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EXECUTIVE SUMMARY

The primary objective of this study was to evaluate the capabilities of the Portable Seismic

Pavement Analyzer (PSPA) device to evaluate the bridge deck elastic moduli and the deck thickness, and

to detect and quantify concrete bridge deck delamination.

The PSPA is a device for nondestructive evaluation of concrete bridge decks and pavements developed

at the University of Texas at El Paso and produced by Geomedia Research and Development, Inc., El

Paso, Texas. The PSPA device was designed and constructed as an extension  result of the development

of the Seismic Pavement Analyzer (SPA) for the sole purpose to provide information about the top layer

of the pavement or a bridge deck. Primary applications of the device are in quality assurance/quality control

of the top pavement layer, void detection, bridge deck delamination, and monitoring of concrete curing.

To conduct these tasks, the PSPA relies on two ultrasonic methods in material characterization, and impact

echo (IE) method in defect detection. The PSPA, with its ability for high level diagnosis of bridge decks,

presents an essential tool to transportation and bridge engineers in administration and management of

concrete deck bridges, i.e. in proper planning of their repair and rehabilitation.

The scope of the work of the project encompassed three major tasks:

1) Implementation of the PSPA device in the field,

2) Development of improved data interpretation schemes using numerical simulations, and

3) Development of improved data visualization procedures.
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The device was implemented in evaluation of three bridge decks on Rts. I-80 (first demonstration testing),

I-495 and I-287, with the primary objective of evaluating elastic moduli and the degree of delamination.

The  evaluation in all cases was conducted using 0.75x0.75 m or 0.9x0.9 m grids. Typical field evaluation

was conducted at a rate of about 1 point per minute, considering points that had to repeated due to a poor

quality source impact. No equipment related problems were encountered during the course of testing. Data

reduction procedures are fairly simple and do not require extensive operator training.  It takes about 1

minute of data reduction time to make a condition assessment with respect to the degree of delamination

per point. An additional effort is required for data presentation, that depends on the form of the presentation

(line, surface or 3-dimensional plots). Results from Rt. I-287 bridge deck evaluation were compared to

results from chain dragging. The IE method was found to be advantageous over a curent practice of chain

dragging because of the ability to detect zones of delamination at various stages: from initial to progressed

and developed, thus enabling better prediction of deterioration processes in the deck. There was no

opportunity to evaluate the ability of the PSPA to detect delamination in concrete bridge decks with asphalt

overlays, or separation of overlays from the deck.

A large number of numerical simulations was conducted for three major purposes: 1) to evaluate

capabilities and limitations of seismic methods and the PSPA in detection of bridge deck delaminations, 2)

to enhance data interpretation procedures, and 3) to simulate hypothetical processes of bridge deck

delamination for the purpose of long term condition monitoring. The simulations were conducted using a

finite elements. They confirmed the ability of seismic techniques to detect the position (depth) and continuity

of delaminations, and provided the information about the limiting detactable delamination based on the
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delamination diameter to the depth ratio. The numerical simulations were also successful in simulating two

hypothetical scenarios for generation of a large delamination. The first one involved a delamination

progression through incremental connection of  several smaller ones. The second one involved a growth

of a single delamination.  

Data visualization is an essential part of data intererpretation and presentation. Data are typically presented

in terms of surface distributions (contour or spectral plots) of elastic moduli and the condition assessment

based on the degree of delamination. These are done for both the plan views and deck cross sections.

Significant improvement in data visualization is made through a three dimensional presentation of IE results.

Once the software is fully implemented in the PSPA, the device will be able to provide real-time assessment

of a bridge deck, and serve as what can be described a bridge deck sonar device.  

While the study has demonstrated advantages of the PSPA over chain dragging in evaluation of bridge

decks, numerous improvements can be done that will improve both the accuracy and the speed of testing,

and simplicity of data interpretation. These, for example, include:

1) development of systems consisting of several PSPA devices for simultaneous testing,

2) incorporation of automated data interpretation procedures based on numerical simulations and

neural network models, and

3) incorporation of 3-dimensional data presentation programs for real time data visualization.

Also, while the project involved the application of the PSPA in evaluation of bridge decks, the device

should be considered for implementation in many other equally important applications, like:  quality
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assurance/quality control of paving materials, long term monitoring of paving materials, detection of defects

in pavements and structures, etc.
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CHAPTER 1

INTRODUCTION

Post-construction monitoring of bridge decks is essential in detection of symptoms of deterioration

at early stages, and thus for their economic management. To perform this task, methods used in evaluation

should be both fast and accurate, and nondestructive. One of the most common problems in concrete

bridge decks is a corrosion induced deck delamination. The current practice of deck inspection by chain

dragging can provide information about the deck worsening condition only at stages when the delamination

has already progressed to the extent that major rehabilitation measures are needed. 

Three ultrasonic seismic techniques, namely ultrasonic body-wave (UBW), ultrasonic surface-wave (USW)

and impact echo (IE), have been successfully implemented in evaluation of bridge decks (Sansalone, 1993;

Gucunski and Maher, 1998), short and long term monitoring of pavement materials (Nazarian et al., 1997;

Rojas et al., 1999) and other infrastructural systems (Sansalone and Street, 1997). The techniques were

also successfully implemented in integrated devices for  automated data collection and analysis (Nazarian

et al., 1997; Sansalone and Street, 1997). While the devices are fully capable of detecting deck

delaminations at their various stages of progression, precise interpretation of the measured parameters is

not fully automated and is somewhat dependent on the experience of the operator. 

The device of special interest for this project is the Portable Seismic Pavement Analyzer (PSPA). The

PSPA is the state-of-the-art device for nondestructive evaluation of concrete bridge decks developed at
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the University of Texas at El Paso and produced by Geomedia Research and Development, Inc., El Paso.

The PSPA device (Nazarian et al., 1997) duplicates some of the capabilities of the Seismic Pavement

Analyzer (SPA) (Nazarian et al., 1993) in that it provides information only about the top layer of the

pavement or a bridge deck. Primary applications of the device are in quality assurance/quality control of

the top pavement layer, void detection, bridge deck delamination, and monitoring of concrete curing. The

PSPA, with its ability for high level diagnosis of bridge decks, presents an essential tool to transportation

and bridge engineers in administration and management of concrete deck bridges, i.e. in proper planning

of their repair and rehabilitation.

As illustrated in cited references, there are a number advantages of the PSPA in comparison to the

traditional methods used in the inspection and quality control of bridge decks. The PSPA eliminates the

need for extensive quality control of concrete based on strength tests on cylinders and drilled cores.

Because the PSPA evaluates in-situ properties of the in-place concrete, it eliminates the need for

correlation of differences in strengths of the in-place concrete and cylinders that may result from application

of different placement, compaction and curing conditions. Similarly, while chain dragging can be used to

determine locations that are critically deteriorated, the PSPA provides the ability for determining the onset

of deterioration.

To improve its capabilities in bridge deck condition assessment, the New Jersey Department of

Transportation (NJDOT) has requested from the Center for Advanced Infrastructure and Transportation

(CAIT) evaluation and implementation of the PSPA device. This report summarizes the scope and results
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of that evaluation. The report is divided into six major sections. The first section (Chapter 2) discusses the

background and application of seismic methods in evaluation of bridge deck concrete. The second section

(Chapter 3) discusses the PSPA device. The discussion concentrates on the hardware and software

configurations, and provides instructions in the implementation of the device in the field and data reduction.

The third section (Chapter 4) describes results of the PSPA field implementation, and represents the core

of the report. Results from three bridge deck evaluations are presented. The fourth section (Chapter 5)

includes results of a numerical simulation of bridge decks with delamination that was conducted for the

purpose of evaluation of limitations of seismic methods in detection of delaminations and evaluation of their

ability to detect changes in the deck condition for the purpose of long term monitoring. The fifth section

(Chapter 6) includes a description and implementation of a developed three dimensional presentation of

data collected by the PSPA device for a real time condition assessment of bridge decks. Finally, the sixth

section (Chapter 7) includes conclusions of the investigations, recommendations for the implementation of

the PSPA device in every day bridge deck evaluation operations, and recommendations for future research

that will enhance the accuracy, simplicity and versatility of the device.
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CHAPTER 2

SEISMIC METHODS FOR BRIDGE DECK EVALUATION

Seismic methods can be described as methods for evaluation of material properties and

defects in structures that are based on generation of elastic waves and measurement of their velocity

of propagation and other wave propagation phenomena, like reflections, refractions and dispersions.

While there are many seismic techniques, of particular interest for bridge deck evaluation are three

ultrasonic techniques: ultrasonic body-wave (UBW), ultrasonic surface-wave (USW) and impact

echo (IE). UBW and USW techniques are used to measure velocity of propagation of compression

(P) and surface (R) waves. The wave velocities are very well correlated to elastic moduli, and thus

the two techniques can be described as a material quality control techniques. The IE technique is

used to identify the depth of wave reflectors in a bridge deck or pavement structure, and thus is used

to detect defects in the structure and can be considered to be a defect diagnostics tool.

Application of UBW and IE techniques in evaluation of a pavement or a bridge deck is described

in Fig. 2.1, and illustrated by actual field test results in Fig. 2.2. In the first part of the evaluation the

UBW test is conducted using an impact source and two receivers. From the travel time of the P-wave

between two receivers, the P-wave velocity (VP) is calculated. In the second part of the evaluation,

the IE test is conducted using an impact source and a single nearby receiver. Because of a significant

contrast in rigidity of concrete and a granular base of a pavement structure, or concrete and air in a

case of a bridge deck, the elastic wave is nearly entirely being reflected between the bottom of the

slab or discontinuity  and the surface of the concrete layer or the deck. The frequency of reflections
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Figure 2.1. UBW and IE in evaluation of elastic modulus and thickness of
the surface layer.

called return frequency is clearly visible in the response spectrum. The depth of the reflector, in this

case the pavement layer or deck thickness, can be obtained from the return frequency and the

previously determined P-wave velocity.

Because it is  often difficult to identify arrivals of P-waves in an automated way, a more reliable way

to estimate the P-wave velocity is through measurement of the R-wave velocity from the USW test.

The USW test is identical to the spectral analysis of surface waves (SASW) test (Nazarian et al.,

1983; Stokoe et al., 1994), except that the frequency range of interest is limited to a narrow high

frequency range. The SASW test, depicted in Fig.2.3, utilizes a phenomenon of dispersion of surface
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(R) waves in layered media, i.e. that waves of different frequencies propagate with different

velocities. Surface waves are generated by an impact source, detected by a pair receivers, and

recorded on an appropriate recording device. The objective of the test is to determine the surface

wave velocity (phase velocity) - frequency relationship, described by the dispersion curve, and then

from the dispersion curve, through the process of inversion or backcalculation, the elastic modulus

profile of the system. The experimental dispersion curve for a single receiver spacing S is defined

from the relationships presented in Fig. 2.3, where f represents frequency in Hz, and $ the phase

difference of a propagating wave between two receivers in degrees, obtained from the cross power

spectrum of signals detected by the receivers. Using a crude approximation that the body of a R-

wave extends to the depth of about one wavelength, it is obvious that the velocity of the R-wave
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(phase velocity) will vary, sometimes significantly, for wavelengths larger than the thickness of a

surface layer due to propagation through materials of different properties. In the case of the USW

method, only high frequency R-wave components are used in measurement. These components are

of a wavelength shorter than the thickness of the surface layer, thus affected only by properties of

the layer, and thus do not vary significantly with frequency. A typical dispersion curve obtained from

the USW test is illustrated in Fig. 2.4. Once the R-wave velocity is determined it can be well

correlated to both compression and shear (S) wave (Vs)velocities , and thus to the Young’s and shear

moduli. These correlations are given in Eqs. 2.1 to 2.4, 

G VS= ρ 2 (2.1)
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E VS= +2 12ρ ν( ) (2.2)

V VS ph= −( . . )113 016ν (2.3)

V VP S= − −( ) / ( )2 2 1 2ν ν (2.4)

where G is shear modulus, E Young’s modulus, D mass density, < Poisson’s ratio and Vph the

phase velocity from the USW test corresponding to the R-wave velocity.

Primary objectives in bridge deck testing are evaluation of material properties and condition

assessment with respect to a possible bridge deck delamination.  As shown in Fig. 2.5, in a case of
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a delaminated deck, reflections of the P-wave occur at shallower depths, causing a shift of the peak

in the response spectrum (return frequency) with respect to the peak for a sound deck towards higher

frequencies due to a shorter travel distance. The depth of the reflector, the delamination in this case,

is calculated according to the equation in the figure. Depending on the extent and continuity of the

delamination, the partitioning of energy of elastic waves may vary and different grades as a part of

the condition assessment can be assigned to that particular section of a deck. This is illustrated in

Fig. 2.6. In the case of a sound deck (good condition - Fig. 2.6a) a distinctive peak in the response

spectrum, corresponding to the full depth of the deck, can be observed. Initial delamination (fair

condition - Fig. 2.6b) is described as occasional separations or horizontal cracking between the two
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deck zones. It can be identified through a presence of two distinct peaks: the first one corresponding

to reflections from the bottom of the deck, the second corresponding to reflections from the

delamination. The presence of two peaks is an indication of radiation of a portion of elastic wave

energy towards the bottom of the deck. Progressed delamination (poor condition - Fig. 2.6c) is

characterized by a single peak at a frequency corresponding to reflections from a reflector shallower

than the deck thickness, indicating that little or no energy is being propagated towards the bottom

of the deck. Finally, in a very severe case of wide delamination (serious condition - Fig. 2.6d), the

dominant response of the deck to an impact is characterized by a low frequency response (in an

audible range) or by the flexural mode oscillations. It is significantly below the return frequency for
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the deck bottom, giving an apparent depth of the reflector larger than the deck thickness. Examples

of records for good and serious conditions are presented in Fig. 2.7. The return frequency in the left

hand side spectrum is 10.5 kHz. From a previously determined VP of 4050 m/s and the return

frequency, a thickness of 19.2 cm is measured matching very closely the design thickness of 20.3

cm. On the other hand, the dominant response in the right hand side spectrum can be observed in a

range from approximately 1 to 4 kHz, defining  apparently a large deck thickness and a serious

condition.
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Figure 3.1. Portable Seismic Pavement Analyzer (PSPA).

CHAPTER 3

PORTABLE SEISMIC PAVEMENT ANALYZER (PSPA)

PSPA Hardware

The  Portable Seismic Pavement Analyzer (PSPA) is manufactured by Geomedia Research

and Development (GR&D), Inc., El Paso, Texas. The PSPA was developed as an extension of the

Seismic Pavement Analyzer development (Nazarian et al., 1993), as a device with a sole purpose

of evaluation of the surface pavement layer and bridge decks. The device integrates the three

ultrasonic techniques (UBW, USW, IE). As illustrated in Figs. 3.1 and 3.2, the device consists of

three main elements. The core of the system is a “lunch box”, a box containing a solenoid type

impact hammer and two high frequency accelerometers 7.5 and 21.5 cm away from the hammer in

a tripod arrangement for better coupling of the hammer and accelerometers during testing. The
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ACCELEROMETERS

HAMMER

225 mm
75 mm

Figure 3.2 The bottom view of the “lunch box.”

impact source is a needle shaped hammer of an approximate diameter 1-2 mm. It can be calibrated

to produce impacts of various duration, but the defaults setting calls for an impact of duration of

approximately 50 :s duration. The “lunch box” can be used on both horizontal and vertical surfaces.

All controls and data acquisition are in a computer that is connected by a serial type cable to the

“lunch box.” 

PSPA Software

One of the strong sides of the PSPA device is the flexibility of the design of the device that
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Figure 3.3. PSPA general/data acquisition menu.

allows use of both proprietary and non-proprietary (user developed) software in data reduction,

analysis and interpretation. Two sets of programs were used in the evaluation of the PSPA device.

The first program used  is program PSPA. The primary usage of the program includes PSPA controls

field data acquistion, and preliminary material quality and condition assessment. The second

program is program PSPAA. It is used for more precise data postprocessing. Finally, it should be

mentioned that, since accelerometer time histories can be easily extracted from the PSPA, a number

of commercial  programs for signal processing, like DaDisp, Matlab or Maple can be used in data

analysis and interpretation. Since there are no manuals, except for help files provided by Geomedia

Research and Development, Inc., the following paragraphs discuss in more details implementation

of PSPA and PSPAA programs in data acquisition, analysis and interpretation.
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ACQUISITION SETUP HELP CALIBRATIONREANALYSIS

Data Collection
View Waveforms
Result Review
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Select Data
Reanalyze Data
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Quick Help
Summary
Getting Started
Troubleshooting
Advanced

HF Fire
Velocity
Temperature

Project Setup
Acquisition Mode

Remote
Local

Message Level
Structure
Project Directory

Dimensions
Pavement Layer

No Status
Malfunctions
Suggestions
Full Status

Joint

Edge

Slab Width
Default Location
Slab Length
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Echo Amplitude

Young's Modulus
Material (PCC, AC, NA)

Figure 3.4. Summary of the PSPA menus.

The basic look of the PSPA program menu is presented in Fig. 3.3. There are five basic operations

of the program: data acquisition, data review and reanalysis, device and project setup, device

calibration and help. Each of these five main options has a set of submenus that are summarized in

Fig. 3.4. The description follows a typical sequence of tasks in field implementation of the device

and data reanalysis. The first step in the field implementation is the selection or definition of the

project setup. It includes the description of the project, selection of the message level and type of

operation (remote or local), and a definition of the expected surface pavement layer or bridge deck

structure in terms of the ranges of elastic moduli and layer thickness. The setup also allows for the

definition of the default size of a pavement slab and position of the PSPA test point on the slab. This
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Figure 3.5. Definition of slab dimensions and the test point location. 

is illustrated in Fig. 3.4 at the left bottom corner and in Fig. 3.5, where symbols -v are used to

identify the location of the PSPA and the orientation of the receiver array.

Once the project and the expected structure is defined, the data are collected by simple selecting the

data collection option in the acquisition submenu. The duration of the data collection takes about 15

seconds, during which period the system has collected two sets of records, each set consisting of data

for three hammer impacts. Collected data can be reviewed using the view waveforms option. This

is illustrated in Fig. 3.6 where bank0 and bank1 represent the two sets of records. Each set of the

records can be examined for two purposes, as it is illustrated for bank1 in Fig. 3.7. The first purpose

is to examine the whether the shape of the signal corresponds to typically obtained signals. The

second purpose it examine the repeatability of the signal. As presented in Fig. 3.7 signals from three
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Figure 3.6. View waveforms option in acquisition submenu.

Figure 3.7. Bank 1 waveforms.
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Figure 3.8. Time records review in PSPAA.

impacts overlap very well indicating high repeatability of the test. A number of options in the menu

were primarily developed for the use with the Seismic Pavement Analyzer (SPA) and either are not

implemented (like result review, status review), not implemented in the standard version of the

PSPA program (like calibrations) or are better done using the PSPAA program (like reanalysis).  

PSPAA postprocessing/reanalysis program is used primarily to enhance the development of the

dispersion curve for the purpose of evaluation of the shear wave velocity (shear modulus), and to

analyze the impact echo spectrum for the purpose of the delamination degree based condition

assessment. PSPAA consists of several routines for examination of time records and response spectra
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Figure 3.9. Unsmoothed and smoothed phase curves and the dispersion curve. g=0.7,
h=0.0005, i=50

and derivation of the dispersion curves. The routine can be easily added or removed from the

program depending on  objectives of the reanalysis. The following is the typical flow of the

reanalysis. It starts with the extraction of time records from a previously compressed record and

presentation of the predefined time record, for example of the third hit from bank1 as illustrated in

Fig. 3.8. Again, as in PSPA program view waveform option, the primary objective of viewing time

records is to estimate the quality of the recorded signal. PSPAA also allows for implementation of

the view waveform routine presented in Figs. 3.6 and 3.7 for examination of the repeatability of the

signal.
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Figure 3.10. Unsmoothed and smoothed phase curves and the dispersion curve. g=0.7,
h=0.0005 and i=10.

The second and maybe the most important routine assists in the development of the dispersion curve.

As presented in Fig. 3.9, the routine plots the “unwrapped” phase of the cross power spectrum of

signals at near and far receivers, compares it to a smoothed phase curve, and develops the dispersion

curve from the smoothed phase. The unsmoothed phase curve is presented by a dashed line, while

the smoothed curve by the full line. Smoothing of the phase can be controlled using three

parameters: g, h and i. Parameters g, h and i control the weighing factor relative to the coherence,

the slope of the phase curve and the closeness of the smoothed and experimental phase curves,

respectively. Effect of parameter i is illustrated in Fig. 3.10, where g and h parameters were identical

to those from Fig. 3.9. To develop the dispersion curve, the unwrapped phase curve first needs to be
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Figure 3.11. Response spectrum from impact echo test.

converted to a continuous format through the process of unwrapping or unfolding. Details about the

unfolding can be found in Nazarian (1983), Gucunski (1991), Stokoe et al. (1994) and in a number

of other references. Once the phase is in a continuous format, the dispersion curve can be obtained

according to the relations described in Chapter 2, and the average phase velocity is calculated. The

average phase velocity is used in the calculation of the shear wave velocity and elastic moduli

according to Eqs. (2.1) to (2.3). Typically, the last routine of PSPAA program is presentation of the

spectrum from the impact echo test. Return frequencies can be read and the condition assessment

made according to the descriptions presented in Chapter 2 and summarized in Fig. 2.6. A typical

spectrum from the impact echo test on a bridge deck is presented in Fig. 3.11.                   
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0.6-0.9 m
PSPA test locations

Figure 4.1. Typical grid used in PSPA testing of bridge decks.

CHAPTER 4

FIELD IMPLEMENTATION OF PSPA

Data Collection

Field evaluation of bridge decks is typically done on grids 0.6x0.6 m to 0.9x0.9 m, as

illustrated in Fig. 4.1. The test at a single point is simple and takes less than 30 seconds. The “lunch

box” is placed at the test point (Fig. 4.2), a series of impacts (6-10) of a 50 :s duration is applied and

accelerations  recorded by a pair of accelerometers. The PSPA testing is fairly insensitive to traffic

induced vibrations because of a high frequency range of interest, typically between 2 and 30 kHz.
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Figure 4.2. Evaluation of bridge decks by PSPA.

Therefore, it does not require traffic interruptions, except a lane closure and traffic control for safety

reasons.  Experience from testing on several bridges and pavements is that in most cases testing at
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a number of points needs to be repeated. The primary causes of the need for repeated testing are poor

contact/coupling between accelerometers and the pavement/bridge deck surface and a poor impact

application. The second one is caused by the hammer needle hitting either a void or a small aggregate

grain in the pavement or bridge deck. The number of points retested depends on the roughness of

the pavement/bridge deck surface. In most cases it can be estimated as 20 to 30% of the number of

test points. In some extreme cases, as e.g. in a case of a highly grooved ultrathin white topping

(UTW) the test at a single point needs to be repeated several times to obtain any useful data. GR&D

is working on the resolution of the problem that involves modification of the size and the shape of

the foot of the impact hammer.  

Data Presentation

Results from PSPA testing are commonly described in terms of shear and Young’s moduli (or P and

S wave velocity) distributions, and condition assessment distributions (with respect to the degree of

delamination). These distributions, as illustrated in the following sections on testing of two bridge

decks, can be in a form of plan view and deck cross section distributions, or, as illustrated in Chapter

6, in terms of three dimensional translucent views into the bridge deck interior.

Testing on Rt. I-495 near Union City, New Jersey

The first example of evaluation of a bridge deck is for an overpass on Rt. I-495S near Union City,

New Jersey. The evaluation was on done of both right and left lanes of the 6th span using a 0.75x0.75
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Figure 4.3. Condition assessment for the two left lanes of 6th span of Rt. I-495 bridge.
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m grid, that altogether included about 400 evaluation points. The testing was conducted in May of

1997. Figs. 4.3 to 4.6 include shear modulus and condition assessment distributions for the four lanes

tested. As it can be observed from the condition assessment plots, the deck is in a good condition

and only small zones of initial delamination can be identified. The PSPA condition assessment data

correlate very well with visual observations and results of drag chain examination that identified only

a few small areas, almost all in the immediate vicinity of joint mechanisms. Similarly, no significant

drops in the elastic properties (shear modulus) can be observed.

Testing on Rt. I-287 over Rt. 1 in Edison, New Jersey

The second example of application of the PSPA device illustrates evaluation of a deck in a

significantly deteriorated condition. The evaluation of a bridge on Rt. I-287S over Rt. 1 near Edison,

New Jersey, was conducted in August of 1997. The tested deck was about 15 m long, about 21 m

wide in the perpendicular direction, and had a skew angle of about 30 degrees. A schematic of the

areas of the bridge deck tested are shown in Fig. 4.7. The deck was tested during two 4 hour test

sessions, as marked in the deck schematic by Zones A and B. Letters defining test columns and

numerals defining test rows for both of the zones are identify positions of all 638 test points.

 

The condition assessment of the bridge deck is presented in Figs. 4.8 and 4.9. In contrast to the Rt.

I-495 bridge deck, zones of all previously described conditions (grades) can be identified in the case

of the Rt. I-287S bridge deck. The condition assessment can be presented in continuous and discrete

formats, as it is illustrated in the figures. Actual data evaluation and interpretation was done so that
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Figure 4.7. A schematic of the test areas on the Rt. I-287S bridge deck.

every test point was assigned a grade to the accuracy of 0.25, in the total span of grades from 1

(worst-serious) to 4 (perfectly sound-good). Such a large number of grades in combination with color

or gray shade blending allows for a continuous description of the condition, i.e. better presentation

of a transition from one condition to another. This is illustrated in Fig. 4.8. On the other hand, for

all practical applications, i.e. identification of zones to be treated or reconstructed, a more convenient

description is in terms of discrete plots. This is illustrated in Fig. 4.9, where only four gray shades

are used, and no gray shade blending is applied. Spectra for four points describing the four condition

grades are described in Fig. 4.10. Based on the impact echo and ultrasonic velocity measurements
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Figure 4.8. Condition assessment of Rt. I-287S bridge deck. Continuous format.
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Figure 4.9. Condition assessment of Rt. I-287S bridge deck. Discrete format.
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Figure 4.10. Typical spectra for four condition assessment grades.

the thickness of the deck was estimated to be about 17.5 cm or about 7 inches. The return frequency

for the full deck thickness is expected to be around 10.5 kHz. Since the position of a delamination

is expected to match the top of reinforcement, typically at about the half of the deck thickness, the

delamination return frequency is expected to be around 21 kHz. Finally, significant frequency

response below the return frequency for the full deck thickness indicates significant contribution of

flexural oscillations to the dynamic response.

 

The bridge deck condition can be presented in terms of grades, as shown in Figs. 4.8 and 4.9, but

also in terms of frequency and thickness spectral surfaces for particular bridge deck cross sections.
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Figure 4.11. Frequency and corresponding thickness spectra for a deck in fair condition.

Such surfaces are formed by presenting spectra for a set of points along a single test line. In the case

of a frequency spectral surface, the plot is obtained by simple merging of frequency spectra, like

those presented in Fig. 4.10. On the other hand, to form the thickness spectral surface, frequencies

need to be converted first into corresponding deck thicknesses. As shown in Fig. 2.5, the depth of

the reflector can be described by the ratio of the compression wave velocity and a double return

frequency. Therefore, every frequency spectrum can be described by an equivalent thickness

spectrum, as illustrated in Fig. 4.11 for the fair condition spectrum from Fig.4.10 . Spectral surfaces

for the test line A14-I14 (Fig. 4.13) are presented in Fig. 4.12. High amplitude reflection zones in

the frequency spectral surface on the top are described in terms of the position of the reflector and

the attributed condition assessment. The reflectors were identified based on a previously

approximated return frequency for the full bridge deck thickness, in this particular case around 10.5

kHz. For example, the high frequency zone on the far left side was identified as a delamination.

Because no or very little energy was reflected from the deck bottom the condition was described as

poor. Smaller low frequency zones point to a possible poor to serious condition. The next zone to
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Figure 4.13. Test lines for presented frequency and thickness spectral surfaces.

the right defines clearly a dominant reflection from the deck bottom and consequently a sound

condition. The third zone includes again a strong reflection from the probable delamination depth.

However, in this particular case a portion of the energy is being reflected from the deck bottom,

defining a poor to fair condition. Finally, on the far right side there is a zone of a low return

frequency, without significant reflections from either the anticipated delamination elevation or the

deck bottom. Such a case is described as an apparent deep reflector and the deck evaluated as in a
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serious condition. An equivalent description of the frequency surface is the thickness spectral surface

at the bottom. However, an important observation can be made comparing the two surfaces. While

the frequency surface  provides a better visual detection of delaminations, the thickness spectrum

emphasizes the presence of apparent deep reflectors. Certainly, this problem can be corrected by

using nonlinear scales for the frequency and thickness axes. Also, attention should be given to the

depth range of the thickness spectrum. If the deck is in a serious condition and the response is in a

very low frequency range, the apparent depth may be very large and outside the thickness range. An

example is the zone between 3 and 5 m, clearly visible in the frequency surface, but outside the range

of the thickness spectrum. Several thickness spectral surfaces for six test lines defined in Fig. 4.13

are presented in Figs. 4.14 and 4.15.         

Parallel to the PSPA testing, the bridge deck was evaluated by a chain dragging procedure. The

comparison of the condition assessment results obtained from the PSPA testing and the deteriorated

zones determined by the chain drag are compared in Fig. 4.16. The comparison points to a similarity

of the two approaches in detection of areas with progressed delamination (poor to serious condition).

The ability of the chain drag to identify zones in a serious condition can be explained by the fact that

the frequency response in such cases is within the audible range, in this case typically between 2 and

7 kHz. On the other hand, most of the zones identified by the PSPA as zones of initial delamination

(fair to poor grades) were not detected by the chain drag. As illustrated in the previous spectra and

spectral surfaces plots, the return frequency for reflections from the delamination is above 20 kHz,

outside the audible range. This ability of the PSPA device to detect signs of initial delamination

represents a significant advantage of the device’s ultrasonic testing over the chain drag approach. It
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Figure 4.13. Thickness spectral surface for sections A13-I13, A16-I16 and A20-I20. 
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allows a better prediction of delamination progression, because it can be evaluated at all of its stages,

from initial to progressed and widely separated deck layers. The ability to detect early signs of deck

delamination can lead to better assessment and timing for implementation of rehabilitation measures,

and thus more economical management.
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Figure 4.14. Thickness spectral surface for sections A13-I13, A16-I16 and A20-I20. 
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CHAPTER 5

NUMERICAL SIMULATION OF SEISMIC TESTING ON BRIDGE DECKS

Evaluation of bridge decks by seismic methods, and the PSPA device, was simulated for

three purposes. The first purpose was to quantify the relationship between the size and severity of

a delamination and the frequency spectrum content obtained from the impact echo test, thus to

minimize subjectivity in the definition of the deterioration degree. The second purpose was to

evaluate limitations of seismic methods and the PSPA device in delamination detection. Finally, the

third purpose of numerical simulations was to simulate hypothetical deterioration processes in a

bridge deck that lead to significant and detectable delaminations. The last task was conducted for

the purpose of evaluation of the capability of seismic methods to assist in long term monitoring of

delamination progression processes. All the simulations were conducted using the finite element

program ABAQUS. The following sections include a description of the finite element model and

results of a parametric study  conducted.

Finite Element Model

Simulation of seismic testing on a bridge deck is done on an axisymmetric model of a deck

of a 2.5 m radius and a 25 cm thickness. Five model discretizations were examined, as shown in Fig.

5.1. Model 1 involves discretization of the deck using 2.5x2.5 cm 8-node biquadratic axisymmetric

elements. Model 2 is identical to Model 1 except that discretization in the vicinity of the axis of

symmetry (impact source location), of a radius of 12.5 cm and 15 cm deep, is done by 1.25x1.25 cm
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8-node biquadratic elements. As described and illustrated later, the primary purpose of a finer

discretization in vicinity of the axis of symmetry was to minimize effects of artificially amplified

surface wave components. Model 3 is discretized entirely by 1.25x1.25 cm elements. Finally, Models

4 and 5 are identical to Model 2, except that discretization in vicinity of the source is done by

circular meshing in Model 4, and by a combination of square and circular meshing in Model 5. In

all models concrete is described as having a shear wave velocity of 2000 m/s, compression wave

velocity of 3260 m/s (Poisson’s ratio of 0.2), and mass density of 2500 kg/m3. Damping is described

as Rayleigh damping, with parameters " equal to 0 and $ equal to 10-5. Delaminations are described

as cracks, defined by two sets of elements connected along the crack to two mutually independent

sets of points. Other basic geometrical properties of a delamination include depth d and radius R, as

depicted in Fig. 5.1.

The impact is described so to closely simulate impact echo testing using the PSPA device. A

description of the impact in terms of trapezoidal and haversine functions of a 50 :s duration is used.

A time integration scheme using 1024 constant 2 :s time increments (identical to the PSPA

sampling) is implemented, providing a Nyquest frequency of 250 kHz and approximately a 500 Hz

frequency resolution. A typical frequency range of interest for bridge decks of a thickness of 20 to

30 cm is 5 to 30 kHz, where the lower frequency range of 5 to 10 kHz corresponds to reflections

from the deck bottom, and the upper frequency range to reflections from delaminations. The 2 :s

time increment used ensures that wave propagation distance during a single time increment is less

than a length of a single finite element. Displacement, velocity and acceleration histories were

obtained at all surface points less than 60 cm away from the source. Because the compression waves



45

Model 3

1

40001

cL

Model 2Model 1

2001

L

c

1

20001

Lc

201

20201

40401

401

Lc

R

d

T

r

crack

L=2.5m

cL Model 4 and 5

Figure 5.1. Finite element models used in simulation of PSPA testing.
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Figure 5.2. Typical acceleration histories for three receiver locations, T=25 cm, d=15 cm,
   R=15 cm.

being reflected from the deck bottom and delaminations have a dominant vertical component, the

PSPA utilizes vertically oriented accelerometers. Therefore, vertical acceleration histories were also

of primary interest for this study. Typical acceleration histories at radial distances of 5, 10 and 15

cm from the source, due to a haversine impact function, are shown in Fig. 5.2. The shape of a 15 cm

acceleration history matches well a form of a signal typically obtained in the field, with distinctive

compression, shear and surface wave components. 

For receiver positions close to the impact source, for example for the 5 cm near receiver distance

history in Fig. 5.2, irregularities in the acceleration history caused by the discretization near the axis
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Figure 5.3. Effect of clipping of surface waves on spectra. T=25 cm, d=15 cm, R=15 cm,
r=7.5 cm.

of symmetry can be observed. A very low elemental stiffness near the axis of symmetry (Zienkiewicz

and Taylor, 1989; Hughes, 1987) causes generation of artificially high surface wave components in

its vicinity. This problem was also reported by Sansalone and Street (1997). An efficient way to

reduce effects of these surface wave components, but at the same time to preserve a portion of a

signal describing compression wave reflections,  is to clip time histories in the surface wave portion.

This is illustrated in Fig. 5.3 for a deck with a 15 cm deep delamination, of a 15 cm radius. The

response spectrum of an unclipped signal calculated at a 7.5 cm distance from the source provides

a spectrum with a barely recognizable return frequency, which in this case should be about 10.8 kHz.

On the other hand the return frequency peak for a clipped signal can be well distinguished and
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Figure 5.4. Comparison of response spectra obtained from axisymmetric and plane strain   
models. 
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resembles those obtained in actual field testing. To confirm the effect of a  reduced stiffness of

axsisymmetric elements in vicinity of the axis of symmetry, results were compared to those for a

plane strain model. As illustrated in Fig. 5.4, the response spectrum for an unclipped history for the

plane strain model matches well the spectrum of the clipped history for the axisymmetric model. 

Effect of Receiver Positioning, Impact Source Function and Delamination Geometry  

The effect of receiver positioning on IE response spectra was investigated first. The effect

of the parameter was investigated for an assumption that the impact source is above the midpoint of
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Figure 5.5. Comparison of clipped time records and time spectra for 25 and 75 mm receiver
positions.

a delamination. As illustrated in Fig. 5.5 for a deck with a delamination 15 cm deep and of a 15 cm

radius, and for a haversine impact function, the return frequency peak can be clearly identified for

both 25 and 75 mm distances from the source. It is also obvious, that the peak distinction decreases

with the distance from the source. Other results, not presented herein, demonstrate that the return

frequency peak is distinguishable for receiver positions less or equal to the delamination radius.

As described earlier, the most important objective of using several finite element models was to

minimize effects of artificially strong surface waves. To attempt the same, a relatively “rough”

trapezoidal impact function was substituted by a “smooth” haversine function. A comparison of time
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Figure 5.6. Comparison of time records and spectra for Model 1 with trapezoidal loading
and Model 5 with haversine loading at radial distances fo 25 and 75 mm.
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records for two extreme conditions in Fig. 5.6, Model1 with a trapezoidal and Model 5 with a

haversine loading, indicates a clear improvement in the reduction of surface wave components for

Model 5. Surprisingly, the return frequency for Model 1 is equally well, if not better, pronounced.

In general, while the spectra for five models and two loading functions differ somewhat, they define

equally well and almost identical return frequency. It may be concluded that, while the model

discretization and the impact source description are critical in the description of wave propagation

histories in vicinity of the source, they have little effect on the simulation of the IE test spectrum.

The effect of the vertical position of a delamination is illustrated in Fig. 5.7. From the pointed return

frequency values of 7580, 10880 and 16760 Hz, and the compression wave velocity of 3260 m/s,

delamination depths of 21.3, 15.3 and 10.3 cm, respectively,  can be determined. This confirms the
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ability of the IE technique to precisely define the delamination depth. Similarly, very little

differences in the return frequency were observed (not shown herein) for a variation of the

delamination radius between15 and 60 cm. This is in agreement with previous findings by Sansalone

(1993) that the response for a deck with a delamination of a radius larger than about 0.75 of the

delamination depth corresponds to the response for a sound deck of a thickness equal to the

delamination depth. As the delamination depth decreases, while the delamination radius is kept

constant, flexural oscillations of the upper portion of the deck get more pronounced. This can be

observed in Fig. 5.7 for delamination depths of 10 and 15  cm. Based on the presented and other

developed spectra, it can be concluded that the flexural mode peak becomes visible for delamination

depth to radius ratios less or equal to about 1. The conclusion is valid for an assumption, as modeled

herein, that the source is at the center of the delamination and that the receiver is within the projected

borders of the delamination.

Simulation of Delamination Progression  

It is assumed that the deck condition worsens according to two probable delamination

progression scenarios. The first scenario involves expansion\growth of a single small delamination,

while the second one involves progressive linking of several smaller delaminations. The first

scenario is illustrated in Fig. 5.8 by response spectra for delaminations of a radius varying from 2.5

to 15 cm, and for a delamination depth of 15 cm. Again, the receiver is placed at a 7.5 cm radial

distance from the source. For a small radius, 2.5 and 5 cm, the return frequency peak for the

delamination is very weakly defined. As the radius increases, the delamination peak dominates the
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Figure 5.8. Scenario 1. Changes in the response spectrum due to delamination expansion.

spectrum. On the other hand, a transition of the full deck thickness peak towards the flexural mode

peak can be observed as the delamination radius increases. Similar observations (not presented

herein) are valid for receiver positions closer to the source, for example for 2.5 and 5.0 cm. For

receiver positions approaching or greater than the radius of the largest delamination, the transition

of the full deck thickness peak towards the flexural mode peak is preserved, while the delamination

peak becomes barely visible. Previous observations point to a conclusion that the growth of a

delamination can be recognized in periodic monitoring results through two elements. The first one

is a growth of the delamination return frequency peak, and the second one a shift of the full deck

thickness peak towards a lower frequency flexible mode peak. 
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Figure 5.9. Scenario 2. Changes in the response spectrum due to progressive linking. T=25 cm,
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The second scenario of progressive linking of several smaller delaminations is illustrated in Figs. 5.9

and 5.10. Three cases are compared in Fig. 5.9: a continuous delamination of a 15 cm radius, a

discontinuous 15 cm circular delamination with a 5 cm contact ring in the middle, and a

discontinuous 15 cm circular delamination with three 2.5 cm wide contact rings. In all three cases

the return frequency can be identified, however the peak gets weaker as the frequency of contact

areas increases. While the flexural mode for the continuous delamination is clearly visible, it does

not exist for the other two. Finally, peaks left from the delamination return frequency for the

discontinuous delamination models can be observed. These peaks correspond to reflections from the

bottom of the deck, confirming expected partial radiation of energy towards the bottom of the deck

through the periodical contacts. Similar results are obtained for uneven delamination-contact ring
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Figure 5.10. Scenario 2. Changes in the response spectrum due to progressive linking. T=25 cm,
d=15 cm.

widths, as illustrated by a comparison of spectra for four cases of continuity in Fig. 5.10 . The 15 cm

radius delamination cases include: a continuous delamination, a discontinuous delamination of three

intermittent 1.25 cm contact and 3.75 cm crack ring widths, starting from the center, and

discontinuous delaminations of three intermittent 2.5 cm contact and  2.5 cm crack, and 3.75 cm

contact and 1.25 crack ring widths. 

While there are some similarities between the two scenarios, the most important difference from the

long term monitoring point is in the transition from the full deck thickness return frequency peak

towards the flexural mode peak. In the crack expansion case the transition is gradual, while in the

crack linking case that transition is sudden and happens when the delamination becomes continuous.
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CHAPTER 6

DATA VISUALIZATION

In addition to an accurate condition assessment, an important aspect of bridge deck

evaluation includes fast and simple data presentation and interpretation. A 3-dimensional, real time,

presentation of evaluated sections of a bridge deck seems to be a logical solution to the task.

Therefore, a program is being developed that provides 3-dimensional mapping of the recorded

impact echo data, as illustrated in Fig. 6.1. The objective of the program is to define zones of high



57

intensity reflections and present them in a translucent 3-dimensional model of a tested deck section.

Figure 6.1 was generated using synthetic data for the purpose of illustration of previously described

possible deck conditions and corresponding grades. As discussed in Chapter 5, the depth of the

reflector can be easily calculated from the known compression wave velocity and the return

frequency. The image in the figure contains a 3-dimensional thickness spectrum with lines defining

the surface and bottom of the deck. Reflections in a plane matching the deck bottom line define

sound zones of the deck. Reflections at about a half deck thickness define delaminated zones.

Depending on other reflections below the delaminated zones the condition is described as fair, poor

or serious. For example, reflections from the deck bottom can be observed below the edges of the

delaminated zone. This is an indication of an initial delamination, or a fair condition. Closer to the

center of the delamination, reflections from the deck bottom are very weak. This can be described

as a progressed delamination, or a poor condition. Finally, below the very center of the delamination

there is a reflection below the deck bottom. As previously explained, this apparent reflection defines

a zone of complete and wide separation of deck layers, warning about a serious condition.

The program was implemented on actual data from Rt. I-287S bridge testing. Figures 6.2 and 6.3

illustrate implementation of the program on the deck section marked in Fig. 4.13. For the simplicity,

in this case the deck section was described as a rectangular instead of a skewed section. As in Fig

6.1, zones of a sound deck and of initial, progressed and complete delaminations can identified from

reflections  at various deck elevations. The current effort is being directed towards

implementation/linking with existing PSPA software that will allow such a presentation in a real

time. Once completed, the PSPA could be considered to be a bridge deck sonar device.
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Figure 6.2. 3-dimensional thickness spectrum for a section of the Rt. I-287S bridge deck.
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Figure 6.3. 3-dimensional thickness spectrum for a section of the Rt. I-287S bridge deck.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS 

Ultrasonic seismic tests can be successfully used in long term post construction monitoring of

changes in material quality and the deck condition with respect to deterioration caused by corrosion

induced delamination. Material quality evaluation of bridge decks by integrated seismic devices is

advantageous over the practice of core taking and testing because it is nondestructive and same locations

can be periodically evaluated in an efficient, accurate and economical manner. Condition assessment with

respect to the deck delamination by ultrasonic methods, the impact echo (IE) method in particular, is

advantageous over the current practice of chain dragging. The primary reason for it is the ability of the IE

method to detect zones of delamination at various stages, from initial to progressed and developed. This

ability allows better prediction of deterioration processes in the deck, and thus presents a valuable tool for

economic bridge management. 

Ultrasonic testing of bridge decks can be successfully simulated by the finite element method. Some of the

issues that require special attention include model discretization in the vicinity of the impact source (if

axisymmetric models are used) and the description of damping. To improve quality of response spectra

obtained from axisymmetric models, artificially strong surface wave components in the vicinity of the axis

of symmetry (impact source) should be reduced by clipping of time histories (in the vertical direction).

Results presented confirm the ability of the IE method to precisely determine the depth of the delamination,

and to define the stage of a delamination induced deterioration. These effects are more pronounced at
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sensor locations closer to the impact source.

The finite element method was also successful in simulation of two probable scenarios of delamination

progression: expansion\growth of a single small delamination, and progressive linking of several smaller

delaminations. The two processes can be recognized through periodic monitoring  of changes in amplitudes

of peak frequencies for reflections from the delamination and the bottom of the deck, and for the flexural

mode of oscillations. The growth of a delamination can be recognized by a growth of the delamination

frequency peak, and a gradual shift of the full deck thickness peak towards a lower frequency flexible mode

peak. The progressive crack linking process can be recognized by a growth of the delamination frequency

peak, and a sudden transition from the full deck thickness peak to the frequency flexible mode peak as the

delamination becomes continuous. The results point to a feasibility of the use of finite element simulations

in the development of a neural network model for faster and more accurate condition assessment of bridge

decks. This includes both improved evaluation of the degree of delamination, expressed through the size,

position and continuity of the delamination, and better prediction of post construction deterioration

processes.

Numerous improvements can be implemented that will improve both the accuracy and the speed of the

bridge deck evaluation by the PSPA device. The duration of field testing, for example, can be significantly

reduced through an implementation of a system consisting of a set of “lunch boxes” in a parallel connection.

Both the accuracy and speed can be improved through incorporation of an automated data interpretation

procedure based on numerical simulations and neural network models. 
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