# Laboratory Evaluation of Vestoplast Modified Hot Mix Asphalt (HMA)

Final Report December 2007

Submitted by Mr. Thomas Bennert Research Engineer

Center for Advanced Infrastructure and Transportation (CAIT) Rutgers, the State University of New Jersey 100 Brett Road Piscataway, NJ 08854

> The Port Authority of NY/NJ Project Manager John Varrone

The Port Authority of NY/NJ, Materials Engineering Division Port Authority Technical Center 241 Erie Street Jersey City, NJ 07310

In cooperation with

The Port Authority of NY/NJ, Materials Engineering Division And U.S. Department of Transportation Federal Highway Administration

# **Disclaimer Statement**

The contents of this report reflect the views of the author(s) who is (are) responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the New Jersey Department of Transportation or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. This document is disseminated under the sponsorship of the Department of Transportation, University Transportation Centers Program, in the interest of information exchange. The U.S. Government assumes no liability for the contents or use thereof.

| 1 D ( ))                                                                                                                                                    |                                                                             | TECHNICAL REPORT                                   | STANDARD TITLE PA              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------|--------------------------------|
| 1. Keport No.                                                                                                                                               | 2. Government Accession No.                                                 | 3. Recipient's Catalog                             | g No.                          |
| PANYNJ-RU9247                                                                                                                                               |                                                                             |                                                    |                                |
| 4. Title and Subtitle                                                                                                                                       | •                                                                           | 5. Report Date                                     |                                |
| Laboratory Evaluation of Vesto                                                                                                                              | December 2007                                                               |                                                    |                                |
| Asphalt (HMA)                                                                                                                                               | CAIT/Rutgers                                                                | ition Code                                         |                                |
| 7. Author(s) Mr. Thomas Be                                                                                                                                  | 8. Performing Organiza                                                      | ation Report No.                                   |                                |
|                                                                                                                                                             |                                                                             | PANYNJ-RU92                                        | 247                            |
| 9. Performing Organization Name and Add                                                                                                                     | ress                                                                        | 10. Work Unit No.                                  |                                |
| Center for Advanced Infrastructure & Tr                                                                                                                     | ansportation (CAIT)                                                         |                                                    |                                |
| Rutgers, The State University                                                                                                                               |                                                                             | 11. Contract or Grant                              | No.                            |
| Piscataway, NJ 08854                                                                                                                                        |                                                                             | 13 Type of Report and                              | Period Covered                 |
| 2. Sponsoring Agency Name and Address                                                                                                                       |                                                                             | Final Report                                       |                                |
| The Port Authority of NY/NJ,                                                                                                                                | Federal Highway Administration                                              | 1/15/2006 - 6/1                                    | 4/2007                         |
| Port Authority Technical Center                                                                                                                             | U.S. Department of Transportation                                           | 14 Sponsoring Agency                               | / Code                         |
| 241 Erie Street Jersev Citv, NJ 07310                                                                                                                       | washington, D.C.                                                            |                                                    |                                |
| 15. Supplementary Notes                                                                                                                                     |                                                                             |                                                    |                                |
| U.S. Department of Transportation/Rese<br>1200 New Jersey Avenue, SE                                                                                        | arch and Innovative Technology Adminis                                      | tration                                            |                                |
| Washington, DC 20590-0001                                                                                                                                   |                                                                             |                                                    |                                |
| 6. Abstract                                                                                                                                                 |                                                                             |                                                    |                                |
| #3 with a PG64-22 and 2) FAA<br>base mix used prior to the addi<br>increase or decrease in perform<br>The FAA #3 with PG76-22 wo<br>Vestoplast modification | $^{\star}$ #3 with a PG76-22. The FAA<br>tion of the Vestoplast. This allow | #3 with a PG64-2                                   | 22 was the                     |
| estophist mounioution.                                                                                                                                      | uld be the performance striving                                             | to achieve due to                                  | son of the<br>additive.<br>the |
| , estoplast moundation.                                                                                                                                     | uld be the performance striving                                             | to achieve due to                                  | son of the<br>additive.<br>the |
| <sup>17. Key Words</sup><br>Flexural Beam Fatigue Testing<br>Deformation, Dynamic Modul                                                                     | g, Permanent<br>us                                                          | to achieve due to                                  | son of the<br>additive.<br>the |
| 7. Key Words<br>Flexural Beam Fatigue Testing<br>Deformation, Dynamic Modul                                                                                 | g, Permanent<br>us                                                          | to achieve due to                                  | son of the<br>additive.<br>the |
| 7. Key Words<br>Flexural Beam Fatigue Testing<br>Deformation, Dynamic Modul                                                                                 | g, Permanent<br>us<br>20. Security Classif. (of this page)                  | n of the Vestoplast<br>g to achieve due to<br>ment | 22. Price                      |
| 7. Key Words<br>Flexural Beam Fatigue Testing<br>Deformation, Dynamic Modul<br>9. Security Classif (of this report)<br>Inclassified                         | g, Permanent<br>us<br>20. Security Classif. (of this page)<br>Unclassified  | ment<br>21. No of Pages                            | 22. Price                      |

Form DOT F 1700.7 (8-69)

## Table of Contents

| Introduction                             | 1 |
|------------------------------------------|---|
| Repeated Load Test Results               | 1 |
| Flexural Beam Fatigue Test Results       | 5 |
| Dynamic Modulus (Stiffness) Test Results | 7 |
| Conclusions                              | 9 |
| Appendix1                                | 1 |

### Introduction

The scope of the work encompassed evaluating the affect of Vestoplast on the performance of hot mix asphalt. The Vestoplast was added to a PANYNJ FAA #3 asphalt mixture with a PG64-22 asphalt binder. Two baseline mixes were also evaluated for comparisons; 1) FAA #3 with a PG64-22 and 2) FAA #3 with a PG76-22. The FAA #3 with a PG64-22 was the base mix used prior to the addition of the Vestoplast. This allows for a comparison of the increase or decrease in performance simply due to the addition of the Vestoplast additive. The FAA #3 with PG76-22 would be the performance striving to achieve due to the Vestoplast modification. Mixture design information, conducted by the PANYNJ, can be found in the Appendix.

Three different characterization tests were used to evaluate the mixtures performance;

- Dynamic Modulus (AASHTO TP62-07) used to evaluate the stiffness properties over a wide range of temperatures and loading frequencies. The different mixes were tested in triplicate and averaged for comparison purposes.
- Flexural Beam Fatigue (AASHTO T321) used to evaluate the flexural fatigue properties of hot mix asphalt due to traffic loading. Five test specimens for each mix was tested at a different tensile strain to develop a relationship between tensile strain and fatigue life
- 3. Repeated Load (NCHRP Report 465) used to evaluate the resistance to permanent deformation due to cyclic loading at elevated temperatures. The different mixes were tested in triplicate and average for comparison purposes.

## **Repeated Load Test Results**

All test samples were conditioned to 140°F. A dummy sample, instrumented with internal and skin thermocouples, was used to ensure the test sample reaches the required test temperature. Once temperature was achieved, the samples were cyclically loaded using a haversine waveform. A deviatoric cyclic stress of 25 psi was applied for a duration of 0.1 seconds and then followed by a 0.9 second rest period.

The Flow Number and Accumulated Permanent Deformation were used to compare the relative performance of the different mixtures. These parameters are explained below.

 Flow Number (F<sub>N</sub>) – The Flow Number is the number of applied loads required to cause the sample to achieve tertiary flow, or mixture failure (the point where the permanent deformation curve starts to curve upward). The larger the flow number, the more resistant the HMA mix is to permanent deformation; and

2. Accumulated Permanent Deformation at 1,000 and 10,000 Loading Cycles ( $\epsilon_P$  (%) @ N = 1,000) – The accumulated permanent deformation is simply the magnitude of deformation accumulated during testing. The larger the  $\epsilon_P$  (%) @ 1,000 and 10,000 cycles, the greater the potential for rutting in the field.

These parameters were shown to provide the best correlation to measured field rutting (NCHRP 465) when conducting the repeated load permanent deformation test. The correlation results determined in NCHRP 465 are shown in Table 1. The table clearly shows that at the test temperature of 130°F, the R<sup>2</sup> values for these parameters when compared to measured field rutting were all greater than 0.86. This should also correspond to the requested test temperature of 140°F used in this study.

The final repeated load results of the mixtures are shown in Table 2. The test results clearly show a difference in mixture performance among the three different mixtures. The PG64-22 samples performed the worst while the PG76-22 mixture performed the best. The addition of the Vestoplast additive clearly increased the PG64-22 mixtures resistance to permanent deformation, however, not to the extent of the PG76-22 mixture performance. Figures 1 through 3 show the test results for the individual mixes.

| Unconfined Repeated           | Model  | 100°F          |       |          |           | 130°F          |       |          |           |
|-------------------------------|--------|----------------|-------|----------|-----------|----------------|-------|----------|-----------|
| Load                          | Woder  | R <sup>2</sup> | Se/Sy | Rational | Rating    | R <sup>2</sup> | Se/Sy | Rational | Rating    |
| Flow Number (F <sub>N</sub> ) | Power  | 0.96           | 0.229 | Yes      | Excellent | 0.90           | 0.359 | Yes      | Good      |
| Slope (b)                     | Linear | 0.59           | 0.743 | Yes      | Fair      | 0.87           | 0.393 | Yes      | Good      |
| Permanent Strain              | Linear | 0.95           | 0.256 | Yes      | Excellent | 0.86           | 0.410 | Yes      | Good      |
| Resilient Strain              | Linear | 0.90           | 0.362 | Yes      | Excellent | 0.66           | 0.652 | Yes      | Fair      |
| Resilient Modulus at Flow     | Linear |                |       |          |           | 0.72           | 0.548 | Yes      | Good      |
| $\epsilon_p/\epsilon_r$ Ratio | Linear | 0.83           | 0.472 | Yes      | Good      | 0.59           | 0.676 | Yes      | Fair      |
| <b>Mu</b> (μ)                 | Linear | 0.79           | 0.530 | -        | Good      | 0.25           | 0.881 | -        | Poor      |
| Intercept (a)                 | Linear | 0.30           | 0.964 | Yes      | Poor      | 0.13           | 1.055 | Yes      | Very Poor |

Table 1 – Results of Test Parameter Correlation to Field Rutting (NCHRP 465)

| Sample Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sample ID | Air Voids | Flow Number       | Permanen     | t Strain (%)                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-------------------|--------------|---------------------------------------------------------------------|
| campic Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | (%)       | (F <sub>N</sub> ) | 1,000 Cycles | 10,000 Cycles                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | # 4       | 5.4       | 411               | 2.06         | > 5%                                                                |
| PG64-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | # 6       | 5.5       | 471               | 1.95         | > 5%                                                                |
| F 004-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | # 8       | 5.5       | 431               | 1.89         | > 5%                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Average   | 5.5       | 438               | 1.97         | > 5%                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | # 1       | 5.7       | 2,011             | 0.82         | > 5%                                                                |
| PG64-22 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | # 2       | 5.5       | 1,831             | 0.79         | > 5%                                                                |
| Vestoplast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | # 3       | 5.3       | 3,191             | 0.72         | 2.47                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Average   | 5.5       | 2,344             | 0.78         | > 5%                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | # 1       | 5.9       | 8,991             | 0.43         | 0.72                                                                |
| PG76-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | # 4       | 5         | 5,571             | 0.6          | 1.1                                                                 |
| 1070-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | # 5       | 5.3       | 6,091             | 0.81         | 1.67                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Average   | 5.4       | 6,884             | 0.61         | 1.16                                                                |
| 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |           |                   |              | <ul> <li>Sample #4</li> <li>Sample #6</li> <li>Sample #8</li> </ul> |
| Second Se |           |           |                   |              |                                                                     |

Table 2 – Summary of Test Results from the Repeated Load Permanent Deformation Test

Figure 1 – Repeated Load Test Results for the PG64-22 Mixture

Number of Loading Cycles, n

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

0 🗍

0



Figure 2 - Repeated Load Test Results for the Vestoplast Modified Mixture



Figure 3 - Repeated Load Test Results for the PG76-22 Mixture

### Flexural Beam Fatigue Test Results

All samples were tested at a test temperature of  $15^{\circ}$ C. The test specimens were tested until the specimen's flexural strength reached approximately 50% of its initial flexural stiffness. The methodology outlined in AASHTO T321 was used to determine the number of loading cycles to fatigue failure (N<sub>f</sub>). A loading frequency of 10 Hz was used at five (5) different tensile strain levels; 400, 550, 700, 900, and 1000  $\mu$ -strains.

Throughout the test, the flexural stiffness of the samples was calculated and recorded. The stiffness of the beams was plotted against the load cycles and the resulting data was fitted to an exponential function as follows (AASHTO T321):

$$S = S_{o} e^{bN}$$
(1)

where,

S = flexural stiffness after the n load cycles;

 $S_0$ = initial flexural stiffness;

e = natural algorithm to the base e

b = constant from regression analysis

N = number of load cycles

Equation (1) was then modified to determine the number of loading cycles to achieve 50% of the initial flexural stiffness. This was conducted for the five different applied strain levels to provide a regression equation in the form of Equation (2).

 $\mathbf{N}_{\mathrm{f}} = \mathbf{k}_{\mathrm{I}} \varepsilon_{\mathrm{t}}^{k_{2}} \tag{2}$ 

where,

N<sub>f</sub> = number of loading repetitions until fatigue failure (50% of the initial stiffness)

 $k_1, k_2$  = regression coefficients depending on material type and test conditions

 $\varepsilon_t$  = tensile strain

The test results of the Flexural Beam Fatigue testing are shown in Figure 4. The test results show that, overall, the PG64-22 mixture achieved the highest resistance to fatigue cracking, while the Vestoplast mixture achieved the lowest. This was somewhat surprising since past experience has shown that PG76-22 asphalt binders provide better fatigue resistance than PG64-22 asphalt binders. Comparing the Vestoplast mixture to the PG64-22 mixtures shows that the addition of the Vestoplast additive may lower the fatigue cracking resistance of the mixture. Table 3 provides the individual test results for further review.



Figure 4 – Fatigue Life vs Applied Tensile Strain Relationship for Mixtures Tested

| Sample     | Micro-Strain, µ- | Air Voids | Fatigue Life, N <sub>f</sub> | Initial Stiffness, So | Regression  | Initial Modulus, E <sub>o</sub> |
|------------|------------------|-----------|------------------------------|-----------------------|-------------|---------------------------------|
| Туре       | strain           | (%)       | (Cycles)                     | (MPa)                 | Constant, b | (psi)                           |
|            | 400              | 5.3       | 334,393                      | 5,228.9               | -2.07E-06   | 895,230                         |
|            | 550              | 5.5       | 79,212                       | 4,761.4               | -8.75E-06   | 883,033                         |
| PG64-22    | 700              | 5.1       | 44,119                       | 3,809.0               | -1.57E-05   | 738,428                         |
|            | 900              | 5.9       | 18,066                       | 3,506.3               | -3.84E+00   | 675,872                         |
|            | 1000             | 5.6       | 7,352                        | 3,874.9               | -9.43E-05   | 764,999                         |
|            | 400              | 5.3       | 336,970                      | 6,621.8               | -2.06E-06   | 1,124,669                       |
| DC64 22 1  | 550              | 5.6       | 21,786                       | 5,742.2               | -3.18E-05   | 1,008,362                       |
| FG04-22 +  | 700              | 4.9       | 17,514                       | 4,654.6               | -3.96E-05   | 918,669                         |
| vestopiast | 900              | 5.7       | 3,803                        | 4,701.4               | -1.82E-04   | 919,844                         |
|            | 1000             | 5.4       | 2,086                        | 5,791.1               | -3.32E-04   | 1,000,616                       |
|            | 400              | 5.2       | 775,088                      | 6,234.9               | -8.94E-07   | 1,022,924                       |
|            | 550              | 5.4       | 52,691                       | 5,705.6               | -1.32E-05   | 973,929                         |
| PG76-22    | 700              | 5.9       | 33,213                       | 5,097.6               | -2.09E-05   | 937,655                         |
|            | 900              | 5.3       | 9,023                        | 4,854.3               | -7.68E-05   | 972,624                         |
|            | 1000             | 5.5       | 4,923                        | 5,853.3               | -1.41E-04   | 1,053,556                       |

Table 3 – Summary of Flexural Beam Fatigue Results

## Dynamic Modulus (Stiffness) Test Results

The Dynamic Modulus (E\*) test procedure is used to characterize the stiffness of HMA mixtures under a wide range of temperatures and loading frequencies (AASHTO TP62-07). The samples are tested using the same test equipment as the repeated load test (Figure 5). However, the stresses were applied in a manner to test the stiffness of the HMA within its respective linear elastic range, while minimizing permanent deformation of the sample.



Figure 5 – Test Machine for Repeated Load and Dynamic Modulus Test

Dynamic modulus and phase angle data were measured and collected in uniaxial compression following the method outlined in AASHTO TP62-07, *Standard Test Method for Determining Dynamic Modulus of Hot-Mix Asphalt Concrete Mixtures.* The data was collected at three temperatures; 4, 20, and 35°C (for the PG64-22 binder) and 45°C (for the PG76-22 binder), using loading frequencies of 25, 10, 5, 1, 0.5, 0.1, and 0.01 Hz. Samples were tested in triplicate after short-term aging following the procedures outlined in AASHTO R30, *Mixture Conditioning of Hot-Mix Asphalt (HMA).* 

The collected modulus values of the varying temperatures and loading frequencies were used to develop Dynamic Modulus master stiffness curves and temperature shift factors using numerical optimization of Equations 3 and 4. The reference temperature used for the generation of the master curves and the shift factors was 20°C.

$$\log|E^*| = \delta + \frac{(Max - \delta)}{1 + e^{\beta + \gamma \left\{\log \omega + \frac{\Delta E_a}{19.14714} \left[ \left(\frac{1}{T}\right) - \left(\frac{1}{T_r}\right) \right] \right\}}}$$
(3)

where:

 $|E^*|$  = dynamic modulus, psi  $\omega_r$  = reduced frequency, Hz *Max* = limiting maximum modulus, psi  $\delta$ ,  $\beta$ , and  $\gamma$  = fitting parameters

$$\log[a(T)] = \frac{\Delta E_a}{19.14714} \left(\frac{1}{T} - \frac{1}{T_r}\right)$$
(4)

where:

a(T) = shift factor at temperature T

 $T_r$  = reference temperature, °K

T = test temperature, °K

 $\Delta E_a$  = activation energy (treated as a fitting parameter)

The master stiffness curves, generated using the dynamic modulus test results, are shown in Figure 6. The results indicate that a clear increase in material stiffness is achieved at each temperature and loading frequency when the PG64-22 mix is modified with the Vestoplast additive. The mixture stiffness of the Vestoplast mixture was the highest at intermediate and lower temperatures, while the PG76-22 achieved the highest stiffness values at higher temperatures. In general, mixtures that achieve higher mixture stiffness at lower temperatures will generally have poorer fatigue resistance. Mixtures that achieve higher mixture stiffness at higher temperatures will generally have better resistance to permanent deformation. The results of the dynamic modulus testing, and the corresponding master stiffness curves, compare well to the Repeated Load Permanent Deformation and Flexural Beam Fatigue test results.



Figure 6 – Master Stiffness Curve of Mixtures Tested in Study

## Conclusions

A laboratory test program was conducted to assess the change in mixture performance due to the addition of a Vestoplast additive. Permanent Deformation, Flexural Fatigue, and Dynamic Modulus (Mixture Stiffness) testing was conducted on laboratory produced mixtures for performance evaluation. The results of the testing program indicate that:

- The addition of Vestoplast to the PG64-22 mixture increased its resistance to permanent deformation, as determined from laboratory Repeated Load Permanent Deformation testing. However, the permanent deformation resistance of the Vestoplast modified mixture was not as great as the PG76-22 mixture. The PG76-22 mixture achieved the highest Flow Number and lowest accumulated permanent deformation.
- 2. The addition of Vestoplast to the PG64-22 mixture decreased its resistance to fatigue cracking, as determined from laboratory Flexural Beam Fatigue testing. In fact, the PG64-22 mixture achieved the highest level of flexural fatigue resistance, as determined using the Fatigue Life vs Applied Tensile Strain relationship determined at 5 different tensile strains. This was surprising since past laboratory experience with PG76-22

asphalt binders were shown to have greater fatigue resistance than neat binders (i.e. - PG64-22).

3. The addition of Vestoplast to the PG64-22 mixture increased the material stiffness at each temperature and loading frequency evaluated. The Vestoplast modified mixture achieved the highest material stiffness at the intermediate and lower temperatures, which generally attributes to lower fatigue resistance. This was validated with the Flexural Fatigue results. The PG76-22 asphalt mixture achieved that highest material stiffness at the higher test temperatures, which generally attributes to better resistance to permanent deformation. This was validated with the Repeated Load Permanent Deformation test results.

Overall, the PG64-22 mixture modified with Vestoplast will have an increased resistance to rutting when compared to the unmodified PG64-22 mixture. However, it will not be as rut resistant as the PG76-22 asphalt mixture. The PG64-22 mixture modified with Vestoplast may have an issue with fatigue cracking. It achieved the lowest fatigue resistance of all three mixtures tested. The fatigue resistance of the PG76-22 asphalt binder did not perform as expected. Further review of this binder source is recommended.

## Appendix

### THE PORT AUTHORITY OF NY & NJ

### ENGINEERING DEPARTMENT

#### MATERIALS ENGINEERING DIVISION

#### PYCNOMETER TEST RESULTS

| міх т | TYPE:            | FAA # 3 with \ | /estoplast       |         | LOT #:  |           | Trail # 6   |  |  |  |
|-------|------------------|----------------|------------------|---------|---------|-----------|-------------|--|--|--|
| JOB   | DESCRIPTION:     |                |                  |         | CONTR   | RACT #:   | EWR-914.605 |  |  |  |
| PLAN  | IT:              | Tilcon NY Inc. | , Mt. Hope, NJ - | C Plant | LOCAT   | ION:      |             |  |  |  |
| CON   | TRACTOR:         |                |                  |         | SUBCO   | NTRACTOR: |             |  |  |  |
| Line  | Test #           |                | 6B               |         | 6C      |           |             |  |  |  |
| #     | Date             |                | 1/28/08          | 1/28/08 | 1/29/08 | 1/29/08   |             |  |  |  |
| 1     | Tare + Mix       |                |                  |         |         |           |             |  |  |  |
| 2     | Tare             |                |                  |         |         |           |             |  |  |  |
| 3     | Sample Weight    | (1 - 2)        | 2088.0           | 2099.7  | 2082.5  | 2084.2    |             |  |  |  |
| 4     | Pycnometer + V   | Vater          | 7435.3           | 7616.7  | 7434.3  | 7615.8    |             |  |  |  |
| 5     | Total (3 + 4)    |                | 9523.3           | 9716.4  | 9516.8  | 9700.0    |             |  |  |  |
| 6     | Pycnometer + V   | Vater + Mix    | 8680.9           | 8869.9  | 8678.4  | 8860.9    |             |  |  |  |
| 7     | Displaced Wate   | er (5 - 6)     | 842.4            | 846.5   | 838.4   | 839.1     |             |  |  |  |
| 8     | Water Tempera    | ture           | 25.0             | 25.0    | 25.0    | 25.0      |             |  |  |  |
| 9     | Max. Sp. Gr. ( 3 | 3/7)           | 2.479            | 2.480   | 2.484   | 2.484     |             |  |  |  |
| 10    | Average          |                | 2.4              | 180     | 2.4     | 84        |             |  |  |  |

Q.C. Technician

P.A. Technician : J. Varrone, D.Rana

Remarks : Trial # 6 B & C - Material Conditioned for 1 1/2 Hours @ 320°F

### THE PORT AUTHORITY OF NY & NJ MATERIALS ENGINEERING DIVISION LABORATORY BATCH PROPORTIONS

| CONTRACT #:  | EWR-014.605                              |
|--------------|------------------------------------------|
| PLANT :      | Tilcon NY Inc., Mt. Hope, NJ - 'C' Plant |
| MIX :        | FAA # 3                                  |
| TECHNICIAN : | J. Varrone, D. Rana                      |
| DATE :       | 1/24/08                                  |
| REMARKS :    | Trial # 6                                |

| MATERIAL              | LOT NUMBER       | MATERIAL SOURCE |                                   |                  | TYPE / SIZE           | PROPORTIONS      |          |
|-----------------------|------------------|-----------------|-----------------------------------|------------------|-----------------------|------------------|----------|
|                       |                  |                 |                                   |                  |                       |                  |          |
| BIN # 5 - 1 " STONE   |                  |                 |                                   |                  |                       | 1" STONE         | 0.0 %    |
| BIN # 4 - 3/4 " STONE | A 07 - 4 Ti      | ïlcon NY        | Inc., Mt. Hope, NJ                |                  |                       | 3/4" STONE       | 11.9 %   |
| BIN # 3 - 3/8 " STONE | A 07 - 3 Ti      | ilcon NY        | Inc., Mt. Hope, NJ                |                  |                       | 3/8" STONE       | 19.0 %   |
| BIN # 2 - 1/4 " STONE | A 07 - 2 Ti      | ilcon NY        | Inc., Mt. Hope, NJ                |                  |                       | 1/4" STONE       | 29.5 %   |
| BIN # 1 - SCREENINGS  | A 07 - 1 Ti      | ilcon NY        | Inc., Mt. Hope, NJ                |                  |                       | 0 % Screenings   | 33.3 %   |
| STONE SAND            | A 07 - 1 Ti      | ïlcon NY        | Inc., Mt. Hope, NJ                |                  |                       | 100 % Stone Sand |          |
| FILLER                | A 07 - 5 Ti      | ïlcon NY        | Inc., Mt. Hope, NJ                |                  |                       | Reclaimed Fines  | 1.4 %    |
| ASPHALT CEMENT        | A 07 - 7 Ch      | hevron, F       | <sup>o</sup> erth Amboy, NJ (+ 0. | 5% ARR- MAZ AD-H | lere LOF65-00 Anti St | PG64-22          | 4.930 %  |
| ADDITIVE              | Ev               | vonik De        | gussa Corp., Parsippa             | any, NJ          |                       | Vestoplast S     | 0.370 %  |
|                       |                  |                 |                                   |                  |                       |                  |          |
| INDIVIDUAL COMPONENTS | PERCENTAGES BY W | VEIGHT          |                                   | BAT              | CH WEIGHTS IN GR      | AMS              |          |
|                       |                  |                 | 1x4" MARSHALL                     | PCYNOMETER       | 3x4" MARSHALLS        | 1x6 " MARSHALL   | GYRATORY |
| AGGREGATE TOTAL       | 100.0%           |                 |                                   | 2000.0           | 3800.0                |                  |          |
|                       |                  |                 |                                   |                  | 1                     |                  |          |
|                       | 0.0%             |                 |                                   | 0.0              | 0.0                   |                  |          |
| BIN#5-1"STONE         | 0.0%             |                 |                                   | 0.0              | 0.0                   |                  |          |
| DIN # 4 2/4 " STONE   | 42.5%            |                 |                                   | 250.0            | 475.0                 |                  |          |
| BIN # 4 - 3/4 STONE   | 12.5%            |                 |                                   | 230.0            | 475.0                 |                  |          |
| BIN # 3 - 3/8 " STONE | 20.0%            |                 |                                   | 400.0            | 760.0                 |                  |          |
| BIN#3-30 310HL        | 20.070           |                 |                                   | 400.0            | 700.0                 |                  |          |
| BIN # 2 - 1/4 " STONE | 31.0%            |                 |                                   | 620.0            | 1178.0                |                  |          |
|                       | 51.070           |                 |                                   | 020.0            | 1170.0                |                  |          |
| BIN # 1 - SCREENINGS  | 35.0%            |                 |                                   | 700.0            | 1330.0                |                  |          |
| STONE SAND            |                  |                 |                                   |                  |                       |                  |          |
|                       |                  |                 |                                   |                  |                       |                  |          |
| FILLER                | 1.5%             |                 |                                   | 30.0             | 57.0                  |                  |          |
|                       |                  |                 |                                   |                  |                       |                  |          |
| ASPHALT CEMENT        | 4.930%           |                 |                                   | 104.1            | 197.8                 |                  |          |
|                       |                  |                 |                                   |                  |                       |                  |          |
| ADDITIVE              | 0.370%           |                 |                                   | 7.8              | 14.8                  |                  |          |

### THE PORT AUTHORITY OF NY & NJ MATERIALS ENGINEERING DIVISION LABORATORY BATCH PROPORTIONS

| CONTRACT #:  | EWR-914.605                              |
|--------------|------------------------------------------|
| PLANT :      | Tilcon NY Inc., Mt. Hope, NJ - 'C' Plant |
| MIX :        | FAA # 3                                  |
| TECHNICIAN : | J. Varrone, D. Rana                      |
| DATE :       | 1/24/08                                  |
| REMARKS :    | Trial # 6                                |

| MATERIAL              | LOT NUMBER     | MATERIAL SOURCE |                       |                  | TYPE / SIZE           | PROPORTIONS      |          |
|-----------------------|----------------|-----------------|-----------------------|------------------|-----------------------|------------------|----------|
|                       |                |                 |                       |                  |                       |                  |          |
| BIN # 5 - 1 " STONE   |                |                 |                       |                  |                       | 1" STONE         | 0.0 %    |
| BIN # 4 - 3/4 " STONE | A 07 - 4       | Tilcon NY       | Inc., Mt. Hope, NJ    |                  |                       | 3/4" STONE       | 11.9 %   |
| BIN # 3 - 3/8 " STONE | A 07 - 3       | Tilcon NY       | Inc., Mt. Hope, NJ    |                  |                       | 3/8" STONE       | 19.0 %   |
| BIN # 2 - 1/4 " STONE | A 07 - 2       | Tilcon NY       | Inc., Mt. Hope, NJ    |                  |                       | 1/4" STONE       | 29.5 %   |
| BIN # 1 - SCREENINGS  | A 07 - 1       | Tilcon NY       | Inc., Mt. Hope, NJ    |                  |                       | 0 % Screenings   | 33.3 %   |
| STONE SAND            | A 07 - 1       | Tilcon NY       | Inc., Mt. Hope, NJ    |                  |                       | 100 % Stone Sand |          |
| FILLER                | A 07 - 5       | Tilcon NY       | Inc., Mt. Hope, NJ    |                  |                       | Reclaimed Fines  | 1.4 %    |
| ASPHALT CEMENT        | A 07 - 7 C     | Chevron, F      | Perth Amboy, NJ (+ 0. | 5% ARR- MAZ AD-H | lere LOF65-00 Anti St | PG64-22          | 4.930 %  |
| ADDITIVE              | E              | Evonik De       | gussa Corp., Parsippa | any, NJ          |                       | Vestoplast S     | 0.370 %  |
|                       |                |                 |                       |                  |                       |                  |          |
| INDIVIDUAL COMPONENTS | PERCENTAGES BY | WEIGHT          |                       | BAI              | CH WEIGHTS IN GR      | AMS              |          |
|                       | 100.00         |                 | 1x4" MARSHALL         | PCYNOMETER       | 3x4" MARSHALLS        | 1x6 " MARSHALL   | GYRATORY |
| AGGREGATE TOTAL       | 100.0%         |                 |                       | 2000.0           | 3800.0                |                  |          |
|                       |                |                 |                       |                  |                       |                  |          |
| DIN # 5 . 1 " STONE   | 0.0%           |                 |                       | 0.0              | 0.0                   |                  |          |
| BIN#5-1 STONE         | 0.076          |                 |                       | 0.0              | 0.0                   |                  |          |
| BIN # 4 - 3/4 " STONE | 12.5%          |                 |                       | 250.0            | 475.0                 |                  |          |
| Bit # 4 OF OTOTE      | 12.070         |                 |                       | 200.0            | 410.0                 |                  |          |
| BIN # 3 - 3/8 " STONE | 20.0%          |                 |                       | 400 0            | 760.0                 |                  |          |
|                       | 20.070         |                 |                       | 400.0            | 100.0                 |                  |          |
| BIN # 2 - 1/4 " STONE | 31.0%          |                 |                       | 620.0            | 1178.0                |                  |          |
| BILLE IN OTONE        | 01.070         |                 |                       | 020.0            | 1110.0                |                  |          |
| BIN # 1 - SCREENINGS  | 35.0%          |                 |                       | 700.0            | 1330.0                |                  |          |
| STONE SAND            |                |                 |                       |                  |                       |                  |          |
|                       |                |                 |                       |                  |                       |                  |          |
| FILLER                | 1.5%           |                 |                       | 30.0             | 57.0                  |                  |          |
|                       |                |                 |                       |                  |                       |                  |          |
| ASPHALT CEMENT        | 4.930%         |                 |                       | 104.1            | 197.8                 |                  |          |
|                       |                |                 |                       |                  |                       |                  |          |
| ADDITIVE              | 0.370%         |                 |                       | 7.8              | 14.8                  |                  |          |

### The Port Authority Of NY & NJ Engineering Department Materials Engineering Division Calculation Of Effective Asphalt Content & Asphalt Film Thickness

| Contract #: | EWR-914.605                    | Date:       | 1/31/08                                 |
|-------------|--------------------------------|-------------|-----------------------------------------|
| Plant:      | Tilcon NY Inc 'C' Plant        | Location:   | Mt. Hope, NJ                            |
| Mix:        | FAA # 3 PG64-22 & Vestoplast S | Technician: | J. Varrone, D. Rana                     |
| Test #:     | Trial # 6                      | Remarks:    | HMA Conditioned for 1 1/2 Hours @ 320°F |

| Constituents     | Source                                                                         | Specific | Mix Composition |       |
|------------------|--------------------------------------------------------------------------------|----------|-----------------|-------|
|                  |                                                                                | Apparent | Bulk            |       |
| Coarse Aggregate | 5/8" Stone - Tilcon NY Inc., Mt. Hope, NJ                                      | 2.695    | 2.657           | 11.9  |
| Coarse Aggregate | 3/8" Stone - Tilcon NY Inc., Mt. Hope, NJ                                      | 2.697    | 2.658           | 19.0  |
| Coarse Aggregate | 1/4" Stone - Tilcon NY Inc., Mt. Hope, NJ                                      | 2.702    | 2.652           | 29.5  |
| Fine Aggregate   | Stone Sand - Tilcon NY Inc., Mt. Hope, NJ                                      | 2.697    | 2.673           | 33.3  |
| Fine Aggregate   |                                                                                | 2.697    | 2.673           | 0.0   |
| Mineral Filler   | Reclaimed Fines - Tilcon NY Inc., Mt. Hope, NJ                                 | 2.697    | 2.673           | 1.4   |
| Asphalt Cement   | PG 64-22 Chevron, Path Amboy, NJ (+ 0.5% ARR-MAZ AD-Here LOF65-09 Anti Strip - | 1.030    |                 | 4.930 |
| Additive         | Vestopiast S - Evonik Degussa Corp., Parsippany, NJ                            | 0.870    |                 | 0.370 |

| Compacted Mix Bulk Specific Gravity - ASTM D-2726 (Gmb) | 2.395 |
|---------------------------------------------------------|-------|
| Mix Maximum Specific Gravity - ASTM D-2041 (Gmm)        | 2.482 |

| Bulk Specific Gravity Of Aggregate (Gsb)      | 2.661 |               |
|-----------------------------------------------|-------|---------------|
| Effective Specific Gravity Of Aggregate (Gse) | 2.700 |               |
| Apparent Specific Gravity Of Aggregate (Gsa)  | 2.698 |               |
| Asphalt Absorption (Pba)                      | 0.55  |               |
| Effective Asphalt Content (Pbe)               | 4.78  | Specification |
| % Air Voids In Compacted Mixture (Va)         | 3.5   | 2.0 - 5.0     |
| % Voids Filled With Asphalt (VFA)             | 76.3  | 67.0 - 77.0   |
| % Voids In Mineral Aggregate (VMA)            | 14.8  | 14.0 Min      |

| Gradation         |           |               |  |
|-------------------|-----------|---------------|--|
| Sieve Size        | % Passing | Specification |  |
| 1 1/2"            | 100.0     | 100           |  |
| 1"                | 100.0     | 100           |  |
| 3/4"              | 100.0     | 100           |  |
| 1/2"              | 94.4      | 88 - 100      |  |
| 3/8"              | 82.1      | 73 - 85       |  |
| #4                | 45.6      | 42 - 54       |  |
| #8                | 33.0      | 32 - 42       |  |
| # 16              | 28.1      | 19 - 29       |  |
| # 30              | 21.9      | 14 - 20       |  |
| # 50              | 14.0      | 9 - 15        |  |
| # 100             | 6.7       | 4-8           |  |
| # 200             | 3.0       | 1-5           |  |
| Effective AC      | 4.78      |               |  |
| Filler / AC Ratio | 0.63      |               |  |

| Surface Area (Sq. Ft. / Lbs. Of Aggregate) | 22.57    |
|--------------------------------------------|----------|
| Bitumen Index                              | 0.002118 |
| Asphalt Film Thickness (Microns)           | 10.31    |

2/13/08