Field Implementation of Geopolymer Coatings

FINAL REPORT September 2004 (Revised May 2008)

Submitted by Dr. P. N. Balaguru, Principal Investigator Mohamed Nazier, Graduate Assistant Mohamed Arafa, Graduate Assistant

Dept. of Civil & Environmental Engineering Center for Advanced Infrastructure & Transportation (CAIT) Rutgers, The State University Piscataway, NJ 08854-8014

NJDOT Research Project Manager Mr. Robert Sasor

In cooperation with

New Jersey Department of Transportation Bureau of Research and U.S. Department of Transportation Federal Highway Administration

Disclaimer Statement

The contents of this report reflect the views of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the New Jersey Department of Transportation or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

The contents of this report reflect the views of the authors, Who are responsible for the facts and the accuracy of the Information presented herein. This document is disseminated Under the sponsorship of the Department of Transportation, University Transportation Centers Program, in the interest of information exchange. The U.S. Government assumes no liability for the contents or use thereof.

			TECHN	<u>ICAL REPORT STAN</u>	DARD TITLE PAGE
FHWA-NJ-2002-11	1. Report No.	2. Government Acc	cession No.	3. Recipient's Catal	og No.
4. Title and Sublitle S. Report Date September 2004, Revised May 2008 Field Implementation of Geopolymer Coatings S. Report Date September 2004, Revised May 2008 7. Author(s) Dr. P.N. Balaguru, Mohamed Nazier, Mohamed Arafa S. Performing Organization Report No. 8. Performing Organization Name and Address Rutgers University 203 Bowser Road Prectatway, NJ 08880 II. Contract or Grant No. 12. Sponsoring Agency Name and Address New Jerse Deartment of Transportation P.O. Box 600 Trentor, NJ 08625 Federal Highway Administration U.S. Department of Transportation P.O. Box 600 Trentor, NJ 08625 Federal Highway Administration U.S. Department of Transportation P.O. Box 600 Trentor, NJ 08625 10. Work Unit No. 16. Abstract Intersented in this report deal with an evaluation of Geopolymer coatings for durability and field demonstration applications. The primary objectives were to establish a temperature range in which the coating could be applice, establish the surface conditions and requirements, and to demonstrate field applications which were done at Rutgers University campuses and on actual transportation of fiber composites is presented in the introduction chapter. The study on the establishment of a temperature range is presented in Chapter 2. The durability test results under wetting and drying conditions and scaling are presented in Chapter 3. The rorability itset results under wetting and drying conditions and scaling are presented in Chapter 3. The recommendations are presented in Chapter 6. The recommended application procedure for the geopolymer coatings is presented in Appendix A. 17. Key Words Coating, geopolymer, inorganic, matrix, carbon reinforcem	FHWA-NJ-2002-11				
Field Implementation of Geopolymer Coatings September 2004, Revised May 2008 C. Author(s) 0. Performing Organization Code Dr. P.N. Balaguru, Mohamed Nazier, Mohamed Arafa 8. Performing Organization Report No. 9. Performing Organization Name and Address 10. Work Unit No. Rutgers University 11. Contract or Grant No. 9. September 2004, Revised Road 11. Contract or Grant No. 9. Performing Organization Name and Address 11. Contract or Grant No. 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered 15. Supplementary Notes Federal Highway Administration Trenton, NJ 08825 13. Supplementary Notes 16. Abstract The results presented in this report deal with an evaluation of Geopolymer coatings for durability and field demonstration applications. The primary objectives were to establish a temperature range in which the coating could be applied, establish the surface conditions and requirements, and to demonstrate field applications which were done at Rutgers University campuses and on actual transportation structures. The dresolity test results under wetting and drying conditions and scaling are presented in Chapter 3 and 4, respectively, and the field applications mereature range is presented in Chapter 3. The durability test results under wetting and drying conditions and scaling are presented in Chapter 3 and 4, respectively, and the field applications procedure for the geopolymer coatings is presented in Chapter 3. The durability test results under wetting applications are presented in Ch	4. Title and Subtitle		:	5. Report Date	
7. Author(s) CAIT/RUders 6. Performing Organization Code CAIT/RUders 9. Performing Organization Name and Address 8. Performing Organization Report No. 9. Performing Organization Name and Address 10. Work Unit No. Rutgers University 233 Bowser Road Piscataway, NJ 08880 11. Contract or Grant No. 12. Sponsoring Agency Name and Address New Jersey Department of Transportation P.O. Box 600 Tenton, NJ 08625 11. Contract or Grant No. 15. Supplementary Notes 13. Spee of Report and Period Covered Final Report 02/01/2000 to 09/30/2001 16. Abstract 14. Sponsaring Agency Name and Address New Jersey Department of Transportation P.O. Box 600 Tenton, NJ 08625 15. Supplementary Notes 14. Sponsaring Agency Code 16. Abstract 15. Supplementary Notes 17. Key Words The results presented in this report deal with an evaluation of Geopolymer coatings for durability and field demonstrate field applications. The primary objectives were to establish a temperature range in which the coating could be applied, establish the surface conditions and requirements, and to demonstrate field applications which were done at Rutgers University campuses and on actual transportation structures. A brief description of fiber composites is presented in Chapter 2. The durability test results under wetting and drying conditions and scaling are presented in Chapter 3 and 4, respectively, and the field applications are described in Chapter 5. Conclusions and recommendations are presented in Chapter 6. The recommended application pro	Field Implementation of Geopolym	er Coatings		September 2004, R	evised May 2008
7. Author(s) Dr. P.N. Balaguru, Mohamed Nazier, Mohamed Arafa 8. Performing Organization Report No. 9. Performing Organization Name and Address Rutgers University 623 Bowser Road Pisoataway, NJ 08880 10. Work Unit No. 11. Contract or Grant No. 11. Contract or Grant No. 12. Sponsoring Agency Name and Address Pisoataway, NJ 08880 Federal Highway Administration V.S. Department of Transportation P.O. Box 600 Trenton, NJ 08625 11. Contract or Grant No. 15. Supplementary Notes US Department of Transportation P.O. Box 600 Trenton, NJ 08625 Federal Highway Administration Vashington, D.C. 16. Abstract Sonsoring Agency Version Vashington, D.C. Sonsoring Agency Version Vashington, D.C. 16. Abstract The results presented in this report deal with an evaluation of Geopolymer coatings for durability and field demonstrate field applications. The primary objectives were to establish a temperature range in which the coating could be applied, establish the surface conditions and requirements, and to demonstrate field applications or the resource on the at Rutgers University campuses and on actual transportation structures. A brief description of fiber composites is presented in Chapter 2. The durability test results under wetting and dying conditions and scaling are presented in Chapter 3 and 4, respectively, and the field applications are described in Chapter 5. Conclusions and response are in the inforcement, concrete surface protection, concrete strengthening 19. Security Classified 20. Security Classif. (of this report) Unclassified 20. Security Classif. (of this page) Unclassified <td></td> <td></td> <td></td> <td>6. Performing Organiz CAIT/Rutgers</td> <td>zation Code</td>				6. Performing Organiz CAIT/Rutgers	zation Code
Dr. P. N. Balaguru, Mohamed Nazier, Mohamed Arafa 9. Performing Organization Name and Address Rutgers University 623 Boxes Road Piscataway, NJ 08880 12. Sponsoring Agency Name and Address New Jersey Department of Transportation P.O. Box 600 Trenton, NJ 08625 15. Supplementary Notes 16. Abstract 17. Sponsoring Agency Name and Address NJ 08625 NJ 08625 16. Abstract The results presented in this report deal with an evaluation of Geoptymer coatings for durability and field demonstration applications. The primary objectives were to establish a temperature range in which the coating could be applied, establish the surface conditions and requirements, and to demonstrate field applications. The primary objectives were to establish a temperature range in which the coating could be applied, establish the surface conditions and requirements, and to demonstrate field applications are description of fiber composites is presented in Chapter 2. The durability test results under wetting and drying conditions and scaling are presented in Chapter 3 and 4, respectivel, and the field applications are described in Chapter 5. Conclusions and respresented in Chapter 4. 17. Key Words 18. Distribution Statement 19. Security Classifi (of this report) 20. Security Classif. (of this page) 21. No of Page 22. Price 19. Security Classified <	7. Author(s)			8. Performing Organia	zation Report No.
9. Performing Organization Name and Address 10. Work Unit No. Rutgers University 623 Boxes Road Piscataway, NJ 08880 11. Contract or Grant No. 12. Sponsoring Agency Name and Address 11. Contract or Grant No. New Jersey Department of Transportation Trenton, NJ 08825 Federal Highway Administration US. Department of Transportation Trenton, NJ 08825 12. Sponsoring Agency Name and Address 15. Supplementary Notes 14. Soonsoring Agency Code 14. Soonsoring Agency Code 16. Abstract The results presented in this report deal with an evaluation of Geopolymer coatings for durability and field demonstrate field applications. The primary objectives were to establish a temperature range in which the coating could be applied, establish the surface conditions and requirements, and to demonstrate field applications which were done at Rutgers University campuses and on actual transportation affice composites is presented in the introduction chapter. The study on the establishment of a temperature range is which were done at Rutgers University campuses and drying conditions and scaling are presented in Chapter 2. The durability test results under wetting and drying conditions and scaling are presented in Chapter 3. The durability test results under wetting and drying conditions and scaling are presented in Chapter 2. The durability test results under wetting and drying conditions and scaling are presented in Chapter 3. The durability and the field applications are described in Chapter 5. Conclusions and recommendations are presented in Chapter 6. The recommended application procedure for the geopolymer coatings is presented in Chapter 6. The recommended application procedure for the geopolymer, inorganic, matrix, ca	Dr. P.N. Balaguru, Mohamed Na	azier, Mohamed	Arafa		
Rutgers University 623 Bowser Road Piscataway, NJ 08880 11. Contract or Grant No. 12. Sponsoring Agency Name and Address New Jersey Department of Transportation PO. Box 600 Trenton, NJ 08625 13. Type of Report and Period Covered Final Report 02/01/2000 to 09/30/2001 15. Supplementary Notes 14. Sponsoring Agency Vame and Address Washington, D.C. 14. Sonsoring Agency Code 16. Abstract 15. Supplementary Notes 14. Sonsoring Agency Code 16. Abstract The results presented in this report deal with an evaluation of Geopolymer coatings for durability and field demonstrate field applications. The primary objectives were to estabilish a temperature range in which the coating could be applied, establish the surface conditions and requirements, and to demonstrate field applications which were done at Rutgers University campuses and on actual transportation structures. A brief description of fiber composites is presented in the introduction chapter. The study on the establishment of a temperature range is which were done at Rutgers University campuses and drying conditions and scaling are presented in Chapter 2. The durability test results under wetting and drying conditions and scaling are presented in Chapter 3 and 4. respectively, and the field applications are described in Chapter 5. Conclusions and recommendations are presented in Chapter 6. The recommended application procedure for the geopolymer coatings is presented in Chapter 6. The recommended application procedure for the geopolymer coatings is presented in Chapter 6. The recommended application, matrix, carbon reinforcement, concrete surface protection, concrete strengthening 18. Distribution Statement Unclassified 21. No of Pages 51 22. Price	9. Performing Organization Name and A	ddress		10. Work Unit No.	
B23 Bowser Koad 11. Contract of Grant No. Piscataway, NJ 08880 13. Type of Report and Period Covered Final Report 13. Type of Report and Period Covered Final Report 14. Sponsoring Agency Name and Address New Jersey Department of Transportation P.O. Box 600 Federal Highway Administration U.S. Department of Transportation Washington, D.C. 14. Sponsoring Agency Code 15. Supplementary Notes 16. Abstract 14. Sponsoring Agency Code 16. Abstract The results presented in this report deal with an evaluation of Geopolymer coatings for durability and field demonstrate field applications. The primary objectives were to establish a temperature range in which the coating could be applied, establish the surface conditions and requirements, and to demonstrate field applications which were done at Rutgers University campuses and on actual transportation structures. A brief description of fiber composites is presented in the introduction chapter. The study on the establishment of a temperature range is presented in Chapter 2. The durability test results under wetting and drying conditions and scaling are presented in Chapter 3 and 4, respectively, and the field applications are described in Chapter 5. Conclusions and recommendations are presented in Chapter 6. The recommended application procedure for the geopolymer coatings is presented in Appendix A. 17. Key Words 18. Distribution Statement Coating, geopolymer, inorganic, matrix, carbon reinforcement, concrete surface protection, concrete strengthening 20. Security Classif. (of this page) Unclassified 2	Rutgers University		-	44 0 4 0	- NI -
12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered New Jersey Department of Transportation Federal Highway Administration 15. Supplementary Notes 14. Sponsoring Agency Code 16. Abstract 14. Sponsoring Agency Code 17. Supplementary Notes 14. Sponsoring Agency Code 18. Abstract 15. Supplementary Notes 19. Active range in which the coating could be applied, establish the surface conditions and requirements, and to demonstrate field applications which were done at Rutgers University campuses and on actual transportation of fiber composites is presented in Chapter 2. The durability test results under wetting and drying conditions and scaling are presented in Chapter 2. The durability test results under wetting and drying conditions and scaling are presented in Chapter 3 and 4, respectively, and the field applications and recormendations are resented in Chapter 6. The recommended application procedure for the geopolymer coatings is presented in Chapter 6. The recommended application procedure for the geopolymer coatings is presented in Chapter 6. The recommended application procedure for the geopolymer coatings is presented in Appendix A. 17. Key Words 18. Distribution Statement Coating, geopolymer, inorganic, matrix, carbon reinforcement, concrete surface protection,	623 Bowser Road Riscataway, NJ 08880			11. Contract or Gran	t No.
12. Sponsoring Agency Name and Address New Jersey Department of Transportation P O. Box 600 Trenton, NJ 08625 Federal Highway Administration U.S. Department of Transportation Washington, D.C. Federal Highway Administration U.S. Department of Transportation Washington, D.C. Transportation 2000 to 09/30/2001 16. Abstract 14. Sponsoring Agency Code 17. Supplementary Notes 14. Sponsoring Agency Code 18. Abstract 16. Abstract 19. Address of the consortation applications. The primary objectives were to establish a temperature range in which the coating could be applied, establish the surface conditions and requirements, and to demonstrate field applications which were done at Rutgers University campuses and on actual transportation structures. A brief description of fiber composites is presented in the introduction chapter. The study on the establishment of a temperature range is presented in Chapter 2. The durability test results under wetting and drying conditions and scaling are presented in Chapter 3. Conclusions and 4, respectively, and the field applications are described in Chapter 5. Conclusions and recommendations are presented in Chapter 6. The recommended application procedure for the geopolymer coatings is presented in Appendix A. 17. Key Words 18. Distribution Statement 19. Security Classified 20. Security Classifi. (of this page) 19. Security Classified 20. Security Classifi. (of this page) 19. Security Classified 21. No of Pages 22. Price 19. Security Classified 21. No of Pages 22	Fiscalaway, NJ 00000		-	3 Type of Report ar	d Period Covered
New Jersey Department of Transportation P.O. Box 600 Trenton, NJ 08625 Federal Highway Administration U.S. Department of Transportation Washington, D.C. Inter Department of 200/20001 14. Sponsorling Agency Code 15. Supplementary Notes 16. Abstract 16. Abstract 17. For results presented in this report deal with an evaluation of Geopolymer coatings for durability and field demonstration applications. The primary objectives were to establish a temperature range in which the coating could be applied, establish the surface conditions and requirements, and to demonstrate field applications which were done at Rutgers University campuses and on actual transportation structures. A brief description of fiber composites is presented in the introduction chapter. The study on the establishment of a temperature range is presented in Chapter 2. The durability test results under wetting and drying conditions and scaling are presented in Chapter 3 and 4, respectively, and the field applications are described in Chapter 5. Conclusions and recommendations are presented in Chapter 6. The recommended application procedure for the geopolymer coatings is presented in Chapter 6. The recommended application procedure for the geopolymer coatings is presented in Chapter 6. The recommended application procedure for the geopolymer coatings is presented in Chapter 6. The recommended application, campcing, matrix, carbon reinforcement, concrete surface protection, concrete strengthening 21. No of Pages 22. Price 19. Security Classified 20. Security Classifi. (of this page) 21. No of Pages 22. Price	12. Sponsoring Agency Name and Addre	SS		Final Penart	
P.O. Box 600 Trenton, NJ 08625 U.S. Department of Transportation Washington, D.C. 14. Sponsoring Agency Code 15. Supplementary Notes 14. Sponsoring Agency Code 16. Abstract 16. Abstract 16. Abstract 16. Abstract 17. Supplementary Notes 16. Abstract 16. Abstract 16. Abstract 17. Key Words 10. Composition of fiber composities is presented in the introduction chapter. The study on the establish the coating could be applications which were done at Rutgers University campuses and on actual transportation afficient or fiber composities is presented in Chapter 2. The durability test results under wetting and drying conditions and scaling are presented in Chapter 3 and 4, respectively, and the field applications are described in Chapter 5. Conclusions and recommendations are presented in Chapter 5. The recommendations are presented in Chapter 6. The recommended application procedure for the geopolymer coatings is presented in Appendix A. 17. Key Words 18. Distribution Statement Coating, geopolymer, inorganic, matrix, carbon reinforcement, concrete surface protection, concrete strengthening 20. Security Classif. (of this page) 21. No of Pages 22. Price 19. Security Classified 20. Security Classified 21. No of Pages 22. Price	New Jersey Department of Transportation	Federal Highway	Administration	02/01/2000 to 09/	30/2001
Trenton, NJ 08625 Washington, D.C. 14. Sponsoring Agency Code 15. Supplementary Notes 14. Sponsoring Agency Code 16. Abstract 16. Abstract 17. The results presented in this report deal with an evaluation of Geopolymer coatings for durability and field demonstration applications. The primary objectives were to establish a temperature range in which the coating could be applied, establish the surface conditions and requirements, and to demonstrate field applications which were done at Rutgers University campuses and on actual transportation structures. A brief description of fiber composites is presented in the introduction chapter. The study on the establishment of a temperature range is presented in Chapter 2. The durability test results under wetting and drying conditions and scaling are presented in Chapter 3 and 4, respectively, and the field applications are described in Chapter 5. Conclusions and recommendations are presented in Chapter 6. The recommended application procedure for the geopolymer coatings is presented in Chapter 3. A conclusions are presented in Chapter 3. A conclusions are presented in Chapter 4. The durability test results under weting and drying conditions and scaling are presented in Chapter 5. Conclusions and recommendations are presented in Chapter 4. The durability test results under weting and grying conditions and scaling are presented in Chapter 5. Conclusions and recommendations are presented in Chapter 4. The durability test results under the scale applications are described in Chapter 5. Conclusions and recommendations are presented in Chapter 5. Conclusions are described by test are sults under the scopolymer c	P.O. Box 600	U.S. Department	of Transportation		
15. Supplementary Notes 16. Abstract The results presented in this report deal with an evaluation of Geopolymer coatings for durability and field demonstration applications. The primary objectives were to establish a temperature range in which the coating could be applied, establish the surface conditions and requirements, and to demonstrate field applications which were done at Rutgers University campuses and on actual transportation structures. A brief description of fiber composites is presented in Chapter 2. The durability test results under wetting and drying conditions and scaling are presented in Chapter 2. The durability test results under wetting and drying conditions and scaling are presented in Chapter 3 and 4, respectively, and the field applications are described in Chapter 5. Conclusions and recommendations are presented in Chapter 6. The recommended application procedure for the geopolymer coatings is presented in Appendix A. 17. Key Words 18. Distribution Statement 19. Security Classif (of this report) 20. Security Classif. (of this pace) 21. No of Pages 22. Price 19. Security Classified 20. Security Classif. (of this pace) 21. No of Pages 22. Price	Trenton, NJ 08625	Washington, D.C		14. Sponsoring Agen	cv Code
16. Abstract The results presented in this report deal with an evaluation of Geopolymer coatings for durability and field demonstration applications. The primary objectives were to establish a temperature range in which the coating could be applied, establish the surface conditions and requirements, and to demonstrate field applications which were done at Rutgers University campuses and on actual transportation structures. A brief description of fiber composites is presented in the introduction chapter. The study on the establishment of a temperature range is presented in Chapter 2. The durability test results under wetting and drying conditions and scaling are presented in Chapter 3 and 4, respectively, and the field applications are described in Chapter 5. Conclusions and recommendations are presented in Chapter 6. The recommended application procedure for the geopolymer coatings is presented in Appendix A. 17. Key Words 18. Distribution Statement Coating, geopolymer, inorganic, matrix, carbon reinforcement, concrete surface protection, concrete strengthening 18. Distribution Statement 19. Security Classif (of this report) 20. Security Classif. (of this page) 21. No of Pages 22. Price 19. Security Classified 20. Security Classif. (of this page) 21. No of Pages 22. Price	15. Supplementary Notes		•		
16. Abstract The results presented in this report deal with an evaluation of Geopolymer coatings for durability and field demonstration applications. The primary objectives were to establish a temperature range in which the coating could be applied, establish the surface conditions and requirements, and to demonstrate field applications which were done at Rutgers University campuses and on actual transportation structures. A brief description of fiber composites is presented in Chapter 2. The durability test results under wetting and drying conditions and scaling are presented in Chapter 2. The durability test results under wetting and drying conditions and scaling are presented in Chapter 3 and 4, respectively, and the field applications are described in Chapter 5. Conclusions and recommendations are presented in Chapter 6. The recommended application procedure for the geopolymer coatings is presented in Chapter 7. A presented in Chapter 6. The recommended application procedure for the geopolymer coatings is presented in Chapter 4. 17. Key Words 18. Distribution Statement 19. Security Classif (of this report) 20. Security Classif. (of this page) 21. No of Pages 22. Price 19. Security Classified 20. Security Classified 51 22. Price					
16. Abstract The results presented in this report deal with an evaluation of Geopolymer coatings for durability and field demonstration applications. The primary objectives were to establish a temperature range in which the coating could be applied, establish the surface conditions and requirements, and to demonstrate field applications which were done at Rutgers University campuses and on actual transportation structures. A brief description of fiber composites is presented in the introduction chapter. The study on the establishment of a temperature range is presented in Chapter 2. The durability test results under wetting and drying conditions and scaling are presented in Chapter 3 and 4, respectively, and the field applications are described in Chapter 5. Conclusions and recommendations are presented in Chapter 6. The recommended application procedure for the geopolymer coatings is presented in Appendix A. 17. Key Words 18. Distribution Statement 19. Security Classif (of this report) 20. Security Classif. (of this page) 21. No of Pages 22. Price 19. Security Classified 20. Security Classified 21. No of Pages 22. Price 19. Security Classified 20. Security Classified 51 21. No of Pages 22. Price					
The results presented in this report deal with an evaluation of Geopolymer coatings for durability and field demonstration applications. The primary objectives were to establish a temperature range in which the coating could be applied, establish the surface conditions and requirements, and to demonstrate field applications which were done at Rutgers University campuses and on actual transportation structures. A brief description of fiber composites is presented in the introduction chapter. The study on the establishment of a temperature range is presented in Chapter 2. The durability test results under wetting and drying conditions and scaling are presented in Chapter 3 and 4, respectively, and the field applications are described in Chapter 5. Conclusions and recommendations are presented in Chapter 6. The recommended application procedure for the geopolymer coatings is presented in Appendix A. 17. Key Words 18. Distribution Statement Coating, geopolymer, inorganic, matrix, carbon reinforcement, concrete surface protection, concrete strengthening 20. Security Classif. (of this page) 21. No of Pages 22. Price 19. Security Classified 20. Security Classified 51 21. Price 22. Price	16. Abstract				
durability and field demonstration applications. The primary objectives were to establish a temperature range in which the coating could be applied, establish the surface conditions and requirements, and to demonstrate field applications which were done at Rutgers University campuses and on actual transportation structures. A brief description of fiber composites is presented in the introduction chapter. The study on the establishment of a temperature range is presented in Chapter 2. The durability test results under wetting and drying conditions and scaling are presented in Chapter 3 and 4, respectively, and the field applications are described in Chapter 5. Conclusions and recommendations are presented in Chapter 6. The recommended application procedure for the geopolymer coatings is presented in Appendix A. 17. Key Words 18. Distribution Statement Coating, geopolymer, inorganic, matrix, carbon reinforcement, concrete surface protection, concrete strengthening 20. Security Classif. (of this page) 21. No of Pages 22. Price 19. Security Classif (of this report) 20. Security Classif. (of this page) 21. No of Pages 22. Price 19. Security Classified 20. Security Classified 51 21. No of Pages 22. Price	The results presented in the	nis report deal w	ith an evaluation of	Geopolymer coat	inas for
temperature range in which the coating could be applied, establish the surface conditions and requirements, and to demonstrate field applications which were done at Rutgers University campuses and on actual transportation structures. A brief description of fiber composites is presented in the introduction chapter. The study on the establishment of a temperature range is presented in Chapter 2. The durability test results under wetting and drying conditions and scaling are presented in Chapter 3 and 4, respectively, and the field applications are described in Chapter 5. Conclusions and recommendations are presented in Chapter 6. The recommended application procedure for the geopolymer coatings is presented in Appendix A. 17. Key Words Coating, geopolymer, inorganic, matrix, carbon reinforcement, concrete surface protection, concrete strengthening 19. Security Classif (of this report) Unclassified 19. Security Classif (of this report) Unclassified 19. Security Classif (of this report) Unclassified 10. Security Classif (of this report) 10. Security Classif (of this report) 10. Security Classif (of this report) 10. Security Classified 11. No of Pages 12. No of Pages 13. Security Classified 14. Distribution 15. Security Classified 16. Distribution 17. Key Words 18. Distribution 19. Security Classified 19. Security Classified 10. Security Cl	durability and field demonstration a	applications. The	primary objectives	were to establish	i a
requirements, and to demonstrate field applications which were done at Rutgers University campuses and on actual transportation structures. A brief description of fiber composites is presented in the introduction chapter. The study on the establishment of a temperature range is presented in Chapter 2. The durability test results under wetting and drying conditions and scaling are presented in Chapter 3 and 4, respectively, and the field applications are described in Chapter 5. Conclusions and recommendations are presented in Chapter 6. The recommended application procedure for the geopolymer coatings is presented in Appendix A. 17. Key Words 18. Distribution Statement Coating, geopolymer, inorganic, matrix, carbon reinforcement, concrete surface protection, concrete strengthening 20. Security Classif. (of this page) 21. No of Pages 22. Price Inclassified Unclassified Unclassified 21. No of Pages 22. Price	temperature range in which the co	ating could be a	oplied, establish the	e surface condition	ns and
and on actual transportation structures. A brief description of fiber composites is presented in the introduction chapter. The study on the establishment of a temperature range is presented in Chapter 2. The durability test results under wetting and drying conditions and scaling are presented in Chapter 3 and 4, respectively, and the field applications are described in Chapter 5. Conclusions and recommendations are presented in Chapter 6. The recommended application procedure for the geopolymer coatings is presented in Appendix A. 17. Key Words Coating, geopolymer, inorganic, matrix, carbon reinforcement, concrete surface protection, concrete strengthening 19. Security Classif (of this report) Unclassified Port DT F 1700.7 (8-69) 20. Security Classif. (of this page) Unclassified Form DOT F 1700.7 (8-69)	requirements, and to demonstrate	field application	s which were done	at Rutgers Univer	sity campuses
A brief description of fiber composites is presented in the introduction chapter. The study on the establishment of a temperature range is presented in Chapter 2. The durability test results under wetting and drying conditions and scaling are presented in Chapter 3 and 4, respectively, and the field applications are described in Chapter 5. Conclusions and recommendations are presented in Chapter 6. The recommended application procedure for the geopolymer coatings is presented in Appendix A. 17. Key Words Coating, geopolymer, inorganic, matrix, carbon reinforcement, concrete surface protection, concrete strengthening 19. Security Classif (of this report) Unclassified 20. Security Classif. (of this pade) 21. No of Pades 22. Price Form DOT F 1700.7 (8-69)	and on actual transportation struct	ures.			
the establishment of a temperature range is presented in Chapter 2. The durability test results under wetting and drying conditions and scaling are presented in Chapter 3 and 4, respectively, and the field applications are described in Chapter 5. Conclusions and recommendations are presented in Chapter 6. The recommended application procedure for the geopolymer coatings is presented in Appendix A. 17. Key Words I8. Distribution Statement Coating, geopolymer, inorganic, matrix, carbon reinforcement, concrete strengthening 18. Distribution Statement 19. Security Classif (of this report) 20. Security Classif. (of this page) 21. No of Pages 22. Price Unclassified Unclassified 51 14. No of Pages	A brief description of fiber composites is presented in the introduction chapter. The study on				
wetting and drying conditions and scaling are presented in Chapters 3 and 4, respectively, and the field applications are described in Chapter 5. Conclusions and recommendations are presented in Chapter 6. The recommended application procedure for the geopolymer coatings is presented in Appendix A. 17. Key Words 18. Distribution Statement 17. Key Words 18. Distribution Statement Coating, geopolymer, inorganic, matrix, carbon reinforcement, concrete surface protection, concrete strengthening 18. Distribution Statement 19. Security Classif (of this report) 20. Security Classif. (of this page) 21. No of Pages 22. Price Unclassified Unclassified 51 20. Price 20. Price	the establishment of a temperature range is presented in Chapter 2. The durability test results under				
17. Key Words 18. Distribution Statement Coating, geopolymer, inorganic, matrix, carbon reinforcement, concrete surface protection, concrete strengthening 18. Distribution Statement 19. Security Classif (of this report) 20. Security Classif. (of this page) 21. No of Pages 22. Price 19. Security Classified Unclassified 51 22. Price	wetting and drying conditions and	scaling are pres	ented in Chapters 3	and 4, respective	ely, and the
17. Key Words 18. Distribution Statement Coating, geopolymer, inorganic, matrix, carbon reinforcement, concrete surface protection, concrete strengthening 18. Distribution Statement 19. Security Classif (of this report) 20. Security Classif. (of this page) 21. No of Pages 22. Price Unclassified 51 20. Price 20. Price 20. Price	field applications are described in Chapter 5. Conclusions and recommendations are presented in				
17. Key Words 18. Distribution Statement 17. Key Words 18. Distribution Statement Coating, geopolymer, inorganic, matrix, carbon reinforcement, concrete surface protection, concrete strengthening 18. Distribution Statement 19. Security Classif (of this report) 20. Security Classif. (of this page) 21. No of Pages 22. Price Unclassified 51 51 10.	Appendix A	lication procedu	re for the geopolyn	ier coatings is pre	
17. Key Words 18. Distribution Statement Coating, geopolymer, inorganic, matrix, carbon reinforcement, concrete surface protection, concrete strengthening 18. Distribution Statement 19. Security Classif (of this report) 20. Security Classif. (of this page) 21. No of Pages 22. Price Unclassified Unclassified 51 22. Price	Appendix A.				
17. Key Words 18. Distribution Statement Coating, geopolymer, inorganic, matrix, carbon reinforcement, concrete surface protection, concrete strengthening 18. Distribution Statement 19. Security Classif (of this report) 20. Security Classif. (of this page) 21. No of Pages 22. Price 19. Security Classified 20. Security Classif. (of this page) 21. No of Pages 22. Price 19. Security Classified 10. Classified 51 21. No of Pages 22. Price					
17. Key Words 18. Distribution Statement Coating, geopolymer, inorganic, matrix, carbon reinforcement, concrete surface protection, concrete strengthening 18. Distribution Statement 19. Security Classif (of this report) 20. Security Classif. (of this page) 21. No of Pages 22. Price Unclassified Unclassified 51 21. No of Pages 22. Price					
17. Key Words 18. Distribution Statement Coating, geopolymer, inorganic, matrix, carbon reinforcement, concrete surface protection, concrete strengthening 18. Distribution Statement 19. Security Classif (of this report) 20. Security Classif. (of this page) 21. No of Pages 22. Price Unclassified Unclassified 51 21. Price					
17. Key Words 18. Distribution Statement Coating, geopolymer, inorganic, matrix, carbon reinforcement, concrete surface protection, concrete strengthening 18. Distribution Statement 19. Security Classif (of this report) 20. Security Classif. (of this page) 21. No of Pages 22. Price Unclassified Unclassified 51 21. No of Pages 22. Price					
17. Key Words18. Distribution StatementCoating, geopolymer, inorganic, matrix, carbon reinforcement, concrete surface protection, concrete strengthening18. Distribution Statement19. Security Classif (of this report) Unclassified20. Security Classif. (of this page) Unclassified21. No of Pages 5122. PriceForm DOT F 1700.7 (8-69)					
17. Key Words 18. Distribution Statement Coating, geopolymer, inorganic, matrix, carbon reinforcement, concrete surface protection, concrete strengthening 18. Distribution Statement 19. Security Classif (of this report) 20. Security Classif. (of this page) 21. No of Pages 22. Price Unclassified Unclassified 51 21. No of Pages 21. Price					
17. Key Words 18. Distribution Statement Coating, geopolymer, inorganic, matrix, carbon reinforcement, concrete surface protection, concrete strengthening 18. Distribution Statement 19. Security Classif (of this report) 20. Security Classif. (of this page) 21. No of Pages 22. Price Unclassified Unclassified 51 51 51					
17. Key Words18. Distribution StatementCoating, geopolymer, inorganic, matrix, carbon reinforcement, concrete surface protection, concrete strengthening18. Distribution Statement19. Security Classif (of this report)20. Security Classif. (of this page)21. No of PagesUnclassifiedUnclassified51					
Coating, geopolymer, inorganic, matrix, carbon reinforcement, concrete surface protection, concrete strengthening 20. Security Classif. (of this page) 21. No of Pages 22. Price 19. Security Classif (of this report) 20. Security Classif. (of this page) 21. No of Pages 22. Price Unclassified 51 51 51 51	17. Key Words 18. Distribution Statement				
reinforcement, concrete surface protection, concrete strengthening 19. Security Classif (of this report) Unclassified Form DOT F 1700.7 (8-69)	Coating, geopolymer, inorganic, matrix, carbon				
concrete strengthening 20. Security Classif. (of this page) 21. No of Pages 22. Price 19. Security Classified Unclassified 51 51 Form DOT F 1700.7 (8-69)	reinforcement, concrete surface p	rotection,			
19. Security Classif (of this report) 20. Security Classif. (of this page) 21. No of Pages 22. Price Unclassified Unclassified 51 51	concrete strengthening				
19. Security Classif (of this report) 20. Security Classif. (of this page) 21. No of Pages 22. Price Unclassified 51 51					
Unclassified Unclassified 51	19. Security Classif (of this report)	20. Security Clas	ssif. (of this page)	21. No of Pages	22. Price
Form DOT F 1700.7 (8-69)	Unclassified	Unclassified 51			
	Form DOT F 1700.7 (8-69)				

Acknowledgements

The authors wish to express their appreciation to the New Jersey Department of Transportation for the allotment of funds making this research possible. Special thanks are extended to Mr. Robert Sasor for his support and for extending the opportunity to participate in such a significant and extensive research program.

Table of Contents

			Page
Chap	oter 1	I-Introduction	1
	1.1	Scope and Objective of This Study	1
	1.2	Background Information on Fiber Composites	2
Chap	oter 2	2 – Curing Temperature and Parent Surface Condition	5
	2.1	Test Setup for Establishing Curing Temperature Range	5
	2.2	Test Results and Discussion	9
	2.3	Parent Surface types and Preparation	13
	2.4	Method of Application	16
Chap	oter 3	3 – Durability: Wet-Dry Conditions	17
	3.1	Introduction	17
	3.2	Experimental Evaluation	18
		3.2.1 Preparation of Concrete Prisms	18
		3.2.2 Application of Strengthening Systems	18
		3.2.3 Test Procedure	19
		Wet-Dry Chamber	19
		Flexure Test	20
	3.3	Test Variables and Results	20
Chap	oter 4	4 – Durability: Scaling Conditions	23
	4.1	Introduction	23
	4.2	Experimental Investigation	23
		4.2.1 Sample Preparation	24

Table of Contents

		4.2.2	Scaling Test Set-Up	24
		4.2.3	Evaluation Procedure: Surface Condition	25
	4.3	Test Re	sults: Surface Condition	25
	4.4	Test Re	sults and Discussion: Strength Tests	27
	4.5	Summa	ſy	29
Chap	ter 5	– Field	Durability Study and Demonstration Applications	30
	5.1	Field Du	rability Study	30
	5.2	Field Ap	plications on Transportation Structures	32
Chap	ter 6	- Concl	usions	34
Appe	ndix	A – Gui	delines for Application of Inorganic Geopolymer Coating	36
Biblic	ogra	ohy		37

List of Figures

		Page
2.1(a)	Concrete Prisms Coated with Geopolymer and Exposed to Running Water	6
2.1(b)	Concrete Prisms Coated with Geopolymer and Exposed to Running Water	6
2.2	Application on a Smooth Surface	13
2.3	Application on a Vertical Wall, Relatively New Smooth Surface	14
2.4	Application on a 15 Year Old Aged Surface	14
2.5	Application on Rough Surface with Spalled Areas	15
2.6	Application on Very Rough Surface with 95% of the Aggregates Exposed	15
3.1	Comparison of Failure Loads: Control, 2 and 4 Percent Discrete Carbon Fibers	21
3.2	Comparison of Failure Loads: Control, 1, 2 and 3 Carbon Tows	22
3.3	Comparison of Failure Loads: Control, 1 and 2 Carbon Fabric Layers	22
4.1	Schematic of Scaling Test Specimen	24
4.2	Surface Condition of Samples Subjected to Scaling Conditions, Low Strength Concrete and Control	26
4.3	Surface Condition of Samples Subjected to Scaling Cycles, Low Strength Concrete	26
4.4	Comparison of Failure Loads: Control, 2 and 4 Percent Discrete Carbon Fibers	27
4.5	Comparison of Failure Loads: Control, 1, 2 and 3 Carbon Tows	28
4.6	Comparison of Failure Loads: Control, 1 and 2 Carbon Fabric Layers	28
5.1(a)	Coating on Concrete Curb on Busch Campus	31
5.1(b)	Coating on Concrete Curb on Busch Campus, The Second Set	31
5.1(c)	Coating on Concrete Curb on Busch Campus, a Close Up View	32

List of Figures

Page

5.2	Coating on Route 1 South, Close-Up View	33
5.3	Application of Coating on Curb in Rhode Island	33

List of Tables

		Page
2.1	Details of Matrix for Various Mixtures	7
2.2	Results of Tests (After 24 Hours of Curing) on Various Types of Coatings and Different Curing Temperatures	10

Chapter 1

Introduction

1.1 Scope and Objective

In a previous study sponsored by the New Jersey Department of Transportation (NJDOT), a fiber reinforced-inorganic polymer composite was formulated. The composite, known as Geopolymer was evaluated as a protective coating material for transportation infrastructure. The unique features of this composition are as follows:

- The matrix used in the composite is inorganic, and fire and UV resistant.
- The system is water-based and has no toxic substances. No toxins are released during the application or curing.
- The coating can be applied with minimum surface preparation.
- The permeability of the coating material is much less than the permeability of concrete but it allows the release of vapor pressure build-up. Therefore, the coating does not delaminate from the parent surface.
- The matrix is compatible with concrete, bricks, steel and wood.
- The matrix cures to a glassy texture and hence organic paints do not adhere to geopolymer coated surfaces. This aspect can be effectively used to create a graffiti resistant surface, which was one of the primary motivations for this study.

For more information see the following relevant reports: Balaguru, P., Kurtz, S., and Rudolph, J. (1996); Balaguru, P., Slattum, K. (1995); Foden, A., Balaguru, P., and Lyon, R. (1996A).

The previous study established the viability of the Geopolymer product for protective coating applications. The primary objectives of the current study are as follows:

• Establish a temperature range in which the coating can be applied, given the requirement being that the coating should be able to withstand rain after 24 hours of curing.

- Establish the surface condition and requirements. One of the questions was, whether the material can be applied on rough surfaces which have exposed aggregates due to deterioration. In most cases, the surface preparation consists of removing excess dust build-up and pre-wetting.
- Make field demonstration applications at Rutgers University campuses and on actual transportation structures.

The results presented in this report deal with the aforementioned objectives and a summary of durability tests in a parallel study supported by the New England Transportation Consortium (NETC).

A brief description of fiber reinforced composites is presented in the introduction chapter. The study on the establishment of temperature range is presented in Chapter 2. The durability test results under wetting and drying conditions and scaling are presented in Chapters 3 and 4 respectively, and the field applications are described in Chapter 5. Conclusions and recommendations are presented in Chapter 6. The recommended application procedure is presented in Appendix A.

1.2 Background Information on Fiber Composites

Recently, high strength fiber composites, known as Fiber Reinforced Polymers (FRP), have been evaluated for rehabilitation of the transportation infrastructure and have been found to show excellent potential. For example, fiberglass boats have been known to provide excellent service for 50 years with little or no maintenance. Some of these boats are constantly exposed to sea water, and bridge decks and other structural elements are exposed to the same type of aggressive environment. If a protective layer of composite can be placed around super structures, such as exposed piers and pier caps, their service life can be extended.

The first step in the development of these composites is the selection of a matrix. The matrix may be broadly defined as either organic or inorganic. The organic matrices are generally comprised of acrylics, epoxies, latexes or polymers. They are usually single or multi component systems, the latter of which exhibits better mechanical properties. The first part is usually a resin, while the second part is an activator. Once the two parts are mixed, setting time varies between 15 minutes to 2 hours, at which point they can be formulated to adhere to most materials. These organic matrices have been used to improve the performance of concrete for several decades. The strengths of the organic matrices are their very low permeability, dimensional stability, and high elongation before rupture. Although impermeability is strength in many applications of composites, it is a weakness when they are used for concrete protection. Because they are completely impermeable, the matrices are unable to release vapor pressure build-up within the structure of concrete. Vapor pressure build-up is known to cause delamination of the matrix and can be quite damaging to the concrete. (ACI Committee 515, 1986)

In an attempt to improve upon the performance of the organic matrices, a number of inorganic matrices that contain polymer additives have been developed. The matrices have permeability lower than concrete but are not totally impermeable. It is believed that when used as a protective layer, the matrix can slow the ingress of water but at the same time allow the vapor pressure to be released. The most widely used inorganic matrix thus far has been a Portland cement based system. Because of the large grain sizes of the cement, it has been difficult to develop thin and workable matrices. In addition to the Portland cement based system, alumino silicate and phosphate based compounds are used in inorganic matrices. The major advantages of these compounds are stability under UV light, hardness and compatibility with concrete. A potassium alumino silicate, one of a family of Geopolymer materials was used for the current project.

Reinforcing fibers for the composites are available in a wide variety of material compositions and sizes. The common fiber types used in the construction industry are carbon, glass, nylon, polyester and steel. In many applications, steel fibers would be preferred because of their strength, stiffness and durability. In the current study, it is not feasible to use steel fibers because the coatings are expected to be quite thin. Therefore, only fine steel fibers would be acceptable. Micro steel fibers are available, but are quite expensive and would impair the development of a cost effective system. Carbon fibers are more expensive than glass and nylon fibers, but are the most durable. They are inert and can be used with a number of matrices while withstanding temperatures up to 800°F.

difficult to impregnate with the matrix. Each of the fibers is available in various forms: micro fibers, discrete fibers 3 to 6 mm in length, tows, and fabrics.

For the current investigation, coatings based on polysilicates developed as a polymer for use in composites were used. This matrix, which is water based, is non toxic, cures at room temperature and was found to be durable under wet-dry and scaling conditions. Various formulations were made using different alumina-silica ratios, micro fibers and short discrete carbon fibers. The matrices were evaluated for working time and curing temperatures ranging from 40° F to 70° F.

Chapter 2

Curing Temperature and Parent Surface Condition

The polymer used in this study is a two component system. The liquid, called Component A, has to be mixed with a powder, called Component B, using a high shear mixer. Typically, industrial strength drills with mixing blades that are used for mixing two component polymers can be used in the field. The feasibility of this procedure was demonstrated in one of the field applications described in Chapter 5. In the laboratory, high shear mixers, known as choppers were used for mixing. Components A and B mix to a thick paint consistency, which can be applied by brush, roller, or sprayer. These application techniques were demonstrated both in the laboratory and in the field. The coating dries in about 2 hours.

Based on the initial tests, it was assumed that if the ambient temperature is more than 40°F, the surface can cure in 24 hours and can withstand rain in about 24 hours. The upper limit is about 90°F. At temperatures higher than 90°F, the matrix looses workability quickly. The working time or pot life at 70°F is about 2 hours. The pot life reduces to about 1 hour at 90°F.

2.1 Test Setup for Establishing Curing Temperature Range

Running water was used to simulate rain. Concrete prisms with dimensions of 2x2x13 inches were used for parent surfaces. Photographs of the concrete prisms are shown in Figures 2.1(a) and 2.1(b). One surface of the prism was coated with the polymer and allowed to dry for 24 hours at temperatures ranging from 40 to 70°F. Initially, it was assumed that some of the formulations may not cure in one day, especially at 40°F. Therefore, the samples were cured at 40, 50, 60 and 70°F and exposed to running water after 24 hours. Exposing the samples to running water was continued for 5 days. Most of the initial formulations cured hard enough to resist running water in 24 hours, even at 40°F ambient temperature. Therefore, some of the later formulations were evaluated only at 40 and 50°F.

Figure 2.1(a) Concrete Prisms Coated with Geopolymer and Exposed to Running Water

Figure 2.1(b) Concrete Prisms Coated with Geopolymer and Exposed to Running Water

The major variables were: filler material type, filler volume fraction, fiber type and fiber volume fraction. The filler materials were either ground zirconium sand or titanium oxide powder. The fiber types were: micro fibers that were micrometers long (called Woolastocote), carbon micro fibers that were less than 1mm long, 3mm long carbon fibers, and 6mm long nylon fibers. The fiber volume fraction ranged from: 10 to 15 percent for micro fibers, 0.2 percent for nylon fibers, and up to 15 percent for carbon fibers.

The various mixture combinations are presented in Table 2.1. In Table 2.1, White SiO_2 and $AlSiO_2$ refer to two types of Component B (powder). White SiO_2 consists of only silica fume where as $AlSiO_2$ contains both alumina and silica. MK is processed Kaolin clay which is commercially available. The carbon powder refers to micro carbon fibers that are less than 1mm long. The diameter of the 3 mm long carbon fibers is about 7 micrometers.

Other than erosion and cracks, the other response variables were reduction in working time and consistency.

Mix Number	Composition	
Mix 1	50g Liquid, 60g AlSiO ₂ , 25g Woolastocote, 25g ZrSiO ₄ and 0.2g	
IVIIX I	nylon fibers	
Mix 2	50g liquid, 67.5g White SiO_2 , 5g MK, 15g Woolastocote, 12g TiO_2	
IVIIX 2	liquid and 0.2g nylon fibers	
Mix 3	50 g liquid,60g AlSiO ₂ , 15g Woolastocote, 10g TiO ₂ powder and	
	0.2g nylon fibers	
Mix 4	50g liquid, 60g White SiO ₂ , 5g MK, 15g Woolastocote, 10g TiO ₂	
IVIIX 4	powder and 0.2g nylon fibers	
Mix 5	50g liquid, 60g White SiO ₂ , 5g MK, 15g Woolastocote, 5g TiO ₂	
WIX 5	powder, 5g TiO ₂ liquid and 0.2g nylon fibers	
Mix 6	150g liquid, 180 AlSiO ₂ , 60g Woolastocote, 60g ZrSiO ₄ and 0.6g	
IVIIX U	nylon fibers	

Table 2.1: Details of Matrix for Various Mixtures

Mix 7	100g liquid, 120g AlSiO ₂ , 50g Woolastocote, 50g ZrSiO ₄		
Mix 8	100g liquid, 120g AlSiO ₂ , 50g Woolastocote, 20g TiO ₂ liquid, and 0.4g nylon fibers		
Mix 9	100g liquid, 120g AlSiO ₂ , 50g Woolastocote and 20g TiO ₂ liquid		
Mix 10	100g liquid, 145g White SiO ₂ , 10g MK and 30g Woolastocote		
Mix 11	100g liquid, 145g White Sio ₂ , 10g MK, 30g Woolastocote and 3g Carbon fibers		
Mix 12	100g liquid, 145g White Sio ₂ , 10g MK, 30g Woolastocote, 14g Carbon Powder and 3g Carbon fibers		
Mix 13	100g liquid, 145g White Sio ₂ , 10g MK, 30g Woolastocote, 28g Carbon Powder and 3g Carbon fibers		
Mix 14	100g liquid, 145g White Sio ₂ , 10g MK, 30g Woolastocote, 15g ZrSiO ₄ , 28g Carbon Powder and 3g Carbon fibers		
Mix 15	100g liquid, 127.1g White SiO ₂ , 10g MK, 30g ZrSiO ₄ and 10g Carbon Powder		
Mix 16	100g liquid, 132.2g White SiO ₂ , 10g MK, 25g ZrSiO ₄ and 15g Carbon Powder		
Mix 17	50g liquid, 69.6g White SiO ₂ , 5g MK, 15g ZrSiO ₄ , 1g Turmeric powder and 2.5g Carbon Powder		
Mix 18	50g liquid, 69.6g White SiO ₂ , 5g MK, 15g ZrSiO ₄ , 2g Turmeric powder and 2.5g Carbon Powder		
Mix 19	50g liquid, 69.6g White SiO ₂ , 5g MK, 15g Woolastocote, 15g ZrSiO ₄ and 2.5g Carbon Powder		
Mix 20	50g liquid, 69.6g White SiO ₂ , 5g MK, 15g Woolastocote, 15g ZrSiO ₄ , 2g Turmeric powder and 2.5g Carbon Powder		
Mix 21	50g liquid, 69.6g White SiO ₂ , 5g MK, 15g Woolastocote, 15g ZrSiO ₄ , and 2.5g Carbon Powder		

Mix 22	50 g Liquid, 25g Geopolymer, 55g W210, 15g $ZrSiO_4$ and 2.5g
	Carbon Powder
Mix 23	50 g Liquid, 35.5g Geopolymer, 55g W210, 15g ZrSiO ₄ and 2.5g
	Carbon Powder

2.2 Test Results and Discussion

The results are presented in Table 2.2 on Page 10. It can be seen that most formulations withstand running water after 24 hours of curing. The mixes that had a working time of less than 2 hours are identified in the table.

Mixes 6, 7 and 10 developed hair line cracks. Mixes 6 and 7 had larger volume fractions of fibers and micro fibers, and Mix 10 had no fillers and a very low volume fraction of micro fibers. These mixes were helpful to identify the minimum and maximum amount of fibers and fillers that can be incorporated in the mix without affecting the performance.

The mixes with lower workable time can be used in cold weather if accelerated curing is needed.

Based on the results presented in Table 2.2 and observations made during mixing and application of coatings, the following observations can be made.

- The two successful mixture combinations for Component B are as follows:
 - 1. 100g liquid, 135g White silica fume and 10g kaolin clay.
 - 2. 100g liquid, 110g Alumino Silicate.

For both formulations, 30g micro fibers and 30g of fillers can be added. These additives provide both shrinkage reduction, and reduction in overall cost. Filler materials are less expensive than the polymer.

- Carbon fibers can be added to increase the toughness (resistance to abrasion and flying objects). However, addition of these fibers changes the color to light gray.
- Nylon fibers also provide increased toughness. Since the density is low and they mat easily, only about 0.2 volume percent is needed.
- Even though a number of formulations have been evaluated, the authors recommend only the two aforementioned formulations. This will reduce the variability and possible mistakes in the field.

• If the ambient temperature is more than 70°F, pot life can be extended by storing the mixed polymer in a bed of ice. Typically, the bucket containing the polymer can be placed in a large vessel that has ice cubes.

Table 2.2:	Results of Tests (After 24 Hours of Curing) on Various Types of
	Coatings and Different Curing Temperatures

Mix Number	Number of Samples	Curing temperatures	Results
Mix 1	8	40, 50, 60, 70°F	• No erosion and no cracks
Mix 2	8	40, 50, 60, 70°F	• No erosion and no cracks
Mix 3	4	40, 50, 60, 70°F	• No erosion and no cracks
Mix 4	4	40, 50, 60, 70°F	• No erosion and no cracks
Mix 5	4	40, 50, 60, 70°F	• No erosion and no cracks
Mix 6	4	40, 50, 60, 70°F	• Hairline cracks seen after three days
Mix 7	4	40, 50, 60, 70°F	 Hairline cracks seen after three days Good consistency and workability compared to others Early setting compared to others

Mix 8	4	40, 50°F	• Good workability and no cracks seen
Mix 9	4	40, 50°F	• Good workability and no cracks seen
Mix 10	4	40, 50°F	• Cracks appeared after two days
Mix 11	4	40, 50°F	No cracksColor lightened after three days
Mix 12	4	40, 50°F	• No cracks
Mix 13	4	40, 50°F	No cracksDarker color then Mix 12
Mix 14	4	40, 50°F	No cracksDifficult to work with
Mix 15	4	40, 50°F	 Workability time more than 45 minutes at 70°F No cracks
Mix 16	4	40, 50°F	 30 minutes workability time No Cracks
Mix 17	4	40, 50°F	 40 minutes workability time at 70°F No Cracks Looks like concrete

Mix 18	4	40, 50°F	 40 minutes workability time at 70°F No Cracks Looks like concrete
Mix 19	4	40, 50°F	WorkableNo cracks
Mix 20	4	40, 50°F	 Workable No cracks More workable than Mix 19
Mix 21	4	40, 50°F	WorkableNo cracks
Mix 22	4	40, 50°F	No Cracks
Mix 23	4	40, 50°F	No Cracks

- Mixes 15, 17, 18, 20, 21-23 had a different hardener
- Mk Processed kaolin clay
- TiO₂ Titanium dioxide

2.3 Parent Surface Types and Preparation

Different types of parent surfaces were evaluated using structures at the Rutgers University, Livingston Campus. These were:

- i. Smooth finish; top surface of a new high strength concrete slab with sheen (almost polished surface) still present. Figure 2.2, below.
- Smooth finish of mortar on a relatively new wall (about 5-year old surface), Figure 2.3, next page.
- iii. Rough surface of an aged mortar wall (back of the Livingston Campus lab, about 15-year old surface), Figure 2.4, next page.
- iv. Rough surface with spalled areas (about 15 to 20 years old), Figure 2.5, Page 15.
- v. Very rough surface with exposed aggregated. In one surface more than 95% of the aggregated were exposed, Figure 2.6, Page 15.

All the surfaces were cleaned using low pressure water to remove excess dirt build up. This was the only preparation. In all cases, the application was successful.

Figure 2.2 Application on a Smooth Surface

Figure 2.3 Application on a Vertical Wall, Relatively New Smooth Surface

Figure 2.4 Application on a 15 Year Old Aged Surface

Figure 2.5 Application on Rough Surface with Spalled Areas

Figure 2.6 Application on Very Rough Surface with 95% of the Aggregates Exposed

2.4 Method of Application

Most of the applications were done by using paint brushes. In addition two types of sprayers, one a common commercial low cost sprayer and a custom made sprayer, were also used. Since both sprayers were effective, the authors recommend the low cost commercial unit for application. Based on the consistency and the flow through the various nozzles used in this study, the authors expect that any sprayer used for epoxies can be used for a Geopolymer matrix.

Chapter 3

Durability: Wet-Dry Conditions

3.1 Introduction

Continuous exposure to wet-dry conditions is detrimental to concrete used in construction. The degradation is more rapid for structures located in marine environments due to the presence of salt. Elements exposed to such environments are gradually weakened and will eventually have to be replaced or repaired. Typically, concrete on the exposed surface is weakened more rapidly than concrete within the structure. During placement, the presence of water near the formwork makes the surface concrete weaker because of an increase in the water-cement ratio resulting in faster degradation. Epoxy coatings have been used to increase the durability of exposed surfaces. High strength fibers made of aramid, glass or carbons have been used in conjunction with epoxies when strengthening is required.

Epoxies and other organic matrices have been utilized as a protective coating for several decades because they seal the surface of the concrete. Their main drawback is their inability to release vapor pressure buildup that causes damage in the concrete and delamination of the dried epoxy (ACI Committee 503, 1989). The results presented in this chapter focus on the inorganic matrices that comprise the next generation of barrier and strengthening systems. They are less permeable than concrete, thus slowing the flow of water through the weakened exterior surfaces. Vapor pressure is released because the matrices are not totally impermeable. In strengthening applications, the matrices form a strong bond between the surface of the concrete and the fiber reinforcement.

The objective of this part of the investigation was to evaluate the effect of wet-dry cycles found in marine environments. In barrier applications, the objective was to evaluate the coatings and the durability of coated concrete. In strengthening applications, the effectiveness of the matrices used in conjunction with carbon reinforcement was studied.

3.2 Experimental Evaluation

The Geopolymer matrix was used to bond continuous carbon fibers in the form of tows or fabrics. The reinforcement consisted of one, two or three tows, or one or two layers of unidirectional fabric. The area of one carbon tow was 0.00286 in^2 and the carbon fabric had an area of 0.0115 in^2 . In addition, samples were strengthened with a discrete fiber reinforced mix. The Geopolymer matrix was comprised of a potassium alumino silicate solution and silica fume with no carbon contamination. The pure silica fume was needed to obtain a matrix that could be used to wet the carbon fibers. The standard formulation was as follows.

Liquid: 100g Silica fume: 125g Wetting Agent: 1g

3.2.1 Preparation of Concrete Prisms

Two mix proportions were used to prepare the concrete prisms. The dimensions of the prisms were 2 X 2 X 13 inches. For the first concrete mix, the cement : fine aggregate : course aggregate ratio was 1: 2.14 : 1.79. The maximum size of the course aggregate was 0.375 in. The water/cement ratio was 0.5. This concrete was designated as high strength concrete. For the second concrete mix, the cement: fine aggregate : course aggregate ratio was 1 : 2.95 : 2.04. Again, the maximum size of the course aggregate was 0.375 in. and the water/cement ratio was 0.6. This mix was designated as the low strength mix. The prisms were cast using 2 X 2 X 13 in. steel molds, covered with polyethylene sheets and kept for 24 hours at room temperature and humidity. At the end of 24 hours, the samples were removed from the molds and cured for 28 days in a room maintained at 100% relative humidity.

3.2.2 Application of Strengthening Systems

[The following procedure is similar to the procedure used for field applications as recommended by ACI Committee 515]. The concrete prisms were sand blasted and cleaned with a wire brush. Sand blasting was performed using silica quartz sand at a pressure of 80 psi. Once the surface was cleaned, a thin layer of the inorganic matrix was applied to fill the small air voids and to create a smooth surface. Pre-cut carbon tows and sheets were impregnated with the matrix and placed on the prepared concrete surface and bonded using grooved rollers. A second layer of the matrix was applied as a protective coating. The samples were cured for 24 hours at room temperature, followed by 24 hours at 80°C (176°F). The elevated temperature was used to ensure adequate curing in a two day period. The accelerated curing was used to save time. The high strength concrete prisms were used for the tests.

3.2.3 Test Procedure

Exposure to wetting and drying were the two major steps involved in testing the samples. A special set-up was built for exposing the samples to wetting and drying. The samples were tested under flexure using a third point loading. The following sections provide the pertinent details.

Wet-Dry Chamber

A special set-up was built for exposing the samples to wetting and drying. A 53 X 27 X 24 inch stainless steel basin containing the specimens was elevated to a height of 4 feet. A reservoir containing 25 gallons of a 3% saline solution was installed beneath the basin. In an attempt to more closely duplicate marine environments, a commercial product named Instant OceanTM was used to prepare the 3% saline solution. A heater and a temperature gage were attached to the salt water reservoir to insure that the water remained at a constant temperature of 100°F. Elevated temperature was used to further accelerate the deterioration process. The salt water was pumped from the reservoir to the basin containing the samples by a pump installed outside the reservoir. A timing valve attached to the drain of the basin controlled the flow of the water back into the reservoir. An 18 inch fan was installed 2 feet above the basin to help circulate air during dry cycles.

After the test specimens were placed in the stainless steel basin, the timer was set to allow for three hour wet and three hour dry cycles. At the beginning of each wet cycle, the pump filled the basin to a level that totally submerged the samples with salt water from the reservoir. After three hours, the basin's drain valve opened allowing water from the basin to drain back into the reservoir and the fan began to circulate air above the basin. At the conclusion of the three hour dry cycle, the wet portion of the next cycle began. Visual inspection confirmed the complete drying of the samples.

Flexure Test

Samples strengthened with carbon reinforcement were tested in flexure using a three point bending test. The simply supported clear span was 12 inches. The load was applied using an MTS testing machine with a 10,000 lb. capacity. The mid-span deflection was measured using an LVDT. Both load and deflection were recorded by a computer.

3.3 Test Variables and Results

The test samples consisted of the following:

- Two control samples
- Two samples strengthened with two or four percent (by weight) discrete carbon fibers
- Two samples strengthened with one, two or three carbon tows
- Two samples strengthened with one or two layers of carbon fabric

For each variable, two samples were tested at 0, 50, and 100 cycles of exposure. The objective was to determine whether discrete fibers would add strength and toughness to plain concrete and whether it is possible to add continuous reinforcement (tows and fabric) to plain concrete. In both cases, the wet-dry cycling provided the information on durability. Note that the carbon fibers do not corrode and therefore the failure can only occur because of the deterioration of the matrix or the interface.

The response variables were maximum strength, flexural stiffness and toughness. All of these parameters were obtained from the load deflection response. Only the strength results are presented in this report. The performance was similar for toughness and flexural stiffness.

A comparison of the failure loads is shown in Figures 3.1 to 3.3, Pages 21 & 22. For each case, these figures show the average result for the two tested samples. The failure loads are presented as a factor of the failure load of the unexposed control sample. Flexural strength of the control samples improved after exposure to wet-dry conditions. In some cases, after 100 cycles of wet-dry, the failure load of the control samples had increased by approximately 50 percent. This increase occurred because of continued curing since the testing of the exposed samples was done at a later date.

In all cases, the strengthened samples were durable up to 100 cycles of wetting and drying. The strength and ductility of the concrete samples was increased by the application of the carbon composite system. Peak load and toughness factor values increased as the area of the carbon reinforcement was increased. Effectiveness of the strengthening system was not diminished by exposure to wet-dry conditions.

Figure 3.1 Comparison of Failure Loads: Control, 2 Percent and 4 Percent Discrete Carbon Fibers

Figure 3.2 Comparison of Failure Loads: Control, 1, 2 and 3 Carbon Tows

Figure 3.3 Comparison of Failure Loads: Control, 1 and 2 Carbon Fabric Layers

Chapter 4

Durability: Scaling Conditions

4.1 Introduction

The presence of stagnant or ponded water in cold weather environments will lead to the eventual decay of concrete surfaces. Scaling is one of the results of repeated cycles of freezing and thawing in hardened concrete. When the concrete is permeable, moisture flows through the surface of the concrete into any existing voids. When the temperature drops below 0°C, the absorbed water freezes and expands. This expansion causes stress build up that leads to cracking and spalling of the concrete surface. Scaling occurs when the expansion pressure of the ice exceeds the tensile strength of the concrete causing localized fracture at the surface.

One possible solution to the problem of scaling in concrete is to apply a protective coating that will cover existing micro-cracks. The coating should have a lower permeability than the concrete. If the flow rate of water into the structure of concrete is decreased, the damage caused by the freezing cycle can be slowed or prevented. The inorganic matrices evaluated in Chapter 3 have excellent potential in such an application. These matrices can also be used to bond glass or carbon reinforcement to structural elements that need strengthening. Scaling of the surface of the concrete reduces the effectiveness of the repaired structural elements. Deterioration weakens the bond between the surface of the concrete and the carbon reinforcement and may result in delamination and subsequent failure of the repaire.

This chapter presents the results of the scaling resistance study, which is conducted using inorganic matrices and carbon fibers. The system can be used for both coating and strengthening.

4.2 Experimental Investigation

The effectiveness of the inorganic geopolymer matrix (described in Section 3.2) as a surface protector for concrete was evaluated. The matrices were applied to both a

high and low strength mortar and subjected to scaling conditions. The matrices used as a surface protector were evaluated using an ASTM rating system throughout the series of scaling cycles (American Society for Testing and Materials, 1996).

Additionally, the effectiveness of a strengthening system consisting of an inorganic matrix used in conjunction with several commercially available forms of carbon (discrete fibers, continuous fiber tows, and fabrics) was studied. In strengthening applications, the effectiveness of the matrix was studied using flexure tests after exposure to scaling conditions. The strength tests were done for high strength concrete samples.

4.2.1 Sample Preparation

Preparation of the samples was done using the procedure described in Chapter 3. First, 2 X 2 X 13 inch prisms were cast and cured. These prisms were coated with the various matrices or strengthened with carbon reinforcement.

4.2.2 Scaling Test Set-Up

A special set-up was built for exposing the test samples to scaling conditions. Rectangular dams were built to fit atop the coated surface of the specimens. The height of the dams was one inch. The dams were attached to the coated surface of the samples with a bead of water proof caulk. Saline solution was contained in the dams atop the samples to a depth of one-fourth of an inch. A mixture of various form of salt, commercially known as Instant OceanTM, was used in the saline solution to duplicate marine environments. A schematic of the scaling test set-up is shown in Figure 4.1.

Figure 4.1 Schematic of Scaling Test Specimen

The scaling test described in ASTM C672 was designed to allow the completion of one scaling cycle in a 24-hour period (American Society for Testing and Materials, 1993). The samples with the dams containing the saline solution were placed in a freezing chamber maintained at 0°F. At the end of this freezing cycle, which lasted for 8 hours, the samples were removed from the freezing chamber and kept at room temperature for 16 hours. Therefore, one scaling cycle (freezing and thawing) took one day. At the completion of five scaling cycles, the surfaces of the samples were rinsed and the saline solution was replaced. The samples were exposed to a total of fifty scaling cycles. In certain instances, the testing was discontinued prematurely because the deterioration of the sample prevented containment of the saline solution.

4.2.3 Evaluation Procedure: Surface Condition

The barrier coatings were applied to protect the surface of the samples from the damaging effects of repeated scaling cycles. Deterioration is confined to the surface of the specimens, unlike in the wet-dry cycles where the concrete was weakened internally. A visual evaluation of the samples was sufficient to determine the effectiveness of the barrier coatings. The rating system described in ASTM C672 was used to evaluate the specimens in this chapter. Scaling of the samples was quantified using the system shown below.

(0): Little or no scaling

(1): very slight scaling (2): slight to moderate scaling

(3): moderate scaling

(4): moderate to severe scaling

(5): severe scaling

The samples were evaluated and photographed before exposure to scaling conditions. Additional evaluations were made at the completion of every fifth scaling cycle.

4.3 Test Results: Surface Condition

The data obtained from the durability testing of concrete samples under scaling conditions, evaluated with the rating system introduced in ASTM procedure C672, is presented in Figures 4.2 and 4.3, next page. Performance of the low strength concrete

control samples (no coating) is presented in Figure 4.2. The first sample degraded to Level 5 in 15 cycles and broke into pieces. The second sample degraded to Level 5 in 15 cycles and broke into pieces at 25 cycles. The performance of the coated samples for low strength concrete is shown in Figure 4.3. One specimen did not develop any damage and the second one reached moderate scaling at 30 cycles.

High strength concrete samples, with and without coating, did not develop any surface or other damage after 50 cycles of scaling. Since this test method is very subjective, strength tests were performed and the results are presented in the next section.

Figure 4.2 Surface Condition of Samples Subjected to Scaling Conditions, Low Strength Concrete and Control

Figure 4.3 Surface Condition of Coated Samples Subjected to Scaling Cycles, Low Strength Concrete

4.4 Test Results and Discussion: Strength Tests

Flexure testing was used to evaluate the strengthened samples exposed to scaling conditions. The test procedure and set-up are described in Chapter 3, Section 3.2.3, of this report. Evaluation was made at the completion of fifty scaling cycles. The data obtained from the flexure testing of samples strengthened with carbon reinforcement is shown in Figures 4.4 to 4.6, below and next page. Included in these figures are the results obtained from the control samples and samples reinforced with chopped carbon fibers, carbon tows and layers of carbon fabric. For each test variable, two samples were tested. Figures 4.4 to 4.6 show the average result for the two tested samples. Unexposed samples and samples exposed to fifty cycles of scaling were evaluated. The increase in strength shown in these figures for the control samples at 50 cycles occurred because of continued curing, since the testing of the exposed control samples was done at a later date.

Insignificant changes in the flexural strength of the strengthened samples were noted after exposure to the scaling conditions. Exposed strengthened samples maintained at least 97 percent of their unexposed flexural strength.

The strengthening system comprised of layered carbon and the inorganic matrix was proven to be durable in scaling environments. The carbon maintained a strong bond with the concrete and delamination did not occur. The flexural properties of the exposed samples were comparable to those of the unexposed samples.

Figure 4.4 Comparison of Failure Loads: Control, 2 and 4 Percent Discrete Carbon Fibers

Figure 4.5 Comparison of Failure Loads: Control, 1, 2, and 3 Carbon

Tows

Figure 4.6 Comparison of Failure Loads: Control, 1 and 2 Carbon Fabric Layers

4.5 Summary

Exposure of scaling environments is detrimental to the surface of concrete elements used in construction. In this chapter, the ability to prevent such degradation by the application of a protective coating was studied. Because structural concrete of various strengths is used in practice, high and low strength concrete mixes were used in this investigation. The high strength concrete used in this investigation was able to resist scaling without the application of a barrier coating. The low strength samples were susceptible to surface damage when exposed to the scaling conditions. The destruction of the surface of the low strength samples was significantly slowed or prevented by the application of the Geopolymer coating.

The effectiveness of strengthening applications using high strength fibers can be hampered by exposure to scaling environments. The system studied in this chapter was comprised of inorganic matrix and various forms of carbon. The results obtained from the flexure testing of these samples indicate that the system is resistant to scaling conditions. The flexural strength and ductility of the specimens were determined before and after exposure to the scaling conditions. Comparable results were observed regardless of the type of carbon reinforcement used.

Chapter 5

Field Durability Study and Demonstration Applications

5.1 Field Durability Study

Durability under field (outside exposure) conditions was evaluated using two locations at the Rutgers University Campus in New Brunswick, New Jersey. The first location, at the Livingston Campus also served as a test bed for application of the geopolymer coating to surfaces with different levels of deterioration. A total of 18 test applications were made. Most of the surfaces were on vertical walls and some of them were on a relatively smooth concrete surface, Figures 2.2 - 2.6, Pages 13 - 15. In the case of vertical walls, the surface deterioration varied from a weathered but good concrete surface to completely spalled (with exposed aggregate) surface, Figure 2.6, Page 15.

In addition to surface deterioration, a second major variable was fiber type and fiber volume content. Both micro and discrete fibers were evaluated at volume fractions ranging from 0.5 to 20%. These applications also served as demonstration projects confirming that very little surface preparation is needed. All these surfaces were cleaned with low pressure water and allowed to dry to saturated surface dry conditions before applying the coating. All but two coatings were applied using paint brushes. One coating was applied using a custom made sprayer and another coating was applied using an inexpensive sprayer. The coatings were applied between March and November to evaluate the influence of temperature range.

The second set of coatings was applied on the curbs of a parking lot on Busch Campus, Figures 5.1(a), 5.1(b) and 5.1(c), next page and Page 32. These curbs had a good surface except in one case; part of the curb was broken. The surfaces were simply wetted before the application of the coating. In these applications, the coatings were subjected to snow exposure and abrasion of snow removal equipment. There was also abrasion due to sand or dust particles blown by the wind.

Experience gained during these applications was used to formulate the recommended application procedure presented in Appendix A. These applications

confirmed the earlier findings, that the coating can be applied on a pre-wetted surface at ambient temperatures between 40° and 90° F. After mixing, the geopolymer matrix can be stored in cold temperatures to increase the pot life. The coated surface becomes dry after 4 hours and can resist a moist environment, including fog and drizzle. In one case, it rained 2 hours after the application but the coating was not affected.

Figure 5.1(a) Coating on Concrete Curb on Busch Campus

Figure 5.1(b) Coating on Concrete Curb on Busch Campus, the Second Set

Figure 5.1(c) Coating on Concrete Curb on Busch Campus, a Close Up View

5.2 Field Applications on Transportation Structures

Field applications consisted of: (1) Coating a New Jersey Barrier in Trenton, N.J., (2) Coating a guide rail near Trenton, (3) coating a retaining wall on Route 18 in New Brunswick, (4) Coating a New Jersey Barrier near an ocean front in Rhode Island, and (5) Coating of curbs and a retaining wall on Route 1 and Route 295 near Providence, Rhode Island.

The coating application on Route 1, Trenton was carried out with the cooperation of NJDOT engineers and field personnel, see Figure 5.2, next page. The NJDOT provided traffic control and pre-wetting. Graduate students and NJDOT field personnel applied the coating with paint brushes.

The retaining wall coating on Route 18 was applied in November 2000 and covered about 10 square feet. This coating contained only micro fibers and was applied using paint brushes on the pre-wetted surface.

The coatings in Rhode Island were applied in October 1998 and April 1999 (see curb, Figure 5.3, next page). Coatings on NJ barriers and curbs were applied using paint brushes and the coating on the retaining wall was applied using a power sprayer. The retaining wall on which the coating was power sprayed covered several hundred square feet.

All the applications on the concrete surfaces are performing well. The first application is about 8 (in 2008) years old. The coating application to the guide rail in Trenton, N.J. was not successful.

These projects demonstrated the viability of field application using paint brushes and a power sprayer.

Figure 5.2 Coating on Route 1 South, Close-Up View

Figure 5.3 Application of Coating on Curb in Rhode Island

Chapter 6

Conclusions

This report focus on the development of an inorganic geopolymer matrix that can be used both as a protective coating and also as a strengthening coating with the addition of micro, discrete, and continuous carbon fibers and carbon fabrics. Durability studies led to the following conclusions.

- The geopolymer coating is durable in wetting and drying conditions. Concrete samples coated with carbon reinforced geopolymer did not degrade after 100 cycles of wetting and drying.
- Under scaling conditions, the geopolymer coating slowed or prevented damage to the surface of the coated concrete samples.

Evaluation of plain concrete strengthened with an inorganic geopolymer coating and subjected to wetting & drying and scaling conditions led to the following conclusions.

- The inorganic matrix in combination with carbon tows and carbon fabrics can be used to strengthen plain concrete members.
- Wetting and drying conditions (100 cycles) do not decrease the strength of samples coated with carbon reinforced geopolymer.
- Strengthened samples exposed to scaling conditions had a small (about 3%) decrease in strength from their unexposed strength.

Evaluation of the geopolymer matrix for field applications, which is the main focus of this study, led to the following conclusions:

• The geopolymer coating can be applied in the ambient temperature range of 40 to 90° F. At temperatures higher than 80°F, the pot life might be less than 2 hours.

- The coated surface should be protected from direct rain or running water for the first 24 hours.
- The coating should not be subjected to freezing in the first 24 hours.
- The geopolymer coating can be applied to new or weathered concrete surfaces that have exposed aggregates.
- The surface should be pre-wetted. Loose and oily materials should be removed. Light dust will not reduce the adherence of the geopolymer coating material.
- The geopolymer coatings are durable in field conditions. The oldest application, under saltwater exposure conditions in Rhode Island, is 9 (in 2008) years old.

Appendix A

Guidelines for Application of Inorganic Geopolymer Coating

Surface Preparation

The coating can be applied on both good and weathered surfaces. Loose dirt and oily build-ups should be removed. The surface should be pre-wetted to saturated surface dry condition.

Material and Equipment Needed

The Geopolymer matrix is supplied as a two component system. The liquid Part A should be mixed with powder Part B using a high shear mixer or mixing blades attached to industrial strength drills used for mixing paints or polymers. Fibers can be added during the mixing.

Mixing Procedure

Part A, Part B and any additives, such as fibers, should be mixed to a uniform paint like consistency.

Application Procedure

The coating can be applied using a brush, roller, or sprayer. Inexpensive slurry systems used for spraying stucco or cement slurry can be used.

Protection for the First 24 Hours

The coated surface should be protected against heavy rain, running water, and freezing for the first 24 hours. The coating will cure to a hard surface in dry or foggy conditions.

Temperature range for application is 40° F to 90° F.

Bibliography

ACI Committee 318. (1999.) *Building Code Requirements for Reinforced Concrete*, ACI Standard 318-99, Section 8.5.1, American Concrete Institute, Detroit, MI.

ACI Committee 440. (1996). "State-of-the-Art Report on Fiber Reinforced Plastic (FRP) Reinforcement in Concrete Structures," ACI Standard 440R-96, American Concrete Institute, Detroit, MI, 68pp.

ACI Committee 503. (1989). "Use of Epoxy Compounds with Concrete," ACI Standard 503-89, American Concrete Institute, Detroit, MI, 28 pp.

ACI Committee 515. (1986). "A Guide to the Use of Waterproofing, Damp Proofing, Protective, and Decorative Barrier Systems for Concrete," ACI Standard 515-86, American Concrete Institute, Detroit, MI, 44 pp.

ACI Committee 548. (1995). "State-of-the-Art Report on Polymer Modified Concrete," ACI Standard 548-95, American Concrete Institute, Detroit, MI, 47 pp.

American Society for Testing and Materials (1993). "Standard Test Method for Scaling Resistance of Concrete Surfaces Exposed to De-icing Chemicals." Standard C-672, Section 4, Volume 2, pp. 345-347.

American Society for Testing and Materials (1993). "Resistance of Concrete to Rapid Freezing and Thawing." Standard C-666A, Section 4, Volume 2, pp. 326-331.

Balaguru, P., Kurtz, S., and Rudolph, J. (1996). "Geopolymer for Repair and Rehabilitation of Reinforced Concrete Beams," *Civil Engineering Report 96-14*, Rutgers University, 19pp.

Balaguru, P., Shah, S.P. (1992.) <u>Fiber Reinforced Cement Composites</u>, McGraw-Hill, New York, NY, 535pp.

Balaguru, P., Slattum, K. (1995.) "Test Methods for Durability of Polymeric Fibers in Concrete and UV Light Exposure," *American Concrete Institute - Special Publication Number 155*, Detroit, MI, pp. 115-136.

Bean, D.L. (1988.) "Surface Treatments to Minimize Concrete Deterioration: Survey of Field and Laboratory Applications and Available Products," *Technical Report REMR_CS-17*, Report 1, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

Berset, J.D. (1992.) "Strengthening of Reinforced Concrete Structures for Shear Using Composite Materials," *M.S. Thesis, Massachusetts Institute of Technology*.

Carter, P.D. (1989.) "The Use of Penetrating Sealers on Concrete Bridge Decks," *Proceedings of the Sessions Related to Structural Materials at Structures Conference* 1989, San Francisco, CA, pp. 292-302.

Chajes, M.J., Mertz, D.R., and Thomson, J.R. (1994.) "Durability of Composite Material Reinforcement," *Proceedings of the Third Materials Engineering Conference*, ASCE, pp. 598-605.

Davidovits, J. (1991.) "Geopolymers: Inorganic Polymeric New Materials," *Journal of Thermal_Analysis*, Volume 37, pp. 1633-1756.

Davidovits, J., and Davidovics, M. (1991.) "Geopolymer: Ultra High Temperature Tooling Material for the Manufacture of Advanced Composites," *36th International SAMPE Symposium*, June 30 – May 5.

Dolan, C., Rizkalla, S., and Nanni, A., (editors, 1999.), <u>Fiber Reinforced Polymer</u> <u>Reinforcement for Reinforced Concrete Structures</u>, *American Concrete Institute – Special Publication Number* 188, Detroit, MI, 1152 pages.

Ehsani, M.R., Saadatmanash, H., Abdelghany, I.H., and Elkafrawy, W. (1993.) "Flexural Behavior of Masonry Walls Strengthened With Composite Fabrics," *American Concrete Institute – Special Publication Number 128*, Detroit, MI, pp. 492-507.

Foden, A., Balaguru, P., and Lyon, R. (1996A.) "Mechanical Properties and Fire Response of Geopolymer Structural Composite," *41st International SAMPE Symposium*, May 30 – June 3.

Foden, A., Balaguru, P., and Lyon, R. (1996B.) "Mechanical Properties of Carbon Composites Made Using an Inorganic Polymer," *ANTEC*, pp. 3013-3018.

Foden, A., Balaguru, P., Lyon, R., and Davidovits, J. (1997.) "Flexural Fatigue Properties of an Inorganic Matrix-Carbon Composite," *41st International SAMPE Symposium*, May 29 – June 2.

Foden, A., Lyon, R., and Balaguru, P. (1996.) "A High Temperature Inorganic Resin for Use in Fiber Reinforced Composites," *Proceedings of the First International Conference on Composites in Infrastructure*, NSF, Tucson, Arizona, pp. 166-177.

Gomez, J., and Casto, B. (1996.) "Freeze-Thaw Durability of Composite Materials," *Proceedings of the First International Conference on Composites in Infrastructure*, NSF, Tucson, Arizona, pp. 947-955.

Hamid, J., Larralde, J., and Salama, A. (1993.) "Properties of Hollow Concrete Masonry Reinforced with Fiberglass Composite," *American Concrete Institute – Special Publication Number 128*, Detroit, MI. Harmon, T.G. and Slattery, K.T. (1992.) "Advanced Composite Confinement of Concrete," *Proceedings of the First International Conference on Advanced Composite Materials in Bridges and Structures*, Sherbrooke, Quebec, Canada, pp. 299-306.

Huang, G.G. (1995.) "An Inorganic Polymer for Use in Fiber Composites," Special Project Report Submitted to Rutgers, The State University, May 1995, 73 pp.

Husbande, T.B., and Causey, F.E. (1989.) "Surface Treatments for Concrete," *Proceedings of the Sessions Related to Structural Materials at Structures Congress 1989*, pp. 282-291.

Javed, S., Kumar, S.V., and GangaRao, V.S. (1996.) "Experimental Behavior of Concrete Beams with Externally Bonded Carbon Fiber Tow Sheets," *Presented at the* 51st Annual Meeting of SPI/CI Conference & Exposition.

Lavelle, J.A. (1988.) "Acrylic Latex-Modified Portland Cement," *ACI Materials Journal*, Volume 85, Number 1, Jan-Feb 1988, pp. 41-48.

Li, M.W., Saadatmanash, H., and Ehsani, M.R. (1992.) "Behavior of Externally Confined Concrete Columns," *Proceedings of the Materials Engineering Congress*, Atlanta, Ga, pp. 677-690.

Lyon, E., Sorathia, U., Balaguru, P., Foden, A., and Davidovits, J. (1996.) "New Fire Safe Material for Cabin Interiors," *AGARD Conference Proceedings*, 587, pp. 27.1-27.8.

Lyon, R., Sorathia, U., Balaguru, P., and Foden, A. (1996.) "Fire Response of Geopolymer Structural Composites," *Proceedings of the First International Conference in Composites in Infrastructure*, NSF, Tucson, Arizona, pp. 972-981.

Lyon, R E. Balaguru, P N. Foden, A. Sorathia, U. Davidovits, J. Davidovics, M. (1997.) "Fire-resistant Alumino Silicate Composites," *Fire & Materials*, Volume 21, Number 2, Mar-Apr 1997, pp. 67-73. Marusin, S.L. (1989.) "Enhancing Concrete Durability by Treatment with Sealers," *Proceedings of the Sessions Related to Structural Materials at Structures Congress 1989*, pp. 270-281.

Marusin, S.L. (1987.) "Improvement of Concrete Durability Against Intrusion of Chloride Laden Water by Using Sealers, Coatings, and Various Admixtures," *American Concrete Institute – Special Publication Number 100.*

M'Ba Zaa, I., Missihoun, M., and Labossiere (1996.) "Strengthening of Reinforced Concrete Beams with CFRP Sheets," *Fiber Composites in Infrastructure*, 1996, pp. 746-759.

Meier, U. (1987.) "Bridge Repair with High Performance Composite Materials," *Material UND Technik*, Vol. 4, pp. 125-128.

MPA (Committee report) (1987.) "Bonding of Steel and GFRP Plates in the Area of Coupling Joints, Talbruk Kattenbusch," *Federal Institute for Material Testing (MPS)*, Braunschweig, Research Report No. 312611429.

Nanni, A., Editor, <u>Fiber Reinforced Plastic (FRP) Reinforcement for Concrete Structures:</u> <u>Properties and Applications</u>, Elsevier Science Publishers, B.V., 450pp.

Nakamura, M., Sakai, H., Yagi, K., and Tanaka, T. (1996.) "Experimental Studies on the Flexural Reinforcing Effect of Carbon Fiber Sheet Bonded to Reinforced Concrete Beam," *Fiber Composites in Infrastructure*, pp. 746-759.

Plevris, N., and Triantafillou, T.C. (1994.) "Time-dependent Behavior of RC Members Strengthened with FRP Laminates," *Journal of Structural Engineering-ASCE*, Volume 120, Number 3, March 1994, pp. 1016-1042.

Plevris, N., Triantafillou, T.C., and Veneziano, D. (1995.) "Reliability of RC Members Strengthened with CFRP Laminates," *Journal of Structural Engineering-ASCE*, Volume 121, Number 7, July 1995, pp. 1037-1044. Priestley, M.J.N., Seible, F., and Fyfe, E. (1992.) "Column Seismic Retrofit Using Fiberglass/Epoxy Jackets," *Proceedings of the First International Conference on Advanced Composite Materials in Bridges and Structures*, Sherbrooke, Canada, pp. 287-298.

Rahman, A.H., Kingsley, and Crimi, J. (1996.) "Durability of a FRP Grid Reinforcement," *Proceedings of the Second Annual International Conference on Advanced Composite Materials in Bridges and Structures*, Montreal, Canada, pp. 681-690.

Ritchic, P.A., Thomas, D.A., Lu, L.W., and Connelly, G.M. (1991.) "External Reinforcement of Concrete Beams Using Fiber Reinforced Plastics," *American Concrete Institute Structural Journal*, Volume 88, Number 4, pp. 490-500.

Saadatmanash, H., and Ehsani, M. (1991.) "RC Beams Strengthened with GFRP Plates: Part I Experimental Study," *Journal of Structural Engineering-ASCE*, Volume 117, Number 10, pp. 3417-3433.

Saadatmanash, H., and Tannous, F. (1998.) "Durability of Fiber Reinforced Plastic (FRP) Rebars and Tendons in Aggressive Environments," *Repair and Rehabilitation of Reinforced Concrete Structures*, ASCE, pp. 120-133.

Sadatmanesh, H., and Ehasani, M., Editors. (1996.) <u>Fiber Composites in Infrastructure</u>, *Second International Conference on Composites in Infrastructure*, Tucson, Arizona, January 5-7, 1999.

Sen, R., Mariscal, D., and Shahawy, M. (1993.) "Durability of Fiberglass Pretensioned Beams," *ACI Structural Journal*, Volume 90, Number 5, Sep-Oct 1993, pp. 525-533.

Soudki, K.A., and Green, M.F. (1996.) "Freeze-Thaw Durability of Concrete Beams Strengthened with Carbon Fiber Sheets," *ACI Fall Convention*, New Orleans, November 1996.

Toutanji, H., and Balaguru, P., "Durability of Carbon and Glass Fiber Reinforced Concrete," *Journal of Materials Engineering*, ASCE, Volume 10, February 1998, pp. 52-57.

Toutanji, H.A., and Gomez, W. (1997.) "Durability Characteristics of Concrete Beams Externally Bonded with FRP Composite Sheets," *Cement and Concrete Composites*, Volume 19, pp. 351-358.

Walters, P.G. (1992.) "VAE Redisposable Powder Hydraulics Cement Admixtures," *Concrete International*, Volume 14, Number 4, pp. 30-34.