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                                   "Smart Bicycle"∗

Yizhai Zhang† and Jingang Yi‡

Department of Mechanical and Aerospace Engineering, and
Center for Advanced Infrastructure and Transportation

Rutgers, The State University of New Jersey
Piscataway, New Jersey 08854, USA

Abstract

Single-track vehicles, such as motorcycles and bicycles, provide an agile mobile platform. Modeling and
control of motorcycles for agile maneuvers, such as those by professional racing riders, are challenging due
to motorcycle’s unstable platform and complex tire/road interaction. This report presents a modeling and
tracking control design of autonomous motorcycles/bicycles. We first discuss a new dynamics model for au-
tonomous motorcycles/bicycles. We consider the existence of lateral sliding velocity at the rear wheel contact
point. Because of the importance of the tire/road interaction for vehicle stability and maneuverability, the dy-
namic modeling scheme also includes the motorcycle tires. We then present two designs for trajectory tracking
and balancing control of autonomous motorcycles. The first control design is for trajectory tracking and the
second design is for path following control (i.e., maneuver regulation control). The both control systems de-
signs are based on the external/internal convertible (EIC) dynamical structure of the motorcycle dynamics.
The control design of the EIC systems guarantees an exponential convergence of the motorcycle trajectory
to a neighborhood of the desired profiles while the roll motion converges to a neighborhood of the desired
equilibria that are estimated for a given desired trajectory. The maneuver regulation control guides the vehicle
to follow a desired path and automatically tunes the desired velocity. The velocity field-based maneuver reg-
ulation design is integrated with the trajectory tracking controller for motorcycle systems. The effectiveness
of the control systems are validated by numerical simulations based on an autonomous motorcycle prototype.

Keywords: Single-track vehicle, nonlinear control, non-minimum phase systems, dynamic inversion,

Nomenclature

X,Y, Z A ground-fixed coordinate system.

x, y, z A wheel-base line moving coordinate system.

xw, yw, zw A front wheel plane coordinate system.

xB, yB, zB A rear frame body coordinate system.

C1, C2 Front and rear wheel contact points on the ground.

Ffx, Ffy, Ffz The front wheel contact forces in the x, y, z-axis directions.

Frx, Fry, Frz The rear wheel contact forces in the x, y, z directions.

vf ,vr Velocity vectors of the front and rear wheel contact points, respectively.

vfx, vfy Front wheel contact point C1 velocities along the x- and y-axis directions, respectively.

vrx, vry Rear wheel contact point C2 velocities along the x- and y-axis directions, respectively.

vfxw , vfyw Front wheel contact point C1 velocities along the xw- and yw-axis directions, respectively.

vX , vY Rear wheel contact point C2 velocities along the X- and Y -axis directions, respectively.

∗Research supported by Rutgers Center for Advanced Infrastructure and Transportation.
†Graduate student; Email: yzzhang@eden.rutgers.edu.
‡Assistant Professor and corresponding author; Email: jgyi@rutgers.edu, Tel: 1-848-445-3282, Fax: 1-732-445-3124.
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ωf , ωr Wheel angular velocities of the front and rear wheels, respectively.

vG Velocity vector of the motorcycle frame (with rear wheel set).

γf , γr Slip angles of the front and rear wheels, respectively.

λf , λr Longitudinal slip values of the front and rear wheels, respectively.

ϕ,ψ Rear frame roll and yaw angles, respectively.

ϕf The front steering wheel plane camber angle.

φ Motorcycle steering angle.

φg Motorcycle kinematic steering angle (projected steering angle on the ground plane).

σ The front kinematic steering angle variable.

m The total mass of the motorcycle rear frame and wheel.

Js The mass moment of rotation of the steering fork (with the front wheel set) about its rotation
axis.

l Motorcycle wheel base, i.e., distance between C1 and C2.

lt The front steering wheel trail.

h The height of the motorcycle center of mass.

r The front and rear wheel radius.

δ The rear frame rotation angle from its vertical position.

ξ The front steering axis caster angle.

R The radius of the trajectory of point C2 under neutral steering turns.

Cd The aerodynamics drag coefficient.

kλ, kγ , kϕ Longitudinal, lateral, and camber stiffness coefficients of motorcycle tires, respectively.

L(Lc) The (constrained) Lagrangian of the motorcycle systems.

1 Introduction

Single-track vehicles, such as motorcycles and bicycles, have high maneuverability and strong off-road capa-
bilities. In environments such as deserts, forests, and mountains, mobility of single-track vehicles significantly
outperforms that of double-track vehicles. The recent demonstration of the Blue Team’s autonomous motorcy-
cle in the 2005 DARPA Grand Challenge autonomous ground vehicles competition has shown an example of
the high-agility of the single-track platform [1]. Although the extensive study of the motorcycle dynamics have
revealed the performance under steady motions, however, modeling and control of motorcycles for agile maneu-
vers, such as those by professional racing riders, still remains a challenging task due to motorcycle’s intrinsic
unstable platform and complex tire/road interaction. Professional motorcycle riders can leverage the safety limits
of the tire/road interaction, and maintain the vehicles at high performance while preserving safety. The goal of
this work is to develop a new modeling and control scheme for an autonomous motorcycle.

Mathematically modeling of a bicycle or a motorcycle has been an active research area for many years.
Although some modeling differences have been discussed in [2], from control system design aspects, we consider
bicycles and motorcycles are similar, and hence do not explicitly distinguish them. There is a large body of work
that studies motorcycle stability and dynamics, and readers can refer to two recent review papers: one from a
historical development viewpoint [2] and the other from a control-oriented perspective [3]. The modeling work
can be considered as two groups [3]: a simple inverted pendulum model and a multi-body dynamic model.
For example, some simple second-order dynamic models are presented in [4] to study the balance stability of
a bicycle. Several researchers have studied the motorcycle dynamics using multi-body dynamics [5–8]. The
model developed in [6] is very comprehensive and contains various vehicle components. The model has been
implemented in a simulation package called FastBike for the purposes of real-time simulations. Multi-body
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dynamics models are not suitable for the control system design due to their complexity while a inverted-pendulum
model overly simplify the problem and does not capture all of the dynamics and geometric characteristics.

In [9, 10], mathematical models of a motorcycle are discussed using (constrained) Lagrange’s equations.
In [11], experimental study of the motorcycle handling is compared with the mathematical dynamics model of
a motorcycle with the rider. Stability and steering characteristics of a motorcycle are typically discussed using
a linearization approach with a consideration of a constant velocity [2, 3, 5, 12–15]. A non-minimum phase
property (unstable poles and zeros) in these analyses explains the counter-steering phenomena and other steer-
ing stability observations. In [12], it is also demonstrated experimentally the in-significance of the gyroscopic
effect of the front wheel. The concept of an autonomous bicycle without a rider has been proposed by several
researchers [1, 9, 16–20]. In this work, we extend the modeling and control design in [9, 16]. For the modeling
part, we take a constrained Lagrangian approach to capture the nonlinear dynamics of a motorcycle. Besides the
consideration of control-oriented modeling approach that captures the fundamental properties of the motorcycle
platform with a manageable complexity, several new features have been adopted and developed. First, we re-
lax the zero lateral velocity of the wheel contact points and therefore allow wheel sliding in the models, which
provides more realistic vehicle modeling [2]. Second, we explicitly consider the tire/road interaction for design-
ing control algorithms because of the importance of the tire/road interaction on motorcycle dynamics [21]. The
study in [22] is probably the closest work to ours. The authors in [22] employ a nonholonomic motorcycle dy-
namics and focus on the performance and maneuverability analysis of motorcycles using the automotive tire/road
interaction characteristics.

Brake 

IMU/GPS 

potentiometer

Motorized 
support 

Cable

Motion control

motor&encoder
Driving 

CompRIO Comp.

Steering motor

actuator 

Figure 1: A Rutgers autonomous pocket
bike.

Control of an autonomous motorcycle only using the steering and
vehicle velocity as inputs is challenging due to the platform’s non-
minimum phase and underactuation properties 1. For such systems,
there does not exist an analytical casual compensator for exactly out-
put tracking while keeping the internal stability [26]. With an extra
rider lean as an control input, it has been shown that maneuvering a
bicycle becomes easier because adding the extra control input essen-
tially eliminates the right half-plane zeros [3]. In [17], an autonomous
bicycle is designed and balanced using gyroscopic actuators. The con-
troller in [17] is based on a linearized bicycle model. In [9], a nonlin-
ear control method is designed for a trajectory tracking and balancing.
In [18], a balancing and tracking control mechanism is designed by
on-board shifting weights. In [19, 20], a simplified inverted pendu-
lum model is utilized for bicycle balancing. A proportional deriva-
tive (PD) controller with a disturbance observer is employed to bal-
ance the bicycle. The authors however focus on balancing the bicycle
on a straight-line motion. We employ and extend the control design
in [9, 16]. In [9], an external/internal convertible (EIC) dynamical system is presented and the motorcycle dy-
namics are of an example of the EIC systems. A nonlinear tracking control design is also discussed for the
non-minimum phase bicycle dynamic systems. In our previous work [16], we have extended the dynamic models
to consider motorcycle geometric and steering mechanism properties. In [9, 16], nonholonomic constraints of
zero lateral velocity at the rear wheel contact point are enforced and only rear wheel friction force is considered
for traction/braking forces. The control systems design takes advantages of the control actuation flexibility and
reduces the design complexity than those in [9, 16]. Two simulation examples demonstrate the effectiveness and
efficacy of the control systems design.

Besides the EIC trajectory tracking control design, we also present a path-following design to overcome the
large errors shown in the trajectory tracking. For autonomous vehicles, particularly the underactuated mechanical
systems, maneuver regulation or path following control has demonstrated a superior performance comparing

1An underactuated mechanical system is referred to a mechanical dynamic system in which the number of control inputs is less than
the number of the generalized coordinates [24]. Readers can also refer to [25] for an overview of control of nonlinear non-minimum
phase systems.
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with pre-specified trajectory tracking in time domain [27–31]. In those maneuver regulation design, the desired
velocity profile along the trajectory is obtained either using Lyapunov-based approach (e.g., [31]) or requiring
online solving an optimization problem (e.g., [31]), which is non-causal for non-minimum phase dynamical
systems such as motorcycle dynamics. We use a velocity field concept to generate the desired velocity profile
for motorcycle systems. Our approach is inspired by the work in [32] of passivity-based control of fully-actuated
robot manipulators. We integrate the velocity field concept with the EIC control design of underactuated non-
minimum phase motorcycle dynamics. The presented trajectory tracking and path-following control design are
extension of the work presented in the conference papers [33, 34].

Comparing with existing study on the motorcycle dynamics and control, the main contribution of this study
is the new modeling and control system design with integrated motorcycle dynamics with tire/road interaction.
First, we do not enforce a zero lateral velocity nonholonomic constraint for the wheel contact points of the mo-
torcycle system. Such nonholonomic constraints are not realistic for high-fidelity vehicle modeling [2]. Second,
we explicitly consider the tire/road interaction for designing control algorithms because of the importance of the
tire/road interaction on motorcycle dynamics. To our knowledge, there is no study that explicitly considers such
kinds of tire dynamics into the motorcycle control system design. The presented work here is an extension of the
work in [23]. Based on the new dynamics, we extend the control system design in [9, 16] for trajectory tracking
and path-following maneuvers.

The remainder of the report is organized as follows. In Section 2, we discuss dynamic modeling of a riderless
motorcycle. In Section 3, we present a motorcycle tire dynamics model and then integrate the tire dynamics with
the motorcycle dynamics. In Section 4, we present an EIC-based tracking and balancing control design. We then
present a tracking error improvement by path-following control design in Section 5. Both trajectory-tracking
and path-following control designs are validated through simulation results. Finally, we conclude the report and
discuss future research directions in Section 6.

2 Motorcycle Dynamics

Fig. 1 shows the Rutgers autonomous motorcycle prototype. The motorcycle is rear-wheel driving and steering
and velocity control are the control inputs. We do not use the weight shifting as one actuation mechanism as
human riders do because it has been demonstrated an effective maneuverability only through vehicle steering and
velocity control [1].

2.1 Geometry and kinematics relationships

The riderless motorcycle is considered as as a two-part platform: a rear frame and a steering mechanism. Fig. 2(a)
shows a schematic of the vehicle. We consider the following modeling assumptions: (1) the wheel/ground is a
point contact and thickness and geometry of the motorcycle tire are neglected; (2) The motorcycle body frame is
considered a point mass; and (3) the motorcycle moves on a flat plane and vertical motion is neglected, namely,
no suspension motion.

We denote C1 and C2 as the front and rear wheel point points with the ground, respectively. As illustrated
in Fig. 2(a), three coordinate systems are used: the navigation frame N (X,Y, Z-axis fixed on the ground), the
wheel base moving frame (x, y, z-axis fixed along line C1C2), and the rear body frame B (xB, yB, zB-axis fixed
on the rear frame). For frame B, we use (3-1-2) Euler angles and represent the motion by the yaw angle ψ and roll
angle ϕ. We denote the unit vector sets for the three coordinate systems as (I,J ,K), (i, j,k), and (iB, jB,kB),
respectively. It is straightforward to obtain that⎡

⎣iB
jB
kB

⎤
⎦ =

[
1 0
0 R(ϕ)

]⎡⎣i
j
k

⎤
⎦ =

[
1 0
0 R(ϕ)

] [
R(ψ) 0

0 1

]⎡⎣ I
J
K

⎤
⎦ =

⎡
⎣ cψ sψ 0
− cϕ sψ cϕ cψ sϕ
sϕ sψ − sϕ cψ cϕ

⎤
⎦
⎡
⎣ I

J
K

⎤
⎦ , (1)

where the rotation matrix

R(x) =
[

cx sx
− sx cx

]
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and cx := cosx, sx := sinx for angle x.
We consider the trajectory of point C2, denoted by its coordinates (X,Y ) in N , as the motorcycle position.

The orientation of the coordinate systems and the positive directions for angles and velocities follow the con-
version of the SAE standard [15]. We consider the instantaneous rotation center of the motorcycle motion on
the horizontal plane. Let Or denote the instantaneous rotation center and O′

r denote the neutral instantaneous
rotation center which is the intersection point of the perpendicular lines of the front and rear wheel planes; see
Fig. 2. Under the neutral turning condition [7], the slip angles of the front and rear wheels are the same, that
is, λf = λr, and then the rotation center angles for Or and O′

r are equal to the kinematic steering angle φg,
namely, α = α′ = φg. Let R denote the instantaneous radius of the trajectory of point C2 under neutral turning
conditions. We define σ as the kinematic steering variable as

σ := tanφg =
l

R
. (2)

From the geometry of the front wheel steering mechanism [7], we find the following relationship,

tanφg cϕ = tanφ cξ . (3)

If we assume a small roll and steering angles, then from (3) we obtain an approximation

σ̇ cϕ = φ̇ cξ . (4)

O

Or

XY

Z

xy

z

xByB

zB

ϕ

ϕf

ψ
α

φ

φg

γf

γr

l

b

h

ξ

C1

C2

O1

O2

C3

G

Ffx

Ffy

Ffz

Frx

Fry

Frz

lt

xw

yw

vf

vr

(a)

O

Or

O′
r

X

Y

x

y

xw
yw

φg

α′

α

C1

C2

R

l
vfvr

ψ

ψ
δ

γf

γ′
f

γr

(b)

Figure 2: A schematic of the riderless motorcycle/bicycle. (a) Kinematic and dynamic modeling schematic. (b) Top view
of the motorcycle/bicycle kinematic steering mechanism.

The motion of the motorcycle on the XY plane is captured by the generalized coordinates (X,Y, ψ, ϕ, σ).
Note that the use of variable σ is to capture the steering impact on the motorcycle dynamics. The nonholonomic
constraint of the rear wheel and the motion trajectory geometry imply the yaw kinematics equality

vrx = Rψ̇ =
l

σ
ψ̇ . (5)

From a differential geometry viewpoint 2, we can partition the generalized velocities of the motorcycle as base
velocities ṙ = [ϕ̇, vrx, vry, σ̇]T and fiber velocities ṡ = ψ̇. We then write the constraints in (5) simply as

ṡ +A(r, s)ṙ = 0, (6)

2We here take a description of the base-fiber structure of nonholonomic dynamical systems with symmetry in [35].
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where A(r, s) =
[
0 −σ

l 0 0
]
.

Due to the steering mechanism and caster angle, the height of the mass center of gravity of the motorcycle
is changing under steering. As shown in Fig. 2(b), the height change ΔhG of the center of gravity G due to the
steering action can be calculated as [16]

ΔhG = δb sϕ ≈ bltσ cξ
l

sϕ , (7)

where we use a small angle approximation σ ≈ φg from the relationship (2).

Remark 1 The height change ΔhG of the gravity center G due to steering given in (7) is an approximation. A
more accurate modeling of ΔhG with experimental validation is given in [36]. The model of ΔhG given in [36]
considers the effect of the tire size without using a small angle approximation and the resultant relationship
between ΔhG and sϕ is not linear as shown in (7). However, we still use the simplified model (7) to design the
trajectory tracking and path-following controllers in Section 4 and the results can be straightforward extended
to the realistic steering model in [36].

Remark 2 In [9, 22], the steering axis is assumed to be vertical. This assumption simplifies the motorcycle
dynamics and neglects a significant geometric stabilization mechanism, which is the “motorcycle trail” (denoted
as lt in Fig. 2(a)) discussed in [4, 7, 12, 13]. The resulting model of the motorcycle dynamics cannot capture the
influence of the steering angle φ on the roll dynamics when vrx = 0. Namely, one cannot use steering to stabilize
the motorcycle. Such an observation is also pointed out in [3].

Given roll angle ϕ and steering angle φ, the camber angle of the front wheel is approximated as [7]

ϕf = ϕ+ φ sξ . (8)

We consider the relationship between velocities of the rear wheel contact point C2 and the front wheel center O1.
We write the position vector rO1 = rC2 + ρC2O1

, where rC2 is the position vector of point C2 and ρC2O1
=

liB − rkB = li + r sϕ j − r cϕ k is the relative position vector of G. The angular velocity of the rear frame is
represented as ω = ϕ̇i + ψ̇k. Thus, we obtain

vO1 = ṙC2 + ω × ρC2O1
= (vrx − rψ̇ sϕ)i + (vry + lψ̇ + rϕ̇ cϕ)j + rϕ̇ sϕ k. (9)

2.2 Motorcycle dynamics

We use the constrained Lagrangian method in [35] to obtain the dynamics equation of the motion of the riderless
motorcycle. We consider the motorcycle as two parts: one rear frame with mass m and one steering mechanism
with the mass moment of inertia Js. The Lagrangian L of the motorcycle is calculated as

L =
1
2
Jsφ̇

2 +
1
2
mvG · vG −mg (h cϕ−ΔhG) (10)

To calculate the mass center velocity, we take a similar approach as in (9) and obtain

vG = (vrx − hψ̇ sϕ)i + (vry + bψ̇ + hϕ̇ cϕ)j + hϕ̇ sϕ k.

Plugging the above equations and (4)-(7) into (10), we obtain

L =
Js
2 c2

ξ

σ̇2 +
1
2
m

[
(vrx − hψ̇ sϕ)2 + (vry + bψ̇ + hϕ̇ cϕ)2 + h2ϕ̇2 s2ϕ

]
−mg

(
h cϕ−

blt cξ
l

σ sϕ

)
. (11)

6



Incorporating the constraints (6), we obtain the constrained Lagrangian Lc as 3

Lc =
Js
2 c2

ξ

c2
ϕ σ̇

2 +
1
2
m

{[(
1 − h

l
σ sϕ

)2

+
b2

l2
σ2

]
v2
rx + v2

ry +
2b
l
σvrxvry +

2bh
l

cϕ σϕ̇vrx + 2h cϕ ϕ̇vry + h2ϕ̇2

}
−mg

(
h cϕ−

blt cξ
l

σ sϕ

)
. (12)

The moment Ms on the rotating axis is obtained as

Ms =
lt√

1 + (lt/r)
2

(
Ffy cϕf

−Ffz sϕf

)
. (13)

The detailed calculation of (13) is given in Appendix A.
The equations of motion using the constrained Lagrangian are obtained as [35] 4

d

dt

∂Lc
∂ṙi

− ∂Lc
∂ri

+Aki
∂Lc
∂sk

= −∂L
∂ṡl

C lij ṙ
j + τ i, i, j = 1, . . . , 4, (14)

where τ i are the external forces/torques, Aki is the element of connection A(r, s) at the kth row and ith column,
and C lij denote the components of the curvature of A(r, s) as

C lij =
∂Ali
∂rj

−
∂Alj
∂ri

+Aki
∂Alj
∂sk

−Akj
∂Ali
∂sk

. (15)

From state variable σ, from (14), we obtain the steering dynamics as

d

dt

(
Js
c2
ξ

c2
ϕ σ̇

)
− mgltb cξ

l
sϕ = τs +Ms . (16)

Considering a position feedback control of the steering angle directly, we can reduce the dynamic equation (16)
by a kinematic steering system as

σ̇ = ωσ, (17)

where the input ωσ is considered as the virtual steering velocity and given by dynamic extension

ω̇σ =
c2
ξ

Js c2
ϕ

(τs +Ms) − 2 tanϕϕ̇σ̇ +
mgltb c3

ξ

lJs
sϕ .

Similarly, we obtain the roll dynamics equation

bhσ

l
cϕ v̇rx + h cϕ v̇ry + h2ϕ̈+

(
1 − hσ

l
sϕ

)
hσ cϕ
l

v2
rx − g

(
h sϕ +

ltb cξ
l

σ cϕ

)
= −bh

l
cϕ vrxωσ, (18)

longitudinal dynamics equation[(
1 − hσ

l
sϕ

)2
+
b2σ2

l2

]
v̇rx +

bσ

l
v̇ry +

bhσ

l
cϕ ϕ̈− 2

(
1 − hσ

l
sϕ

)hσ
l

cϕ ϕ̇vrx −
bhσ

l
sϕ ϕ̇2 = −

[
−2

(
1 −

hσ

l
sϕ

)h
l

sϕ vrx +
2b2σ
l2

vrx +
b

l
vry +

bh

l
cϕ ϕ̇

]
ωσ +

1
m
Frx −

1
m
√

1 + σ2
(Ffx + σFfy) −

1
m
Cdv

2
rx, (19)

3Readers can refer to [35] for the definition of the constrained Lagrangian Lc and also Chapter 5 of [35] for the Lagrange-d’Alembert
principle for nonholonomic constrained dynamical systems.

4Here the summation convention is used where, for example, if s is of dimension m, then Ak
i

∂Al
j

∂sk ≡ Σm
k=1A

k
i

∂Al
j

∂sk .
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and lateral dynamics equation

bσ

l
v̇rx+v̇ry + h cϕ ϕ̈− h sϕ ϕ̇2 = −bvrx

l
ωσ −

1
m
Fry +

1
m
√

1 + σ2
(Ffy − σFfx) . (20)

In (19), Cd is the aerodynamic drag coefficient.
Let q̇ := [ϕ̇ vrx vry]T denote the generalized velocity of the motorcycle and we rewrite the above dynamics

equations (18)-(20) in a compact matrix form as

Mq̈ = Km + Bm

⎡
⎢⎢⎢⎢⎣
ωσ
Ffx
Ffy
Frx
Fry

⎤
⎥⎥⎥⎥⎦ , (21)

where matrices

M =
[
M11 M12

M21 M22

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

h2 bhσ

l
cϕ h cϕ

bhσ

l
cϕ

(
1 − hσ

l
sϕ

)2

+
b2σ2

l2
bσ

l

h cϕ
bσ

l
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (22)

Km =

⎡
⎢⎢⎣
−

(
1 − hσ

l
sϕ

) hσ cϕ v2rx
l + g

(
h sϕ + ltb cξ σ cϕ

l

)
(
1 − hσ sϕ

l

)
2hσ cϕ ϕ̇vrx

l + bhσ sϕ ϕ̇2

l − Cdv
2
rx

m

h sϕ ϕ̇2

⎤
⎥⎥⎦ , Bm =

⎡
⎢⎣

−bh cϕ vrx

l 0 0 0 0
Bω

−1
m
√

1+σ2
−σ

m
√

1+σ2
1
m 0

−bvrx
l

−σ
m
√

1+σ2
1

m
√

1+σ2
0 −1

m

⎤
⎥⎦ .

In the above matrix Bm, Bω = 2
[(

1 − hσ
l

sϕ
)
h
l
sϕ− b2σ

l2

]
vrx− b

l vry−
bh
l

cϕ ϕ̇. It is clear that the control inputs

in (17) and (21) are the virtual steering velocity ωσ and the wheel traction/braking forces F f and F r.

3 Tire Dynamics Models

In this section, we discuss how to capture the motorcycle tire/road interaction. We particularly like to present a
friction forces modeling scheme for motorcycle dynamics (21).

3.1 Tire kinematics relationships

C

O

ψ

ϕ

vc

vcx vcy γ
x

y

z

Fx

Fy

Fz

Figure 3: Schematic of the tire
kinematics.

Fig. 3 illustrates the kinematics of the tire/road contact. Let vc = vcxi+vcyj+
vczk and vo = voxi + voyj + vozk denote the velocities of the contact point
and the wheel center in the frame B, respectively. We define the longitudinal
slip ratio λs and lateral side slip ratio λγ , respectively, as

λs :=
vcx − rωw

vcx
, λγ := tan γ = −vcy

vcx
, (23)

where ωw is the wheel angular velocity and γ is the side slip angle.
For the front wheel, the camber angle is different (8), and the velocity

relationship between C1 and the wheel center O1 in B is then

vfx = vfox + rψ̇ sϕ, vfcy = vfoy − rϕ̇f cϕ, vfz = vfoz − rϕ̇f sϕ . (24)
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Using the relationship (9) and (8), we simplify the above velocity calculation and obtain

vfx = vrx, vfy = vry − rφ̇ sξ cϕ +lψ̇. (25)

From the side slip ratio (23) of the rear wheel, we have

λrγ = tan γr = −vry
vrx

= −vfy
vfx

− rφ̇ sξ cϕ−lψ̇
vrx

= tan γ′f −
r tan ξ c2

ϕ

vrx
ωσ + σ, (26)

where γ′f := φg − γf and tan γ′f = − vfy

vfx
; see Fig. 2. We also use relationships (4) and (5) in the last step above.

Moreover, from (2) and the geometry and kinematics of the front wheel (Fig. 2), we have

σ = tanφg = tan(γ′f + γf ) ≈ tan γ′f + tan γf = λrγ +
r tan ξ c2

ϕ

vrx
ωσ − σ + λfγ .

Therefore, we obtain the relationship between the front and rear wheel side slip ratios as follows.

λfγ = 2σ −
r tan ξ c2

ϕ

vrx
ωσ − λrγ . (27)

Similarly, we can obtain the slip ratio calculation of the front wheel as follows. First, we obtain the longitudinal
velocity of the contact point C1 as

vfxw = vfx cφg +vfy sφg ≈ vrx cφg + (vry + σvrx) sφg =
1√

1 + σ2

[(
1 + σ2

)
vrx + σvry

]
.

Therefore, by the definition (23), we obtain the front wheel longitudinal slip ratio

λfs = 1 − rωf
vfxw

= 1 − r
√

1 + σ2

(1 + σ2)vrx + σvry
ωf . (28)

3.2 Modeling of frictional forces

Modeling of the frictional forces between the tire and the road surface is complex. Here we focus on modeling of
the longitudinal force Fx and lateral force Fy because of their importance in motorcycle dynamics and control.

The tire/road frictional forces depend on many factors, such as slip and slip angles, vehicle velocity, normal
load, and tire and road conditions, etc. It is widely accepted that the pseudo-static relationships, namely, the
mathematical models of the longitudinal force Fx and slip λ, and the lateral force Fy and slip angle γ, are the
most useful characteristics to capture the tire/road interaction. To capture tire/road friction characteristics, we
propose to approximate the friction forces by a piecewise linear relationship shown in Fig. 4. Let F (x) denote
the frictional force as a function of independent variable x. The piecewise linear function F (x) captures the
property of the tire/road forces: when 0 ≤ x ≤ xm, F (x) = kx, where k is the stiffness coefficient, and when
xm < x ≤ xmax, F = (1−αx)Fm

xm−xmax
(x− xm) +Fm, where 0 ≤ αx ≤ 1 is a constant that denotes the fraction of the

force at xmax of the maximum force Fm. We can write the force F (x) as follows.

F (x) = k(a1 + a2x), (29)

where

a1 =
{ 0 0 ≤ x ≤ xm

(xmax−xm)xm

xmax−xm
xm < x ≤ xmax,

a2 =
{ 1 0 ≤ x ≤ xm

−(1−αx)xm

xmax−xm
xm < x ≤ xmax.

With the force model (29), we can write the longitudinal force as

Fx(λs) = kλ [a1λ + a2λ sign(λs)λs] , (30)
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where the function sign(x) = 1 for x ≥ 0 and −1 otherwise is used to capture both positive (braking) and
negative (traction) forces for Fx(λs). For the lateral force, due to the large camber angle of the motorcycle tires,
we have

Fy(λeq) = kγ [a1γ + a2γ sign(λeq)λeq] , (31)

where we define the equivalent side slip ratio

λeq = tan γeq = tan
(
γ +

kϕ
kγ
ϕ

)
≈ λγ +

kϕ
kγ

tanϕ.

UnstableStable

O

k

F (x)

Fmax

Fs = αxFmax

x

xm xmax

Figure 4: Linear approximation of the tire/road
frictional force F (x).

The values of the longitudinal, corning, and cambering co-
efficients, kλ, kγ , kϕ, depend on the normal load Fz . Due to the
acceleration and deceleration, the normal load Fz is changing
during motion. For the front and rear wheels, the normal loads
Ffz and Frz are obtained respectively as

Ffz =
b

l
mg − h

l
mv̇Gx, Frz =

l − b

l
mg +

h

l
mv̇Gx, (32)

where v̇Gx is the longitudinal acceleration of the motorcycle
at the mass center G. The relationship between v̇Gx and the
acceleration of point C2 is obtained as

v̇Gx = v̇rx − vryψ̇ − hψ̈ sϕ−bψ̇2 − 2hψ̇ϕ̇ cϕ .

The calculation of the above relationship is given in Ap-
pendix B. In this work, we use the tire models in [37] to calculate the dependence of the stiffness coefficients
with the normal load.

3.3 Combined tire and motorcycle dynamics models

We combine the motorcycle dynamics (17) and (21) with the tire dynamics. The controlled input variables are
the front and rear wheel angular velocities, that is, ωf and ωr, respectively, and the steering angle φ. Note that
the driving wheel is the rear wheel and we can only apply braking for the front wheel, namely, Ffx ≥ 0. For the
control system design, we consider the pseudo-static friction models (30) and (31), and therefore we write the
longitudinal at the front and rear wheels as

Ffx = F1f + F2fλfs, Frx = F1r + F2rλrs (33)

and lateral forces

Ffy = F3f + F4f

(
λfγ +

kfϕ
kfγ

tanϕf

)
, Fry = F3r + F4r

(
λrγ +

krϕ
krγ

tanϕ
)
, (34)

where F1i = kiλa1iλ, F2i = kiλa2iλ sign(λis), F1i = kiλa1iλ, F2i = kiλa2iλ sign(λis), i = f, r, and ajiλ, ajiγ ,
j = 1, 2, are the longitudinal and lateral force model parameters defined in (29), respectively.

Plugging (33) and (34) into (21) and using the relationship (27), we obtain

M(q, σ)q̈ = K(q̇, q, σ) + Bu, (35)

where input u :=
[
ωσ uTλ

]T
, uλ =

[
λfs λrs

]T
, matrix

K =
[
K1

K2

]
=

⎡
⎢⎢⎢⎢⎢⎣

(Km)1

(Km)2 −
F1f

m
√

1 + σ2
− σ

m
√

1 + σ2
F34 +

F1r

m

(Km)3 −
σF1f

m
√

1 + σ2
+

1
m
√

1 + σ2
F34 −

Fry
m

⎤
⎥⎥⎥⎥⎥⎦ , (36)
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(Km)i is the ith row of matrix K, F34 = F3f + F4f

(
λfγ + kfϕ

kfγ
(2σ − λrγ)

)
, and

B =
[
B11 B12

B21 B22

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−bh
l

cϕ vrx 0 0

Bω +
rσF4f tan ξ c2

ϕ kfϕ

mvrxkfγ
√

1 + σ2
− F2f

m
√

1 + σ2

F2r

m

−bvrx
l

−
rF4f tan ξ c2

ϕ kfϕ

mvrxkfγ
√

1 + σ2
− σF2f

m
√

1 + σ2
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (37)

In the next section, we will develop a trajectory tracking and balancing control for dynamics (35).

4 Trajectory Tracking Control Systems Design

4.1 External/Internal convertible dynamical systems

We now consider to put the system into the form of an external/Internal convertible (EIC) dynamical systems.
The EIC form of a nonlinear dynamical system can be viewed as a special case of the normal form.

Definition 1 ([9]) A single-input, single-output, n(= m + p)-dimensional time-invariant nonlinear control sys-
tem is called in an external/internal convertible form if the system is of the form

Σ(u)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋi = xi+1, i = 1, · · · ,m− 1,

ẋm = u,

α̇i = αi+1, i = 1, · · · , p− 1,

α̇p = f(x, α) + g(x, α)u,
y = x1,

(38)

with input u ∈ R, output y ∈ R, state variables (x, α), with x := (x1, · · · , xm) ∈ R
m and α := (α1, · · ·αp) ∈

R
p. The coordinates (x, α) are assumed to be defined on the open ball Br ⊂ R

n about the origin. The origin is
assumed to be an equilibrium of the system, namely, f(0, 0) = 0. The functions f(x, α) and g(x, α) are Cn in
their arguments, and g(x, α) 	= 0 for all (x, α) ∈ Br. Moreover, we refer to the external subsystem of Σ(u) as

Σext(u)
{
ẋi = xi+1, i = 1, · · · ,m− 1,

ẋm = u,
(39)

and the internal subsystem of Σ(u) as

Σint(u)
{
α̇i = αi+1, i = 1, · · · , p− 1,

α̇p = f(x, α) + g(x, α)u.
(40)

Fig. 5 shows the structure of an EIC system. An EIC system is convertible because under a simple state-
dependent input and an output transformation, the internal system is converted to an external system, and the
external system is converted to an internal system (dual structure). To see such a property, let

u = g(x, α)−1 [v − f(x, α)] (41)

define a state-dependent input transformation, u 
→ v. Define ξ = α1 as the dual output. Apply transforma-
tion (41) to the EIC system (38) and the resulting system is referred to the dual of Σ(u).

Σd(v)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋi = xi+1, i = 1, · · · ,m− 1,

ẋm = −g(x, α)−1f(x, α) + g(x, α)−1v,

α̇i = αi+1, i = 1, · · · , p− 1,

α̇p = v,

ξ = α1.

(42)
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Thus the use of input transformation (41) and the output assignment ξ = α1 converts the internal dynamics of
Σ(u) to the external dynamics of Σd(v), and the external dynamics of Σ(u) to the internal dynamics of Σd(v).

x1x2xm

α1α2αp

u ∫

∫∫

∫

∫

∫ y

f(x, α)+
g(x, α)u

Int. subsystem
Ext. subsystem

Figure 5: An external/internal convertible system.

Since the EIC form is a special normal form of nonlinear dynamical systems, we can apply the input-output
linearization method [25, 38] to convert (35) into an EIC form. Let B22 ∈ R

2×2, B22 ∈ R
2×2, and K2 ∈ R

2

denote the block elements of matrices M, B, and K, given by (22), (37), and (36), respectively. Using the input
transformation

uλ = B−1
22 M22

[
M−1

22 (M21ϕ̈−K2 −B21ωσ) + ua
]
, (43)

Eq. (35) becomes ⎧⎨
⎩
M11ϕ̈ = K1 −M12ua +B11ωσ ,[
v̇rx
v̇ry

]
=

[
arx
ary

]
=: ua,

(44)

where ua is the controlled acceleration of point C2 in the xyz coordinate system. We also define the controlled
jerk of point C2 and yaw acceleration as

uj :=

⎡
⎣urxury
uψ

⎤
⎦ =

⎡
⎣ȧrxȧry
ψ̈

⎤
⎦ =

[
u̇a

vrxωσ+σarx
l

]
, (45)

where we use kinematics lψ̇ = σvrx in the calculation. Let (X,Y ) denote the coordinates of the contact point
C2 and then we have [

vX
vY

]
=

[
Ẋ

Ẏ

]
=

[
cψ − sψ
sψ cψ

] [
vrx
vry

]
.

Differentiating the above equation twice (dynamic extension), we obtain[
v̈X
v̈Y

]
= U + uJ , (46)

where

U =
[
−2v̇rx sψ −2v̇ry cψ −vrxψ̇ cψ +vryψ̇ sψ
2v̇rx cψ −2v̇ry sψ −vrxψ̇ sψ −vryψ̇ cψ

]
ψ̇, uJ :=

[
cψ − sψ
sψ cψ

] [
urx
ury

]
+

[
−vrx sψ −vry cψ
vrx cψ −vry sψ

]
uψ. (47)

We define the new inputs uX and uY such that

uJ = −U +
[
uX
uY

]
(48)
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and then the motorcycle dynamics (44) are in the EIC form as

Σext :
{[

v̈X
v̈Y

]
=

[
uX
uY

]
, (49a)

Σint : ϕ̈ =
g

h

(
sϕ +

blt cξ ψ̇
hvrx

cϕ

)
− 1
h

(
1 − hψ̇

vrx
sϕ

)
ψ̇vrx cϕ−

1
h

cϕ uψy, (49b)

where
uψy := buψ + ary. (50)

Remark 3 When the motorcycle runs along a straight-line, σ = 0 and matrix B22 becomes singular and we
cannot use input transformation (43). In this case, we calculate the total braking force from the second equation
of the motions and split two the front and rear wheels in a way not producing any net moments around mass
centerG. A similar approach is discussed in [39]. If the resultant total force is traction, then it must be produced
by the rear wheel.

4.2 Trajectory tracking control

4.2.1 Control system overview

EIC System
Controller

External
Subsystem

Internal
Subsystem

Next

⎡
⎣uext

rx

uext
ry

uint
ψ

⎤
⎦

(X,Y )

(E(t),Next, (X,Y, ϕ))

Motorcycle dynamics Σ

T
Σext : (X,Y, u)

Σint : (ϕ,X, Y, u)

Figure 6: EIC-based approximate output tracking
control of the autonomous motorcycle dynamics.

The trajectory control system then guides the motorcycle to
follow the desired trajectory T : (Xd(t), Yd(t)) while keep-
ing the platform balanced and stable. We here employ and
extend the control design approach in [9]. Fig. 6 illustrates
such a control scheme. The trajectory control design con-
sists of two steps. The first step to design a tracking control
uext of the external subsystem Σext for the desired trajectory
T . The second step is to design a balancing controller for
the internal subsystem Σint around the internal equilibrium
manifold, denoted as E(t). The internal equilibrium mani-
fold E(t) is an embedded sub-manifold in the state space and
dependent on the external control uext and the external sub-
system. Estimations of internal equilibrium and its deriva-
tives are obtained by a dynamic inversion technique [9]. The final control system is a combination of external
and internal design and is casual.

4.2.2 Approximate tracking control

We assume that the desired trajectory T : (Xd(t), Yd(t)) is at least C4, namely, differentiable at least to fourth
order 5. This is feasible since the motion planning algorithm can usually generate a set of piecewise circular
curves (C∞) for T [40].

We design a controller uext to track the desired trajectory (Xd(t), Yd(t)) for the external subsystem Σext (49a)
disregarding, for the moment, the evolution of the internal subsystem Σint (49b).

uext :=
[
uext
X

uext
Y

]
=

[
X

(3)
d

Y
(3)
d

]
−

3∑
i=1

bi

[
X(i−1) −X

(i−1)
d

Y (i−1) − Y
(i−1)
d

]
, (51)

5For the external subsystem control, we only need T to be C3. The requirement for C4 is due to the estimation of the internal (roll
angle) equilibrium and its derivatives by a dynamic inversion technique.
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where the constants bi, i = 1, 2, 3, are chosen such that the polynomial equation s3 + b3s
2 + b2s + b1 = 0 is

Hurwitz. Under such a control, we define a nominal external vector field Next as

Next :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ẋ(t)
Ẍ(t)

X
(3)
d −

∑3
i=1 bi

(
X(i−1) −X

(i−1)
d

)
Ẏ (t)
Ÿ (t)

Y
(3)
d −

∑3
i=1 bi

(
Y (i−1) − Y

(i−1)
d

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (52)

By external control (51) and the input transformation (48), we find the input uext
J = −U + uext. From (47),

we obtain uext
j as [

urx
ury

]
+

[
−vry
vrx

]
uψ =

[
cψ sψ
− sψ cψ

]
uJ . (53)

Note that uJ ∈ R
2 and uj ∈ R

3 and the above equation is underdetermined. There are many options to determine
uj from (53). Here we propose to choose uψ = ψ̈ = 0 because such a choice significantly reduces the complexity
of the control design as shown in the following.

uext
j =

⎡
⎣uext

rx

uext
ry

uext
ψ

⎤
⎦ =

[
R(ψ)uext

J

0

]
=

[
R(ψ)

(
−U + uext

)
0

]
. (54)

Next, we consider the internal (roll angle) equilibrium, denoted as ϕe, by substituting uext
ψ and uext

ry above
into the internal subsystem dynamics (49b). We define the implicit function Fϕ of ϕ as

Fϕ :=g

(
tanϕ+

bltψ̇ cξ
hvrx

)
−

(
1 − hψ̇ sϕ

vrx

)
ψ̇vrx − uext

ψy , (55)

uext
ψy = buext

ψ +ary = ary, and thus the roll angle equilibrium ϕe := ϕe(ψ̇, vrx,uext
j ) is a solution of the algebraic

equation Fϕe = 0. We define an internal (roll angle) equilibrium manifold E(t) as

E(t) =
{(
X(0,2), Y (0,2), ϕ(0,1)

) ∣∣ ϕ = ϕe, ϕ̇ = 0
}
. (56)

The internal equilibrium manifold E(t) can be viewed as a time-dependent graph over the 6-dimensional (X,Y )-
subspace in R

6 of the external subsystem (49a) that is evolved with the external nominal vector field Next (52)
under the external subsystem control uext.

For the motorcycle balance systems, we like to control the roll angle ϕ around E(t) while the external sub-
system is tracking T under the control of uext. Note that ϕ̇e 	= 0 and ϕ̈e 	= 0 in general and here we ap-
proximate the derivatives ϕ̇e and ϕ̈e by using directional derivatives [25, 38] along the vector field Next due to
their dependence on the external subsystems and uext. We define the directional derivative (or Lie derivative)
as L̄Nextϕe := LNextϕe + ∂ϕe

∂t and L̄2
Next

ϕe := L̄NextL̄Nextϕe. With the above approximations for ϕ̇e and ϕ̈e,
the stabilizing control of the internal subsystem Σint (49b) around E(t) is then given by the following feedback
linearization

uint
ψy =

(cϕ
h

)−1
[
g

h

(
sϕ +

blt cξ ψ̇
hvrx

cϕ

)
− 1
h

(
1 − hψ̇

vrx
sϕ

)
ψ̇vrx cϕ−vψy

]
, (57a)

vψy = L̄2
Next

ϕe −
2∑
i=1

ai(ϕ(i−1) − L̄i−1
Next

ϕe). (57b)
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where constants a1 and a2 are chosen such that the polynomial equation s2+a2s+a1 = 0 is Hurwitz. Therefore,
the internal control is obtained from (50) as

uint
ψ =

1
b

(
uint
ψy − ary

)
(58)

The final control system design of the motorcycle balance system (46) combines the above development
in (58) and (54) as

uj =

⎡
⎣uext

rx

uext
ry

uint
ψ

⎤
⎦ (59)

It is noted that the coupling between the external- and internal-subsystem control designs is through the intro-
duction of the internal equilibrium manifold E(t). By defining E(t), we approximately decouple the external and
internal subsystems due to the EIC dual structural properties of the motorcycle system.

We define ϑ(t) = [X(t) vX(t) v̇X(t) Y (t) vY (t) v̇Y (t)]T as the state variables of the external subsystem
and �(t) = [ϕ(t) ϕ̇(t)]T as the state variables of the internal subsystem. We also define the output ζ(t) =
[X(t) Y (t)]T and desired output ζd(t) = [Xd(t) Yd(t)]T . We assume that the desired trajectory ζd(t) and

its derivatives (up to the fourth order) are bounded by a positive number ε > 0, namely, ζd(t) ∈ B(4)
ε :=

{x(t) | ‖x(0,4)(t)‖∞ < ε}, where ‖x(0,n)(t)‖∞ := supt≥0 ‖x(0,n)(t)‖∞. We also define the tracking errors eϑi =

ϑi−X(i−1)
d , eϑi+3 = ϑi+3−Y (i−1)

d , i = 1, 2, 3, eϕj = ϕ(j)−ϕ(j)
e , j = 0, 1, and e := [eϑ1 , · · · , eϑ6 , e

ϕ
1 , e

ϕ
2 ]T . We

also define the perturbation error pϕ (= O(‖ζ(0,4)
d (t)‖,‖e‖) as the approximation errors by using the directional

derivatives for ϕ̇e and ϕ̈e in the internal subsystem control design (57b), namely,

pϕ = L̄2
Next

ϕe − ϕ̈e +
2∑
i=1

ai(ϕ(i−1)
e − L̄i−1

Next
ϕe).

We similarly define another two perturbation errors pX (= O(‖ζ(0,4)
d (t)‖,‖e‖) and pY (= O(‖ζ(0,4)

d (t)‖,‖e‖)
due to the resulting errors in the external subsystem state ϑ(t) using the internal subsystem control uint

ψy in the
external subsystem (59). An explicit formulation for pX and pY can be similarly found by the dual structure of
EIC system [9]. We consider the perturbation vector for the error dynamics of Σ(u) (48) under control (59) as

p(ζ(0,4)
d (t),e) = [0, 0, pX , 0, 0, pY , 0, pϕ]T .

We assume an affine perturbation for p(y(0,4)
d (t), e), namely, there exist constants k1 > 0 and k2 > 0 such that

‖p(ζ(0,5)
d (t),e)‖∞ ≤ k1ε+ k2‖e‖∞.

We only state the convergence properties of the approximate tracking control design in this section. The
proof of these properties follows directly from Proposition 6.7.4 and Theorem 6.7.6 in [9] and we omit here.

Theorem 1 For the balance system (48), assuming that the desired trajectory ζd(t) ∈ B(4)
ε for some ε > 0 and

if the affine perturbation constant k2 > 0 is a sufficiently small real number, then there exists a t1 > 0, and a
class-K function r(ε) such that for all (eϑ(0), eϕ(0)) ∈ Br(ε), (eϑ(t),eϕ(t)) converges to zero exponentially
until (eϑ(t),eϕ(t)) enters Br(ε). Once (eϑ(t),eϕ(t)) enters Br(ε), it will stay in Br(ε) thereafter.

4.2.3 Estimation of the internal equilibrium

A dynamic inversion technique approach in [9] is used to estimate the internal equilibrium state ϕe in (57b). To
illustrate the dynamic inversion technique, we differentiate Fϕ = 0 with time, and using the fact that uext

ψ = ψ̈ =
0 we obtain

ϕ̇e =
1

g sec2 ϕe + hψ̇ cϕe

(
gblt cξ ψ̇v̇rx

hv2
rx

+ ψ̇v̇rx + uext
ry

)
=: E(ϕe, ψ̇, vrx, v̇rx, uext

ry ). (60)
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A dynamic inverter for an estimate ϕ̂e of the internal equilibrium ϕe is designed as

˙̂ϕe = −βFϕ̂ + E(ϕ̂e, ψ̇, vrx, v̇rx, uext
ry ), (61)

where Fϕ̂e is given by (55) and β > 0 is the inverter gain. The proof of the exponential convergence of the
estimation (61) follows directly from the development of the dynamic inversion technique in [9].

The estimate of the directional derivative L̄Nextϕe in (57b) is obtained by (61), namely, L̄Nextϕe = E(ϕe, ψ̇, vrx, v̇rx, uext
ry ).

The estimate of L̄2
Next

ϕe is obtained by directly taking one more directional derivative of L̄Nextϕe along Next.
For brevity, we give the derivation in Appendix C. We also list the calculation of L̄Nextu

ext
rx and L̄Nextu

ext
ry in

Appendix C. Such calculations are needed for computing L̄2
Next

ϕe. The approximation errors in estimating ϕe
(by ϕ̂e) and its directional derivatives L̄Nextϕe and L̄2

Next
ϕe (by L̄Nextϕ̂e and L̄2

Next
ϕ̂e, respectively) can be con-

sidered as additional terms in the perturbation p(ζ(0,4)
d (t),e). Therefore, the stability results of the approximate

control design in the previous section are still held.
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Figure 7: A general trajectory tracking. (a) Trajectory positions. (b) Tracking position error. (c) Rear wheel contact point
velocity magnitude.
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Figure 8: Roll angle and steering angle of the general trajectory tracking. (a) Rear wheel contact point body-frame velocities
vrx and vry. (b) Roll angle ϕ. (b) Steering angle φ.

Remark 4 Although the above control system design is similar to those in [9], the final form is much simpler
because we have chosen uext

ψ = 0 in (54). We have such a flexibility by (53) to determine uj because we
have three control input variables now while in [9] only the rear wheel driving torque and the steering angle
are controlled. Because of this difference, we only require the trajectory T is at least C4 rather than C5 as
the requirement of the controller in [9]. Using optimization techniques by considering the input constraints for
determining uj by (53) is an extension of the control design and currently ongoing research.
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Figure 9: Longitudinal slips and slip angles at the front and rear wheels. (a) Slip ratio λfs and λrs. (b) Slip angles γf and
γr.

Table 1: Motorcycle parameters

m (kg) b (m) l (m) lt (m) h (m) ξ (deg) r (m) λsm λγm (deg) μm kλ (N) kϕ (N/rad) kγ (N)

274.2 0.81 1.37 0.15 0.62 26.1 0.3 0.1 6 3 41504 23968 1227

4.3 Simulation Results

In this section, we demonstrate the control systems design through two numerical examples. The first example is
taken from [16] for showing a general motorcycle trajectory and the second example to illustrate an aggressive
maneuvers with a large side slip angles.

We use a racing motorcycle prototype in [37, 41] as the controlled motorcycle in our simulation. The mo-
torcycle parameters are listed in Table 1. We use the tire 160/70 in [37] for the racing motorcycle since the
testing data are available. The tire stiffness coefficients listed in Table 1 are calculated under the nominal load
Fz = 1600 N.

Fig. 7 shows the trajectory tracking performance of a general trajectory. The position errors under the control
system in Fig. 7(b) are within 1 meter with the center line of the track throughout the entire course. The desired
velocity in Fig. 7(c) is determined by the curvature of the trajectory. In Fig. 8, we have shown the roll angle ϕ, the
body-frame velocities vrx and vry of rear wheel contact point C2, and steering angle φ. From Fig. 8(a) we clearly
see that the lateral velocity vry is quite small most time because the motorcycle is running along a straight-line in
most time. At turning locations, the longitudinal velocity is reduced and the lateral velocity increases. The roll
angle and steering angle are small for such a small-curvature trajectory.

Fig. 9 shows the longitudinal slips and side slip angles of the front and rear wheels. Again, it is clear that the
slip values at both wheels are small. The front wheel only brakes and the rear wheel generates traction or braking
forces. For example, when the motorcycle accelerates around 120 s, the rear wheel slip has a large negative spike
to produce the traction force. When the vehicle needs to reduce velocity, both wheels brake with a set of large
positive slip spikes shown in Fig. 9(a). The side slip angles shown in Fig. 9(b) clearly illustrate that at large-
curvature locations, the side slip angles are large to produce the lateral forces to turn the motorcycle. Typically,
the rear side slip angles are small and close to zero.

The second example shows that the motorcycle runs under a more aggressive maneuver. The desired trajec-
tory is “8”-shape with circular radius of 25 meters; see Fig. 10(a). In Fig. 10(a), the motorcycle starts from the
origin and moves along the direction indicated by the arrows in the figure. The desired velocity of the motorcycle
moving along the “8”-shape trajectory is designed to be varying significantly as shown in Fig. 10(c). Comparing
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with the previous example, the tracking errors of the “8”-shape trajectory are much larger; see Fig. 10(b). This is
mainly due to the quick change of the desired velocity profile.
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Figure 10: An “8”-shape trajectory tracking. (a) Trajectory positions. (b) Tracking position error. (c) Rear wheel contact
point velocity magnitude.

Fig. 11 shows the body-frame velocity, roll angle, and steering angle for the “8”-shape trajectory. We clearly
see the change of the lateral velocity during each circle of the “8”-shape trajectory. The lateral velocity magnitude
is large due to the smaller turning radius. The maximum roll angle is around 15 deg and that is much larger than
that of the previous example. The steering angle is large as well to make the motorcycle turn in a tighter and
small circle. The oscillations in both roll angle (Fig. 11(b)) and steering angle (Fig. 11(c)) are probably due to
the variations in the desired velocity.
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Figure 11: Roll angle and steering angle of the “8”-shape trajectory tracking. (a) Rear wheel contact point body-frame
velocities vrx and vry. (b) Roll angle ϕ. (b) Steering angle φ.

5 Path-Following Control System Design

In this section, we extend the previous modeling and control design for path-following. We extend the modeling
approach in the previous section by using a coupled longitudinal and lateral friction forces in tire/road interaction
modeling. We also introduce a velocity-field maneuver regulation control in which the goal of the control system
design is to follow the trajectory path, while the desired vehicle velocity is self-tuned online.

5.1 Modeling of tire/road friction forces

In Section 3, we presented a piecewise linear approximate of the motorcycle tire/road friction forces. However,
the dependency and coupling effects between the longitudinal and lateral forces are not considered. We extend
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the previous results and present a coupled friction force model here.
We consider the pseudo-static friction model of the longitudinal force Fx and longitudinal slip ratio λs, and

the lateral force Fy and side slip ratio λγ (λγ = tan γ , γ is slip angle). We propose to approximate the friction
forces by a piecewise linear relationship given by (29). To capture the coupling effects between Fx and Fy, we
consider the model parameters k and xm along the x and y directions are dependent on each other. For example,
the values of the longitudinal stiffness kx (i.e., k value in (29) for Fx) and the maximum slip ratio λsm (i.e., xm
value in (29) for Fx) are functions of tire slip angle ratio λγ . Similarly, tire corning stiffness ky (i.e., k value
in (29) for Fy) and the maximum side slip ratio λγm (i.e., xm value in (29) for Fy) also depend on the longitudinal
slip ratio λs. Denoting k0x and λsm0 (k0y and λγm0) as the parameter values of longitudinal (lateral) force Fx
(Fy) when coupling effects with Fy (Fx) are not considered, we use the following equations to update parameters
kx and λsm (parameters ky and λγm.). For longitudinal direction, we have

kx = k0x(a1λγ + 1), λsm = λsm0 (62)

and for lateral direction force,

ky = k0y
a2λs + 1
a3λs + 1

, λγm = (a3λs + 1)λγm0, (63)

where a1, a2, and a3 are three parameters in the coupled tire model. We use (62) and (63) to capture the coupling
friction force effects because such relationships have been observed in experiments.

Figure 12 shows the property of the coupled tire mode when kx0 = 30000 N and ky0 = 24000 N. In this
example, we use a1 = −5

3 , a2 = −2, and a3 = 10 for the motorcycle tires. For slip ratio λs, we set λsm0 = 0.15,
λmax = 0.5, αx = 0.8; and for side slip ratio λγ , we set λγm0 = 0.11, xmax = 1,αx = 0.9.
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Figure 12: Approximate piecewise linear tire forces characteristics. (a) Longitudinal force with various tire slip angle ratios
λγ . (b) Lateral force with various tire slip ratios λs. The tire stiffness parameters are from [37].

5.2 Combined motorcycle and tire dynamics model

We combine the above motorcycle dynamics with the tire friction force models. The controlled input variables are
considered to be the front and rear wheel angular velocities ωf and ωr and the steering angle φ. We re-write the
longitudinal forces at the front and rear wheels similar to (33) and (34), respectively. However, the corresponding
forces in (33) and (34) are F1i = kiλa1iλ, F2i = kiλa2iλ, F1i = kiλa1iλ, F2i = kiλa2iλ, i = f, r, where ajiλ,
ajiγ , j = 1, 2, are the longitudinal and lateral force model parameters defined in (29), respectively. λγeq is the
equivalent side slip ratio developed in Section 3.

Plugging (33) and (34) into (21) and using the relationship (29), we obtain

M(q, σ)q̈ = K(q̇, q, σ) + Bu, (64)
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where input u :=
[
ωσ uTλ

]T
, uλ =

[
λfs λrs

]T
, which depends on wheel velocities. Matrix

K =

⎡
⎢⎢⎢⎢⎢⎣

(Km)1

(Km)2 −
F1f

m
√

1 + σ2
− σ

m
√

1 + σ2
F34 +

F1r

m

(Km)3 −
σF1f

m
√

1 + σ2
+

1
m
√

1 + σ2
F34 −

Fry
m

⎤
⎥⎥⎥⎥⎥⎦ ,

(Km)i is the ith row of matrix Km, F34 = F3f + F4f

[
λfγ + kfϕ

kfγ
(2σ − λrγ)

]
, and

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−bh
l
cϕvrx 0 0

Bω +
rσF4f tan ξc2ϕkfϕ
mvrxkfγ

√
1 + σ2

− F2f

m
√

1 + σ2

F2r

m

−bvrx
l

−
rF4f tan ξc2ϕkfϕ
mvrxkfγ

√
1 + σ2

− σF2f

m
√

1 + σ2
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

5.3 Path-Following Maneuvering Design

We propose to use velocity field-based approach to design the path-following control of the motorcycle system.
We assume that the motorcycle motion planning modules such as the one in [40] generate the desired trajectory
T : (Xd(τ), Yd(τ)). Note that the trajectory T is parameterized by τ , which is not necessarily the same as the
time variable t. Therefore, the desired outcome of the control design design is to follow the trajectory path
without specifying the velocity trajectory associated with the path. Instead, the desired velocity profile is a part
of the control design process using a time-suspension technique.

5.3.1 Time suspension and velocity field design

We use a time suspension technique to design the desired velocity profile. The basic idea of time suspension
is to use self-placing technique to adjust the desired rate of the progression of the parameter τ related to the
desired trajectory T . In other word, we do not need to assign any desired velocity profile in advance and the
motorcycle can instantaneously adjust its velocity according to the changes of the path-following errors. One
obvious advantage of using the time suspension technique in our design is to reduce tracking error and thus
improve tracking performance.

We also use a velocity field design concept. The adopted velocity field approach is to define a reference input
as a vector of velocities in the moving plane, rather than directly in terms of a reference-parameterized path. The
main benefit of using a velocity field design is to eliminate the radial reduction phenomenon where the radius
of the actual contour is smaller than the desired one [32]. To analytically construct the velocity field, we use a
potential function-based approach that is similar to those in [32]. We define the following potential function to
capture the position errors along the path.

U(X,Y ) =
1
2
β1 [(1 − cos(X −Xd)) + (1 − cos(Y − Yd))] , (65)

where β1 > 0 is a constant gain. At any position, we design the velocity vector by⎡
⎣Vx(τ)
Vy(τ)

⎤
⎦ = λ1(X,Y )

⎡
⎣dXd

dτ

dYd
dτ

⎤
⎦− λ2(X,Y )

⎡
⎣h sin(X −Xd)

h sin(Y − Yd)

⎤
⎦ , (66)
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where λ1(X,Y ) = e−β2U(X,Y ), λ2(X,Y ) = 2 − e−β2U(X,Y ), and β2 > 0 is a self-pacing parameter. The time
suspension level is defined by the following dynamics of τ

τ̇ =
dτ

dt
= λ1(X,Y ). (67)

Remark 5 We consider the time suspension parameter dynamics (67) as a part of augmented motorcycle dynam-
ics (64). Note that the τ dynamics is related to the potential function U(X,Y ) and therefore the path following
errors. When the motorcycle follows the desired trajectory, U(X,Y ) = 0 and τ̇ = 1. In this case, τ can be
considered as the time variable t. When the path-following errors are large, the progression of desired trajectory
(i.e., τ̇ ) is reduced and the controlled trajectory converges to desired path soon with increased λ2(X,Y ). It is
noted that 0 < λ1(X,Y ) ≤ 1 and 1 ≤ λ2(X,Y ) < 2.

−40 −20 0 20 40

−40

−30

−20

−10

0

10

20

30

40
 

 

Real

Desired

X (m)

Y
(m

)

(a)

0 20 40 60 80 100
−15

−10

−5

0

5

10

15

 

 

Real

Estimated

Time (s)

ϕ
(d

eg
)

(b)

0 20 40 60 80 100
−25

−20

−15

−10

−5

0

5

10

15

20

25

Time (s)

φ
(d

eg
)

(c)

Figure 13: (a) Trajectory tracking. (b) Roll angle ϕ. (c) Steering angle φ.

5.3.2 Controller Design

For motorcycle control systems design, we combine the external/internal convertible (EIC) control approach
discussed in the previous section with the above discussed velocity field approach.

The EIC-based trajectory control design consists of two steps; see Fig. 6. We assume that in EIC design the
desired trajectory T : (Xd(t), Yd(t)) is at least C4, namely, differentiable at least to fourth order. The velocity
vector parameterized by τ , rather than desired trajectory path specified in time t, is used as the reference input to
the EIC control. We combine the EIC control and the velocity field design as follows. At any position and on any
particular τ , we use (65) and (66) to calculate the current velocity vector. Then we construct a special trajectory
for the EIC controller as ⎡

⎢⎢⎣
Xd(τ)

X1
d(τ)

X
(2,4)
d (τ)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
X(τ)

Vx(τ)

0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

Yd(τ)

Y 1
d (τ)

Y
(2,4)
d (τ)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
Y (τ)

Vy(τ)

0

⎤
⎥⎥⎦ ,

where τ is updating by (66). The basic design idea is to let velocity vector be the only desired components in
desired trajectory space. With this treatment, we can fully inherit the EIC controller design and its properties that
are stated in [33].

5.4 Simulation Results

In this section, we demonstrate the control systems design through two examples: one is for a typical “8”-shape
trajectory following maneuver and the other for a more agile maneuver. We use the same racing motorcycle and
tire profiles in the simulation as these in the previous section.
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The first example shows that the motorcycle runs under a regular “8”-shape path following maneuver in
which the motorcycle turns along trajectory with relative large curvatures. The desired parameterized trajectory
(see Fig. 13(a)) is given by the following equation parameterized by τ⎡

⎣Xd(τ)

Yd(τ)

⎤
⎦ =

⎡
⎣ 25 sin(0.1πτ)

40 cos(0.05πτ)

⎤
⎦ (68)

Figure 13 shows the simulation results. As shown in Fig. 13(a), the starting point of motorcycle is (0, 40).
We use the self-pacing parameter β2 = 100 in (66), the parameter β1 = 0.0025 in (65), and the initial velocity
is 0.1 m/s. In the simulation, we add white noise with standard variations 0.02 m/s, 0.005 m/s2, 0.3 deg., and
0.6 deg to velocity, acceleration, roll angle, and yaw angle measurements, respectively. By comparing with the
desired trajectory, the simulation results show that the motorcycle can successfully track the desired trajectory
under the velocity field control. Figure 13(b) and 13(c) clearly shows the desired and actual motorcycle roll angle
ϕ and steering angle φ, respectively. The roll angle and steering angle are relatively large when turning around a
small radius curvature and small in straight line.
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Figure 14: A typical motorcycle path-following maneuver. (a) Motorcycle position and velocity (b) Longitudinal velocity
vrx and lateral velocity vry

Figure 14 shows the X- or Y -axis positions, longitudinal velocity and lateral velocity of rear wheel contact
point C2. From Fig. 14(a), the motorcycle spends about 65 s to go through one entire circle. It is quite clear
that the motorcycle tunes its own velocity automatically using the self-placing technique. When tuning at a small
radius, the tracking errors become large. The motorcycle control system then reduces the rate of the progression
in time, namely, its longitudinal velocity, to reduce the errors. Meanwhile, due to the sharply direction change,
the lateral velocity is relatively large; see Fig. 14(b).

The tire slip ratios and angles during the maneuver are shown in Fig. 15. For the front wheel, we see a
maximum 15-degree side slip angle. For the rear wheel, the slip angle reaches almost 6 degrees, which is around
the saturation point of the tire characteristics (Table 1). The longitudinal slip ratios are relatively small since the
longitudinal accelerations of the motorcycle are not large and the racing motorcycle tire is stiff. At the starting
point, due to the large gap between desired velocity vector and initial velocity and the large acceleration, the
longitudinal slip is obvious larger than that under normal running conditions.

Figure 16(a) shows the tracking error performances of the motorcycle under different values of self-pacing
parameter β2. From this figure, we can see that when self-pacing is increased (i.e., increasing β2), the tracking
errors become smaller, namely, the better path-following performance. When β2 = 0, the maximal error is
always smaller than 0.3 m. Of course, the better performance is trade-off by the lower motorcycle velocity. This
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Figure 15: Slip ratios and angles at the front and rear wheels during the “8”-shape trajectory tracking. (a) Slip ratio λs. (b)
Slip angles γγ .

can be observed by the progression factor τ̇ as shown in Fig. 16(b). From Fig. 16(b), we see that increasing β2

will reduce the value of τ̇ in general, which implies that the time has been expanded more since τ̇ is smaller.
We can clearly see when β2 = 0, τ̇ = 1 and then the progression always remains at one, which implies no time
suspension exists. In this case, the path-following system is the same as time-based trajectory tracking as shown
in the previous section. Note that the oscillation of both path-following errors and progression τ̇ are due to the
repeated motion trajectory.
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Figure 16: (a) Path-following errors under various values of self-pacing parameter β2. (b) Progression (i.e., τ̇ ) under
various values of self-pacing parameter β2.

In the second example, we show that the motorcycle runs with a more agile “8”-shape path-following ma-
neuver. In this maneuver, the motorcycle will turn sharply at much smaller radii. The desired parameterized
trajectory as shown in Fig. 17(a) is defined as⎡

⎣Xd(τ)

Yd(τ)

⎤
⎦ =

⎡
⎣ 7.5 sin(0.5πτ)

15 cos(0.25πτ)

⎤
⎦ (69)
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Figure 17: Motorcycle agile motion. (a) Path-following performance. (b) Roll angle ϕ. (c) Steering angle φ.

The start point of motorcycle is (0, 15). We choose the self-pacing parameter β2 = 80 and the parameter
β1 = 0.00825. The initial velocity and noise characteristics are the same as those in the previous example.
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Figure 18: Motorcycle agile maneuver. (a) Position and velocity (b) Longitudinal velocity and lateral velocity

From Fig. 17(a), we see that even in this extreme case the motorcycle can still follow the desired trajectory
under the velocity field control. From Fig. 17(b) and 17(c), it is clear that the steering angle and roll angle are
both obvious larger than those of the previous example due to the much smaller radius curvatures. Figure 18(a)
and 18(b) show the motorcycle position and velocity information for this maneuver. We see a large lateral velocity
vry. Figure 19(a) and 19(b) show the tire slip ratios and slip angles, respectively. It is noted from Fig. 19(a) that
the required longitudinal slip ratio of the rear tire can nearly reach 0.15, which is nearly the maximal stable slip
ratio of the tire model. From Fig. 19(b), we also see the large slip angles under this agile maneuver.

We clearly see a large side slip angles shown in Fig. 20(b). Particularly, for the front wheel, we have seen a
15 degree side slip angle. For the rear wheel, the side slip angle reaches almost 6 degrees, which is around the
saturation point of the tire characteristics (Table 1). In other words, the motorcycle rear wheel is starting to slide
on the ground. If the side slip angle increases further, the stability of the motorcycle will change significantly.
The longitudinal slip are relatively small since the longitudinal acceleration of the motorcycle is not large and
the racing motorcycle tire is stiff. This simulation example demonstrates that the proposed dynamic model and
control systems capture the realistic aggressive motorcycle maneuvers.

Comparing with time-based trajectory tracking control design in the previous section, the simulation results
show that the velocity field based path-following design achieves smoother velocity profiles and much smaller
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Figure 19: Slip ratios and angles under the agile maneuver. (a) Slip ratio λs. (b) Slip angles λγ .
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Figure 20: Longitudinal slips and slip angles at the front and rear wheels of the “8”-shape trajectory tracking. (a) Slip ratio
λfs and λrs. (b) Slip angles γf and γr.

tracking errors.

6 Conclusion

In this report, we presented a new nonlinear dynamic model and tracking control for autonomous motorcy-
cles/bicycles. The proposed dynamic model is obtained through a constrained Lagrange modeling approach.
Comparing with the existing riderless motorcycle models, the new features of the proposed motorcycle dynamics
model are twofold: First, we relaxed the assumption of zero-lateral-velocity constraints at tire contact points and
thus the model can be used for the agile maneuvers when wheels run with large longitudinal slips and lateral
side slips. Second, we considered the motorcycle tire models and extended previously developed motorcycle
dynamics. Both trajectory tracking and path-following control are presented for agile maneuvers. The nonlinear
trajectory tracking control design takes advantages of the external/internal convertible (EIC) dynamical struc-
ture of the motorcycle dynamics. We extend the EIC design to the three control inputs case and such extension
allows flexibility in control systems design and therefore simplifies the complexity of the final calculation. We
have demonstrated the trajectory tracking control systems design through two simulation examples using a racing
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motorcycle prototype. To improve the tracking performance, we further presented a velocity field based path-
following control design of an autonomous motorcycle system. We combined the velocity field design with the
previously developed EIC motorcycle controller. The control system can automatically tune the velocity profile
based on the tracking errors and trajectory properties. The simulation results of a typical maneuver and an agile
maneuver have demonstrated that the velocity field based path-following control design improved the tracking
errors.

There are several ongoing research directions. We are currently implementing the proposed control systems
on a Rutgers autonomous motorcycle platform. We will report the implementation results in the near future.
Moreover, we also plan to study how the professional racing drivers control motorcycles for agile maneuvers.
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A Calculation of Ms

We consider the front wheel center O1 and the projected steering axis point C3 on the ground surface. Since the
frictional moment is independent of the coordinate system. We can setup a local coordinate system xfyfzf by
rotating the coordinate system xyz around the z-axis with an angle φg (origin at contact pointC1). Let (if , if , if )
denote the unit vectors along the xf , yf , zf -axis directions, respectively.

In the new coordinate system, we obtain the coordinates of O1 and C3 as (0, r sϕf
,−r cϕf

) and (lt, 0, 0),
respectively. We write the front wheel friction force vector F f as

F f = −Ffxif − Ffyjf − Ffzkf

and the vector rC3C1 = −ltif . The directional vector nO1C3 of the steering axis O1, C3 is then

nO1C3 =
ltif − r sϕf

jf + r cϕf
kf√

l2t + r2
.

Therefore, the friction moment Ms about the steering axis is calculated as

Ms = (rC3C1 × F f ) · nO1C3 =
lt√

1 + (lt/r)
2

(
Ffy cϕf

−Ffz sϕf

)
.

B Calculation of acceleration v̇G

Taking the time derivative of the mass center velocity vG and considering the moving frame xyz’s angular
velocity ω = ϕ̇i + ψ̇k, we obtain

v̇G =
δvG
δt

+ ω × vG = (v̇rx − hψ̈ sϕ−hψ̇ϕ̇ cϕ)i + (v̇ry + bψ̈ + hϕ̈ cϕ

−hϕ̇2 sϕ)j + (hϕ̈ sϕ +hϕ̇2 cϕ)k + (ϕ̇i + ψ̇k) × vG

= (v̇rx − vryψ̇ − hψ̈ sϕ−bψ̇2 − 2hψ̇ϕ̇ cϕ)i + (v̇ry + vrxψ̇ + bψ̈ + hϕ̈ cϕ−hψ̇2 sϕ
−2hϕ̇2 sϕ)j + (vryϕ̇+ hϕ̈ sϕ +bψ̇ϕ̇+ 2hϕ̇2 cϕ)k,

where δvG
δt denotes the derivative of vG by treating the xyz-coordinate as a fixed frame.
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C Calculation of the Lie derivatives

The calculation of L̄Nextu
ext
rx and L̄Nextu

ext
ry is obtained by taking the Lie derivative along the nominal external

vector field (52) and the control input (54). The calculation are shown in (70) and (71).

L̄Nextu
ext
rx =

[
− sψ cψ

]
ψ̇
(
−U + uext

)
+

[
cψ sψ

]
(
−

⎡
⎣−2uext

rx sψ −2uext
ry cψ −3v̇rxψ̇ cψ +3v̇ryψ̇ sψ +ψ̈ (vrx sψ +vry cψ)

2uext
rx cψ −2uext

ry sψ −3v̇rxψ̇ sψ −3v̇ryψ̇ cψ −ψ̈ (vrx cψ −vry sψ)

⎤
⎦ ψ̇ +

⎡
⎣L̄Nextu

ext
X

L̄Nextu
ext
Y

⎤
⎦
)

= v̇rxψ̇
2 +

(
2uext

ry − uext
X sψ +uext

Y cψ
)
ψ̇ + L̄Nextu

ext
X cψ +L̄Nextu

ext
Y sψ, (70)

L̄Nextu
ext
ry = v̇ryψ̇

2 −
(
2uext

rx + uext
X cψ +uext

Y sψ
)
ψ̇ − L̄Nextu

ext
X sψ +L̄Nextu

ext
Y cψ . (71)

In these equations, we have⎡
⎣L̄Nextu

ext
X

L̄Nextu
ext
Y

⎤
⎦ =

⎡
⎣X(4)

d (t)

Y
(4)
d (t)

⎤
⎦− b3

⎡
⎣uext

X −X
(3)
d (t)

uext
Y − Y

(3)
d (t)

⎤
⎦−

2∑
i=1

bi

⎡
⎣X(i) −X

(i)
d (t)

Y (i) − Y
(i)
d (t)

⎤
⎦ .

Similarly, we can calculate L̄2
Nextϕe by directly taking a directional derivative of L̄Nextϕe along the vector

field Next. From (60), we have

L̄2
Next

ϕe =
(
hψ̇ cϕe +g sec2 ϕe

)−1
[
gblt cξ
h

(
ψ̇uext

rx

v2
rx

− 2v̇2
rxψ̇

v3
rx

)
+ ψ̇uext

rx +

L̄Nextu
ext
ry +

(
hψ̇ sϕe −2g sec2 ϕe tanϕe

) (
L̄Nextϕe

)2

]
. (72)
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