                   

 

Figure 1.14: applying the discrete cosine transform coefficients to the n frame 

Figure 1.15: Cepstral coefficients for frame 1 

From this analysis, it appears that the cepstral coefficients (CCs) are always real and convey information 
about the physical characteristics behind the signal. For example, when d = 0, the cosine term of the IDCT 
becomes 1. Hence, the first cepstral coefficient, c0, can be considered to represent the average power of the 
signal. In addition, a negative coefficient c1 relates to the local minimum of the cosine in the IDCT noting that 
the higher frequency indices in the summation of the IDCT are contributing more. On the other hand, a positive 
peak means that there must be more power in the lower frequency range. As the number of cepstral coefficients 
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d becomes larger, the number of alternating partitions in the frequency range increases. For example, c2 is 
a combination of the first and third partitions of the frequency scale in contrast with the second and fourth 
partitions. This goes on as d increases. 

In this study, the inverse DCT has been used in place of inverse Discrete Fourier Transform (DFT). Defined 
by Ahmed et al., DCT was shown to perform better than DFT in transforming the original data into more 
compact and almost uncorrelated representations, and was proved to compare closely to the Karhunen-Loeve 
Transform (KLT), which is optimal for compressing data dimensionality. However, despite its optimality, there 
is no efficient algorithm able to implement KLT, while DCT may be implemented exploiting Fast Fourier 
Transform (FFT), i.e. in a highly computationally efficient fashion. KLT is the most basic approach to perform 
Principal Component Analysis (PCA), which is concerned with transforming the original data by projecting 
them into a reduced dimension space, whose basis vectors are represented by the data covariance eigenvectors 
associated with the largest eigenvalues, which, in turn, represent data components characterized by the greatest 
variance and are the most useful for recognition purposes. 
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Chapter 2 

Cointegration Technique 

2.1 Introduction 

The current section aims to introduce the concept of cointegration and its theoretical background which is 
known from the econometrics literature. This section draws from a number of key texts from the econometrics 
literature by Johansen (1995), Fuller (1996), Maddala & Kim (1998) and Juselius (2006). 

Basically, Cointegration is a mathematical method that is used, in various fields, to remove ”common trends” 
from data sets. Recently, it has been applied to SHM studies with the purpose of identifying a feature that can 
only give information on the health of the structure without the effects of external distrubances [6]. 

2.2 Cointegration 

To briefly explain the idea behind cointegration, let’s start from a set of non-stationary time series, that repre-
sents the evolution of the dynamic response of the system over time. The non-stationarity of the signal could 
come from a variety of reasons, from damage to environmental conditions. The aim is to define a combination 
of such non-stationary signals that is now stationary (where the non-stationairy has been confined only to the 
damage) and that can be used as a damage index or control parameter. 

To state a simple definition of cointegration, the following could be used: 

Definition Two or more non-stationary time series are cointegrated if a linear combination of them is sta-
tionary. If this stationary combination exists, the initial time series are defined cointegrated. 

In the following equation, where the non-stationary time series are modelled as a Vector AutoRegressive 
(VAR) process {yi} (in keeping with common practice in structural dynamics, vectors will be denoted with 
curved brackets {−}, and matrices with square brackets [−]), the series {yi} are cointegrated if a vector {β} 
exists such that zi is stationary, where 

zi = {β}T {yi} (2.1) 

If this is the case, {β}T is called a cointegrating vector. If {yi} includes a total of n variables, there may be 
as many as n − 1 linearly independent cointegrating vectors. Clearly, for the time series to be cointegrated, to 
begin with, they must have shared/common trends. 

An additional restriction that the initial non-stationary time series {yi} must satisfy is the following: 

Definition If a non-stationary process variable y becomes stationary after differencing d times, it is said to 
be integrated of order d, which is denoted y ∼ I(d). 
In other words, the time series must have the same ”degree of non-stationarity” if they are cointegrated. 

For the purposes of SHM, the intent would be to use monitored variables that are cointegrated and find the 
cointegrating vector to create a stationary residual sequence for damage detection. From an engineering point 
of view, monitored variables from the same process or system are more than likely to share common trends on 
account that each process variable will be driven by the same latent influences. This cannot be said, however, of 
the order of integration of each monitored variable, this must be ascertained before any attempt is made to find 
the cointegrating vector. The order of integration of a time series is ascertained in econometrics by employing a 
stationarity test, which is often analogous to testing for a unit root in a time-series model. The stationarity test 

15 



                  
                   

                   

                 
              

                  
               
         

 

employed here is called the augmented Dickey-Fuller (ADF) test, the reader is referred to [7] for a detailed treat-
ment of the subject. Once it has been ascertained to what order all process variables of interest are integrated 
to, it remains to find the cointegrating vector that will result in the most stationary combination of the variables. 

In the context of SHM usually the reference time series are simply the dynamic features of monitored 
structures (eg. accelerations, frequencies, etc); thus, if it exists, the co-integration relationship will possibly 
be nonlinear. Here this topic is addressed considering, on one hand, the possibility of having both linear and 
nonlinear combinations and on the other hand, considering as reference time series, the cepstral coefficients 
extracted from the acceleration response of the investigated system. 

16 



  

   

     

                
                  

                   
                 

                 

                 
                  
                  

                  
      

      

      

      

   
    

      

    

 

Chapter 3 

Simulated Cantilever Beam 

3.1 Beam and analysis description 

The simulated system tested is a steel cantilever beam (Fig. 3.1), modeled according to the common Euler-
Bernoulli’s beam theory. In this analysis, the beam is divided in 20 subelements (Fig. 3.2). The nodes are 
numbered in ascending order, so that the node closest to the constraint is labeled as 1. The energy dissipation 
properties of the system are modeled through the Rayleigh damping model. The material chosen for the beam 
is steel and the mechanical and geometric properties assigned to the beam are reported in Table (3.1) 

In this analysis, we are also investigating the effect of temperature on the estimation of the cepstral coef-
ficients. This is because the effects of temperature variation could induce the alteration in the values of the 
cepstral coefficients similar to those induced by structural damage and so it is important to study these effects 
and find ways to eliminate them. Here, in the beam example, the mechanical parameters are considered to be 
temperature-dependent according to the following expressions. 

L = L0(1 + αΔT ) 

A = A0(1 + αΔT )2 

I = I0(1 + αΔT )4 

ρ0 
ρ = 

(1 + αΔT )3 

E = E0(1 + βΔT ) 

H

W

L

Figure 3.1: Cantilever Beam 
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  Table 3.1:     Mechanical and geometric properties 

  Mechanical Property  Symbol  Value 
 Length  L[m]  5 

  Section Height  H[m]  0.3 
  Section Base  B[m]  0.3 

  Young’s Modulus  E[GPa]  210 
 kg 

  Volume Density  ρ[  ] 
 m3 

 8000 

                   
               

              

               
                   

                   
               

                  
                   

                     
                 

                

                
                  

                  
              

                 
               

                
      

 

Figure 3.2: Cantilever Beam 

In order to test the capability of the cepstral coefficients to detect structural damage from the analysis of the 
beam’s response, a ”damaged” beam has also been considered. The damage condition is simulated introducing 
a reduction of 10 % of the stifness of the 6th subelement (Fig. 3.2). 

To consider operational conditions with different temperature, so to simulate the working conditions of a 
bridge during different seasons, two different set of simulations are run for the cantilever beam: a set of 4500 
simulations considering the system in its healthy state and another set of 3600 tests in which the beam is 
defined damaged. Each one of these simulations, both in the undamaged or damaged conditions, corresponds 
to a specific value of temperature. In each simulation the acceleration response to a white Gaussian noise input 
is simulated. The input time history, of mean 0 and standard deviation 1, is 2 minutes long with sampling 
frequency of 200 Hz and it is applied at the free node of the beam. The response is simulated applying the 
Newmark integration approach. An additional 10 % noise is added to the computed values of the acceleration 
response of the beam so to include the effect of measurement noise in the inverse analysis. 

A matrix collecting the cepstral coefficients time history for each sensor is extracted following the procedure 
presented in Chapter 1. In order to have only one vector of coefficients for each observation the extracted 
vector are averaged over the frames. The 15 cepstral coefficients extracted for the first sensor in the undamaged 
condition, together with the simulated temperature variation, are presented in Fig.3.3 and Fig.3.4. Comparing 
the behavior of the cepstral coefficients with the simulated variation of temperature, it can be noticed how 
some of the coefficients are influenced by the environmental fluctuations (c1, c2, c3), while others remain mainly 
stationary (c4, c6, c7). The same behavior can be observed for the coefficients computed from the time histories 
measured with the other 19 sensors. 
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Figure 3.3: Temperature variation and CC 1-9 for sensor 1 in undamaged conditions 
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Figure 3.4: Temperature variation and CC 10-15 for sensor 1 in undamaged conditions 

The corrispondent cepstral coefficients for the damaged conditions are presente din Fig.3.5 and Fig.3.6 where 
the occurrence of damage is indicated by the vertical red line. The jump due to the change in stiffness is more 
visible in the first cepstral coefficients, while it tends to fade in the last features. 

In the time histories of coefficients affected by the variation of temperature, this little gap presents the same 
magnitude order of the fluctuations due to temperature and because of that the damage could be hidden and 
not detected. In the stationary coefficients, instead, the presence of damage clearly shows up. 
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Figure 3.5: Temperature variation and CC 1-9 for sensor 1 in damaged conditions 
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Figure 3.6: Temperature variation and CC 10-15 for sensor 1 in damaged conditions 

3.2 Application of Cointegration Technique to beam data 

To separate the temperature effects from the damage effects, the cointegration presented in this section is car-
ried out considering the Support Vector Machine method for the computation of the cointegrating vector. This 
methodology is implemented considering a Gaussian Kernel and 10 Folds for the Cross Validation. The model 
is trained over the a training specimen of 1500 data from observation 1000 until 2500 which is the range of data 
that consider the wider variation of temperature affecting the beam. 

The application of the cointegration technique on the cepstral coefficients affected by the temperature vari-
ation leads to the combined residual regression which is stationary and detrended (Fig.3.7 and Fig.3.8). This 
procedure allows to highlight the occurrence of damage in a clearer fashion. In a simple case like this simulated 
beam the damage, even if extremely small, could be spotted as well just looking at the cepstral coefficients not 
affected by the environmental fluctuations. 
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Figure 3.7: Timehistory of Cepstral Coefficient 1, the coefficients SVM regression and the residuals between 
them 

Figure 3.8: Timehistory of Cepstral Coefficient 2, the coefficients SVM regression and the residuals between 
them 
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Chapter 4 

Z24 Bridge 

Here, we discuss the results about the extraction of the cepstral coefficients and the application of the cointe-
gration technique from data recorded on a real structure, the Z24 bridge, that was subjected to an extensive 
monitoring campaign before being demolished. The Z24 bridge tests described here have been performed within 
the European Brite EuRam research project BE-3157, ”System Identification to Monitor Civil Engineering 
Structures” (SIMCES). 

One of the main objectives of the SIMCES project was to deliver a proof of feasibility for vibration-based 
structural health monitoring of civil engineering structures by full-scale, long-term tests and progressive failure 
tests of a representative structure, the Z24 Bridge. The project was coordinated by Katholique University of 
Leuven (Department of Civil Engineering, Structural Mechanics Section). 

4.1 Bridge Description 

Figure 4.1: Views of the Z24 bridge 

The Z24 bridge was a post-tensioned concrete two-cell box-girder bridge located in Switzerland, in the Bern 
canton near Solothurn. It was built in 1963 and it connected the villages of Koppigen and Utzenstorf, over-
passing the A1 highway between Bern and Zurich. The bridge presented a main span of 30 m and two side 
spans of 14 m (Fig.4.2).The bridge was built as a free standing frame with the approaches backfilled later. Both 
abutments consisted of triple concrete columns connected with concrete hinges to the girder. Both intermediate 
supports were concrete piers clamped into the girder. An extension of the bridge girder at the approaches 
provided a sliding slab. The bridge was slightly skew because all supports were rotated with respect to the 
longitudinal axis. The bridge was demolished at the end of 1998, because a new railway next to the highway 
required a bridge with a larger side span. 

A year before the demolition, a long-term environmental monitoring system (EMS) was installed and the 
bridge was monitored from 11 November 1997 till 11 September 1998. The final goal of this monitoring test was 
to provide both environmental and response vibration data of the bridge, in order to subsequently quantify the 
contribution of the environmental fluctuations on the bridge dynamics. The EMS consists in the installation 
of different sensors to measure different environmental parameters: air temperature, air humidity, rain true or 
false, wind speed, and wind direction. Also a sensor consisting of two inductive loops was installed to detect 
the presence of vehicles on the bridge. Particular attention was given to the temperature factor. At the middle 
of the three spans, the temperature was measured at eight points on the girder: at the center of the north 
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Figure 4.2: Bridge section and plan view 

(TWN), central (TWC), and south (TWS) web; below the north (TSWN) and south (TSWS) sidewalk; at the 
top (TDT) and soffit (TDS) of the deck, and at the soffit (TS) of the girder. The soil temperature near each of 
the concrete columns at the approaches was monitored, as well as that near the north, central, and south parts 
of the intermediate piers (12 sensors in total). Although the original blueprints of the Z24 bridge indicated 
that the asphalt layer should have a thickness of 5 cm, the drilling of access holes for the installation of the 
temperature sensors on the girder revealed a cover of 16-18 cm of asphalt. Therefore, the temperature of the 
pavement (TP) was measured at the middle of the three spans. 

Figure 4.3: Sensors location 

To monitor the bridge dynamics, the structural acceleration was measured at 16 locations on the bridge in 
different directions. Every hour, 10 scans of environmental data, sampled at 48 sensors, and 8 averages of 8192 
acceleration samples, taken at the 16 sensors, were collected and stored to a hard disk after compression. The 
construction works at the new bridge that replaced the Z24, caused the loss of six temperature sensors and 
damage to one accelerometer. Although the type of accelerometers that had been used was specially designed 
for long-term use, some showed a considerable drift and a few of them failed during operation. 
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A series of progressive damage tests have been carried out during the summer of 1998, shortly before complete 
demolition of the bridge. The first eight scenarios are summarised in Table 4.1. The practical significance of 
these tests was ensured by checking that they were relevant for the safety of the bridge and that the simulated 
damage occurred frequently. The settlement is simulated by cutting the Koppigen pier and removing about 
0.4m of concrete. Lowering and lifting was done by six hydraulic jacks. During the tests, the pier rested on 
steel sections with similar stiffness as the uncut concrete section. Other damage scenarios (spalling of concrete, 
landslide, cut of concrete hinges, failure of anchor heads, rupture of tendons) are not considered here as they 
caused no or a minor degradation of bending stiffness. 

Figure 4.4: Damage scenarios 

With a measurement grid consisting of a regular 3 × 45 grid on top of the bridge deck and a 2 × 8 grid 
on each of the two pillars, 291 degrees of freedom have been measured: all displacements on the pillars, and 
mainly vertical and lateral displacements on the bridge deck. Because the number of degrees of freedom to be 
measured exceeded the number of available accelerometers and acquisition channels, the data were collected in 
nine setups using five reference channels. The forced excitation was applied by two vertical shakers, placed on 
the bridge deck. A 1 kN shaker was placed on the middle span and a 0.5 kN shaker was placed at the Koppigen 
side span. The shaker input signals were generated using an inverse fast Fourier transform (FFT) algorithm, 
resulting in a fairly flat force spectrum between 3 and 30 Hz. After scenario 8, a drop weight test was also 
performed, using a device that allowed to drop a mass of up to 120 kg from a height of up to 1 m in a controlled 
way. The applied shaker and drop weight forces were periodic with eight periods. A total of 65536 samples was 
collected at a sampling rate of 100 Hz, using an antialiasing filter with a 30-Hz cutoff frequency. 

Table 4.1: Damage Scenarios on Z24 

] Date Scenario 
1 04/08/1998 Undamaged condition 
2 09/08/1998 Installation of pier settlement system 
3 10/08/1998 Lowering of pier, 20 mm 
4 12/08/1998 Lowering of pier, 40 mm 
5 17/08/1998 Lowering of pier, 80 mm 
6 18/08/1998 Lowering of pier, 95 mm 
7 19/08/1998 Lifting of pier, tilt of foundation 
8 20/08/1998 New reference condition 
9 25/08/1998 Spalling of concrete at soffit, 12 m2 

10 26/08/1998 Spalling of concrete at soffit, 24 m2 

11 27/08/1998 Landslide of 1 m at abutment 
12 31/08/1998 Failure of concrete hinge 
13 02/09/1998 Failure of 2 anchor heads 
14 03/09/1998 Failure of 4 anchor heads 
15 07/09/1998 Rupture of 2 out of 16 tendons 
16 08/09/1998 Rupture of 4 out of 16 tendons 
17 09/09/1998 Rupture of 6 out of 16 tendons 
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4.2 Extraction of the Cepstral Coefficients 

The cepstral coefficients are computed according the procedure presented in Chapter 1. The response mea-
surements are detrended before extracting the cepstral coefficients and there is no additional manipulation of 
the time histories. One vector of coefficients is computed for each frame in which every single time history 
(observation) is decomposed. In order to have only one vector of coefficients for each observation, the extracted 
vector are averaged over the frames. 

The cepstral coefficients extracted from the Z-24 bridge acceleration measurements appear to be quite noisy 
and their variability is quite high (Fig. 4.5); nevertheless, it is possible to underline some trends in the data. 
In order to overcome this variability a simple moving average is introducted (Fig. 4.6) and the averaged coeffi-
cients are adopted as the new features. This procedure is implemented considering 20 samples as the number of 
previous data points to be used in conjunction with the current data point when calculating the moving average. 
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Figure 4.5: Cepstral coefficients extracted for sensor 5 
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Figure 4.6: Cepstral coefficients with and without moving average 

Figure 4.7: Temperature Observations and examples of cepstral coefficients for different sensors 

Comparing the temperature variation with the time history of the cepstral coefficients, it can be noticed that 
some of the coefficients are quite insensitive to the environmental fluctuations (c1 (s1)); while others (c2 (s7) and c1 

(s14)) shows clearly a match with the temperature drop around the 2000
th observation (Fig.4.7). 

The variation due to the environmental conditions and the one caused by the introduction of damage 
(damaged starts after the red line) are comparable and consequently, the presence of damage can be hidden. 
This is an important observation because it could impair the effectiveness of the damage assessment procedure. 
It is in this case that the cointegration technique could be extremely helpful, in this real tests, in removing any 
trend in the data induced by environmental data and highlighting instead the variations induced by damage. 
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4.3 Cointegration procedure to remove environmental effects 

The cointegration presented in this section is carried out considering the Support Vector Machine method for 
the computation of the cointegrating vector. This methodology is implemented considering a Gaussian Kernel 
and 10 Folds for the Cross Validation. The model is trained over a specimen of 1000 data points. The data are 
normalized and the coefficients are considered with their absolute value. 
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Figure 4.8: Time history of Cepstral Coefficient 1 for sensor 5, the coefficients SVM regression and the residuals 
between them 

0 1000 2000 3000 4000 5000 6000
Observations

-4

-2

0

2

4

c 1 (
s 7)

c
1

c
1
 SVM

0 1000 2000 3000 4000 5000 6000
Observations

-2

0

2

4

mean value
damage start
3 sigma error bars

Figure 4.9: Timehistory of Cepstral Coefficient 1 for sensor 7, the coefficients SVM regression and the residuals 
between them 

From the analysis of the residuals, it is clear the appearance of the structural damage while the fluctuations 
induced by temperature variations have been removed. In fact, it is only after the red dotted line (corresponding 
to the occurrence of damage) that the residuals between cointegrated cepstral coefficients show a clear departure 
from the 3 standard deviation error band. The application of the cointegration technique on the cepstral 
coefficients in this real case is indispensable to detect the damage; particularly for the coefficients for which 
the damage presents the same magnitude variation of environmental fluctuations (Fig. 4.9). Applying this 
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procedure the damage is well identified and the residuals coming from time histories with environmental trends 
are totally cleaned up. 
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Chapter 5 

Conclusions 

In this report, the results of an study investigating the possibility of using a speaker recognition approach to 
structural health monitoring have been presented. In particular, this study focused on the use of particular 
features used in speaker recognition (Frequency Warped Cepstral Coefficients) as damage sensitive features 
and on the effects that environmental conditions can have on such coefficients. In fact, it is a well known 
problem in monitoring the infrastructure system that the effects of temperature could alter the dynamic charac-
teristics (e.g. natural frequencies) of a bridge up to 10% and this could hide the occurrence of structural damage. 

The framework used in this study follows within the category of ”Pattern Recognition” approach. The basic 
idea behind such methods is to monitor the variational pattern of certain features (e.g. natural frequencies, 
mode shapes, etc.) extracted from the measured structural response. The performance of these approaches 
predominantly depends on how well these features reflect the actual condition of the structure. In fact, modal 
parameters, such as natural frequencies and mode shapes are commonly used in monitoring the performance of 
bridges and buildings: however, in assessing the damage of such structures, these features could be misleading 
in pointing out the integrity status of the structure since they are highly influenced by the usual fluctuations 
in environmental and operational conditions. The effects of environmental and operational conditions could 
overshadow the occurrence of deterioration and damage, invalidating the purpose of the investigation. 

In this study, an adaptation of Mel-Frequency Cepstral Coefficients as damage sensitive features for struc-
tural health monitoring of civil structures was addressed. Typically used in speaker recognition methodologies, 
these indices offer an extremely easy extracting process with a few user-defined parameters and a low compu-
tational burden and they have been shown to be an effective alternative to other features for damage detection 
problems. To remove environmental effects from the coefficient estimation, a technique called ”Cointegration”, 
quite popular in econometrics, has been applied. Two study cases were presented: 1) a numerical simulation of 
a cantilever beam subject to environmental variations both in undamaged as well as damaged conditions, and 
2) the benchmark case of the Z24 bridge, a structure in Switzerland that was recently demolished and that was 
fully instrumented, during operational conditions as well as during demolition. 

From the results of this study, it appears that the following conclusions can be drawn: 1) the cepstral 
coefficients have the potential to become quite useful damage sensitive features that can be used on bridge 
structures: they are compact features, easy to obtain, and require little input from the user, and 2) the 
cointegration technique appears to be a very effective technique to remove non-stationary effects such as those 
induced by the environment temperature. As shown in this report, the analyses conducted on data from the 
tests run on the Z24 bridge show great potential for both techniques and and warrants further investigation. 
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