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1.Introduction and Problem Definition
The CCTV (Closed Circuit Television) traffic surveillance systems are one of the most important assess of
traffic management centers (TMCs) to monitor congestion and incidents in daily operations. Computer
vision sensors based on CCTV traffic cameras have been explored over the last few decades. Most earlier
commercialized systems rely on software programs or hardware computing units fully calibrated for
individual CCTV traffic cameras often preconfigured to fixed angles (Michalopoulos, 1991). Recently,
researchers and engineers started to develop easy-to-calibrate computer vision systems for PTZ(Pan-Tilt-
Zoom) cameras (Song&Tai, 2016; Birchfield et al, 2010). Such systems can take advantage of the existing
large number of CCTV traffic cameras operated by TMCs to generate speed, flow, occupancy or even
trajectory data to support not only the existing TSM&O (Transportation Systems Management and
Operations) and also the emerging Connected and Automated Vehicle (CAV) applications. The rapid
growth of cloud computing and crowdsourcing technologies provides new opportunities for deploying such
high-resolution computer vision systems at the state or regional level for large-scale traffic operations and
CAV system needs.

Current commercialized systems can be classified into two major categories, the integrated hardware-
software solutions, and the generic computer vision solutions. The former focuses on building customized 
video analytic models fully calibrated with a specific type of camera. Representative products include 
Autoscope (1984), Gridsmart (2006), etc. The integrated nature of such systems can ensure the software 
analyzes the full resolution of the video data at the “edge” while achieving optimal results with fully 
calibrated models. However, deploying such systems will need cameras installed at dedicated locations and 
the cameras cannot be used for other surveillance purposes. The latter approach emerges with the rapid 
development of cloud computing technologies and computer vision technologies. The new generation of 
computer vision systems does not rely on tight integration with specific camera models. The deep learning 
and latest computer vision models can be used by process traffic video from any scenes with little or no 
manual input information such as scanlines, detection zones. Representative solutions include CitiLog 
(1997), TrafficVision (1999), MetroTech (2012), and Good Vision. These solutions can be deployed to 
existing CCTV video systems without the need for additional hardware installation. However, due to the 
complexity of the computer vision algorithms used, most of the systems can only process the data offline 
to achieve high accuracy. 

In New Jersey, the main real-time transportation data categories include travel time and traffic event data. 
Such data are provided through the live data feed from TRANSCOM, a coalition of more than 19 
transportation agencies in the tri-state area. TRANSCOM travel time data comes from probe vehicle data 
collected through EZ-Pass readers (including those for non-toll purposes), Inrix, and HERE(Nokia) probe 
vehicle travel time data. The EZ-Pass reader data are published to the public; while the full TRANSFusion 
data integrating all three data sources are only for member transportation agencies.  

Nevertheless, the lack of real-time traffic flow data in the dynamic data feed offerings has led to some 
severe limitations in traffic operations and control. Without the flow data, it is difficult to tell whether or 
not a free-flow segment is in factor free-flow or closed. It is also difficult to tell whether or not the traffic 
on a free-flow travel time segment has actually light traffic or saturated flow that may break down at any 
time. Many regional freeway and arterial traffic control solutions, such as Active Traffic Management 
(ATM) and adaptive traffic signal control. The coverage of fixed-location detectors such as loop detectors, 
RTMS (remote traffic microwave sensor), traffic dots or pucks are still limited and not connected to any 
real-time dynamic traffic data feed. Meanwhile, the more than 400 CCTV traffic cameras deployed 
throughout the state and major roadways in NJ can potentially form a large virtual sensor network to 
generate traffic flow data to be incorporated into the dynamic traffic flow data feed.   

This study focuses on the development of an efficient cloud-based online video analytic system for 
generating traffic flow data from large-scale regional CCTV traffic video network. The proposed method 
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can be classified into the generic video analytic solutions since the proposed computer vision algorithms 
are not designed for specific types of video cameras and can be applied to the video streams from the 
existing CCTV traffic surveillance cameras. The proposed video analytic algorithms can address the issues 
including computational efficiency for online deployment, the automated lane direction determination due 
to PTZ operations, occlusions in multi-lane traffic video, and lane changes.  

The proposed solution has several key modules. First, the camera location and direction determination 
module which determines the road name and directions of the lane-by-lane traffic detected by the proposed 
method. Second, the video analytic algorithms that improve an existing model (Zhang, 2019) to generate 
lane-by-lane traffic flow. Third, the cloud-based parallel computing platform that uses AWS (Amazon Web 
Services) cloud to simultaneously calculate multiple CCTV traffic video streams at the same time. Fourth, 
mapping and reporting modules that map the generate lane-by-lane flow data with TRANSFusion link 
systems.  

2.Literature Review
2.1.Overview of Video Analytic Technologies
Existing traffic video analytic systems can be classified into three major categories including integrated
camera and analytic solutions, universal virtual sensor solutions, and cloud-based smart city video analytic
solutions. Representative products include Autoscope (1984), Citilog (1997), VISATRAM (Zhu, 2000),
and GRIDSMART (2006) systems. The analytic software in those systems often highly customized to fit
the features of their OEM cameras. OEM cameras also reduce the need for frequent camera calibration. The
key limitation is the closed system making it difficult to integrate other existing agency traffic video
resources, and the pricing can be non-competitive with dedicated systems.

2.1.1. Integrated camera and analytic solutions 
In the first category, image processing algorithms are developed and fully-calibrated for specific types of 
video cameras. Many of those systems even encode the image processing algorithms within the processing 
units directly connected to the cameras. Such tight integration allows those algorithms to take full advantage 
of the full resolution and quality of the raw video to generate needed traffic data. Representative platforms 
include Autoscope (1984) and Gridsmart (2006). 

● Autoscope Systems
Image Sensing Systems, Inc. emerged in 1984 which focused on developing and delivering above-ground
detection technology, applications, and solutions. Image Sensing Systems combined video, radar, Bluetooth
for detection and supplied wrong way detection solutions and IntellitraffiQ solutions. Now, it has more than
140,000 Autoscope Vision units sold in over 70 countries worldwide.

● Gridsmart Systems
GRIDSMART Technologies Inc. was founded in 2006. The company pioneered the world’s first single-
camera solution for intersection actuation, traffic data collection, and situational awareness. GRIDSMART
uses one Omni-vision camera to monitor an entire intersection. GRIDSMART used a single camera with
appropriate video processing to monitor the whole intersection, which has counted and classified more than
216 billion vehicles. The fisheye-camera-based Iconic GRIDSMART Bell Camera have been installed in
1200 cities, 49 states, and 29 countries.

The limitations of the integrated hardware-software platforms are their dependency on the installation and 
configuration of the hardware systems. Many transportation agencies many already have their surveillance 
video systems but in order to use integrated hardware-software platforms. The agencies need to install new 
dedicated fixed-position fixed-view video cameras for those platforms to generate data.  
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2.1.2. Universal virtual sensor solutions 
 
Universal virtual sensor platforms are essentially hardware independent and developed for typical 
intersection or roadside traffic scenes often observed in existing CCTV traffic cameras. Some platforms 
can be deployed to existing traffic data sources even PTZ cameras (e.g., TrafficVision (1999)) with the 
capability of adjusting the “scanlines” or “detector zones” in PTZ operations. Representative systems 
include CitiLog (1997), TrafficVision (1999), MetroTech (2012), GoodVision (2017), Miovision (2005), 
KiwiVision (2011), Aventura (1999). However, significant manual work is still needed to set up virtual 
detection zones for each camera position and can be difficult for on-demand video sources analytics on-
the-fly. The output is simple traffic states derived from vehicle occurrence detection in the manually-drawn 
detection zone. The occurrence-based detection limits the resolution of the data to support more 
complicated measures, e.g., advance detection for Purdue diagram analysis. Recently, with the development 
of AI(Artificial Intelligence) technologies, especially, deep learning models such as Mask RCNN (Region-
based Convolutional Neural Networks) (Bharati, 2019; Omeroglu, 2019) and YOLO (Corovic, 2018; 
Iwasaki, 2018; Lin, 2018), the accuracy of some latest generic computer vision platforms has been 
significantly improved over the years. Though running those AI models will require significant 
computational resources and is often due through cloud computing services and cannot be achieved in real-
time.  Representative video analytic systems are as follows. 
 
 CitiLog 

 
Figure 1 CitiLog Video Analytic Applications 

 
CitiLog was founded in 1997.  CitiLog has both integrated hardware and video analytic technologies with 
its AVIX IP cameras (http://www.citilog.com/product/en/smartcam). The company also has universal 
detection technologies that can be applied to existing cameras. As Figure 1 shows, CitiLog's traffic detection 
suites can be used to detect traffic parameters (speed, flow, density) such as MediaTunnel, MediaRoad, 
MediaTD, MediaManager, intersection flow and queue lengths such as XCam-p, XCam-ng, XCom, 
SmartTraffic-p, SmartTraffic-ng, incidents such as VisioPaD, VisioPaD+, SmartTraffic-AID, 
SmartTraffic-i, SmartTraffic-ww, license plates for generating toll, tracking, and journey travel time 
information such as CT-LPR-1, CT-LPR-2, CT-HAZ. Its products monitor over 900 sites in 55 countries 
and have been processing 32,000 video inputs every day. 
 
 TrafficVision 
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Figure 2 Sample Snapshots of Traffic Vision Products 

TrafficVision is a division of Omnibond (http://www.trafficvision.com) founded in 1999. It has been 
focused on real-time traffic monitoring and has high versatility on data collection and incident detection. 
The company supplies applications for traffic detection such as Incident Detection (Stopped vehicle, wrong 
way, slowed traffic), Automatic Re-Calibration, Vehicle Classification. To be mentioned, its real-time 
incident detection enables immediate alert. Now TrafficVision has helped Ministry of Transportation 
Ontario collect over 20,000 hours of traffic data around Toronto. 
 
 MetroTech 

 
Figure 3 MetroTech Traffic Video Analytic Applications 

MetroTech is a company that earned its fame since 2012 (https://metrotech-net.com). It provides precise, 
cost-effective and real-time information by aggregating existing sensors and information. The company 
supplies MetroTech Family of Products, such as IntelliSegment for piece data collection, IntelliSection for 
data analysis and distribution, MetroTech Digital Streets Fusion Center for data aggregation and the 
MetroTraffic Network for global data production. MetroTech can apply their video analytic models to 
existing traffic cameras with some manual setup of the detection zones. MetroTech was recognized as an 
up and coming competitor in the industry of smart infrastructure by Government Technology 
(https://www.govtech.com/100/2019). 
  
 GoodVision 
GoodVision (2017) is an online deep-learning-based traffic video analytics tool with a price of €15 per 
video-hour. It has a comprehensive web interface for uploading video and analyzing the results as shown 
in the figure below.  
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It is good at dealing with high-resolution traffic video at a middle angle or high angle and can not only 
classify the moving objects into trucks, vans, motorbikes, pedestrians, etc. but also display the graphical 
results. It does not require the customers to install any software, but it asks the customers to upload recorded 
videos and wait patiently for the results. The GoodVision application can also output customized traffic 
count results by drawing virtual zones or stop-bars on the web interface as shown in the figure below. It 
also has the limitations of distance from monitored objects, obstacles, lense quality, lighting conditions, 
and image resolutions.  

 
Figure 4 Sample Outputs from the GoodVision Traffic Counting System 
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Figure 5 User Interface of GoodVision Video Analytic System 

 
Figure 5 shows the GoodVision application user interface to generate traffic detection and performance 
metrics. The reporting panel demonstrates the detected trajectory results. Travel mode panel allows users 
to select different travel modes. The advanced filter can be used to select zone-based or stop-bar based 
outputs. The time interval panel can be used to select a specific time duration.  
 
Those systems can be deployed to existing traffic data sources even PTZ cameras (e.g., TrafficVision 
(1999)) and are flexible with existing agency traffic video sources. However, significant manual work is 
still needed to set up virtual detection zones for each camera position and can be difficult for on-demand 
video sources analytics on-the-fly. The output is simple traffic states derived from vehicle occurrence 
detection in the manually-drawn detection zone. The occurrence-based detection limits the resolution of the 
data to support more complicated measures, e.g., advance detection for Purdue diagram analysis. 
 
2.1.3. Cloud-based smart city video analytic solutions 
The advance in central (CPU) and graphics processing unit (GPU) technologies and cloud computing 
triggers the current wave of cloud-based smart city video analytic solutions. Many platforms such as 
Placemeter (2012), MicroFocus (ex-HP), IBM Intelligent Video Analytics, Cisco Smart City Cloud, 
BriefCam,  have the capability of crowdsourcing and on-demand video analytics. However, those systems 
often offer heavy-weight all-inclusive packages of smart city functionalities such as TSM&O 
(Transportation System Management and Operations), energy and utility management, etc. There have not 
been light-weight cloud-based crowdsourcing video analytic solutions dedicated to traffic state detection in 
the market. 

  
2.2.Overview of Video Analytic Algorithms  
2.2.1. Video-based Vehicle Trajectory Extraction Methods 
To overcome the inadequacy of trajectory data, many researchers have attempted to develop computer 
vision algorithms to collect traffic data in the last two decades. The vehicle detection and tracking are the 
two main steps of traffic video analysis. The detection step separates the object of interest from the 
background and then recognizes the location and scale of the targeted object. The tracking step identifies 
the object of interest in consecutive frames to trace object movements. 

The vehicle detection algorithms can be divided into two major categories: the model-based method and 
the motion-based method. Model-based methods can localize and classify the objects of interest based on 
their shapes and understand the context in the traffic scene. For instance, they can classify vehicles into 
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different types including the bus, car, truck, motorbike, etc. Traditional model-based methods apply sliding 
windows of different sizes to search around the image and examine if there is an object in it (Felzenszwalb 
et al., 2010; Ke et al., 2018). Later on, the sliding window method is replaced with the Region Proposal 
Convolutional Neural Network (R-CNN), where a CNN model will propose the regions of interest (ROI) 
(R-CNN, Girshick et al., 2015; Faster-CNN, Ren et al., 2017). More recently, novel methods were proposed 
to detect multiple objects using a single neural network without region-proposal stages, such as the SSD 
(Single Shot MultiBox Detection, Liu et al., 2016) and YOLO (You Only Look Once, Redmon et al., 2016). 
However, many of these model-based methods, especially deep neural networks, need large training 
datasets, complicated design of deep convolutional network structures, and long training times to achieve 
optimal performance for targeted scenes. 

In contrast to the model-based method, motion-based approaches use the frame differencing, optical flow, 
and other motion-related information to segment out moving blobs. Background subtraction, optical flow, 
and frame difference are three commonly seen motion-based algorithms (Dailey et al., 2000; Pumrin and 
Dailey, 2007). Background subtraction is considered a key approach in intelligent surveillance systems with 
fixed cameras (Stauffer and Grimson, 1999; Kaewtrakulpong and Bowden, 2001; Magee, 2004). The 
limitations of the background subtraction approach are the background updating strategies and adjustment 
against illumination changes. Optical flow allows us to extract motions from video streams based on the 
displacements of vector fields between two consecutive frames (Barron et al., 1992). Although the optical 
flow method can capture the subtle pixel movements, it is restricted to the constant brightness assumption, 
resulting in the incomplete detection of moving objects. 

For the tracking stage, a major problem is the loss of accuracy over a long duration under the rapidly-
changing environment due to the illumination, weather, glare, shadow, and other scenery changes. Traffic 
surveillance video involves frequent occlusions, various appearances of vehicles, and intensive interactions 
between the leading and following cars. Compared with tracking a single object, the task for tracking 
multiple objects imposes more difficulties. A popular technique for vehicle tracking is the Kalman Filter 
(KF), which is considered an efficient approach for estimating the dynamic state of a system for tracking 
(Rad and Jamzad, 2005; Hsieh et al., 2006; Kim and Cao, 2010). Many researchers have tried to add some 
prior knowledge, such as movement constraints, locations, or past tracking histories to better approximate 
the object locations (Shi and Thomasi, 1994; Coifman et al., 1998; Azevedo et al., 2014). However, the 
tracked objects can still drift over time due to the error accumulation from the first to the last frame. Deep 
Convolutional-Neural-Network-based trackers can potentially achieve higher accuracy. However, it needs 
a large amount of training data, for example, vehicle pixel models for cars, trucks, buses, etc. with different 
types, colors, models, and under different illumination and weather conditions. The significant manual-
processing efforts in preparing the training datasets and the needed computational resources (e.g., GPUs 
(Graphics Processing Units) based cloud or parallel computing) made those models less computationally- 
and resource-efficient for the targeted high-angle traffic video analysis applications. 

The above limitations call for more computationally-efficient, accurate, and robust models that can be used 
to detect vehicle trajectories from the high-angle traffic monitoring video. 

2.2.2. Video Analytics with the Scanline-based Spatial-Temporal Diagrams 
In the proposed research, we focus on one category of video analytics methods which are named as scanline-
based methods. Such methods only process a very small portion (pixels on the scan-lines) of the entire 
video image, with low computational cost and less sensibility towards illumination changes. There are two 
types of scanlines studied in existing literature, the lateral and the longitudinal scanlines. The lateral 
scanline is a cross-section scanline across a lane; while the longitudinal scanline is a line along the direction 
of traffic. 

The lateral scanlines can be used to detect flow, vehicle class and spot speed (e.g., with two lateral scanlines 
together) effectively. Tseng et al. (2002) used the virtual lateral lines across the highway shown in traffic 
videos to detect, classify, and track vehicles. Zhang et al. (2007) adopted a similar lateral scan-line concept 
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to detect vehicles by comparing the pixel values along a detection line between the composed background 
image and the current input frame. Mithun et al. (2012) introduced the concepts of the virtual detection line 
(VDLs) for vehicle detection and classification. Ren et al. (2014) further explored virtual detection lines 
(VDLs) to extract vehicle count, mean speed, and vehicle types from multiple foreground temporal-spatial 
images (TSIs). 

The longitudinal scanlines can be used to track vehicles traveling within a lane and preserve the vehicle 
trajectories. Zhu et al. (1996) have invented a system called VISTRAM using both lateral and longitudinal 
scanlines to count vehicles, estimate speeds and classify vehicle types. Taniguchi et al. (1999) implemented 
a longitudinal scanline method to estimate traffic parameters, which was named as the directional temporal 
plane transformation (DTT).  Cho and Rice (2007) investigated a longitudinal mask-based method to 
estimate traffic parameters on I-80 in California, and a shifting and matching algorithm was applied to 
estimate a weighted median velocity over a region of the space and time. Malinovskiy et al. (2009) proposed 
an improved and upgraded scanline-based methodology for vehicle detection and most importantly vehicle 
tracking using ST (Spatial-Temporal) maps with CCTV cameras on highway segments. In their paper, they 
applied the Hough Transformation to analyze the strands and grouped Hough lines based on geometry 
properties. The limitation of Hough Line detection is that it only works when the vehicle trajectory on the 
ST Map is straight. The main outputs of the proposed algorithm are primarily traffic flow counts. Ardestani 
et al. (2016) applied the longitudinal scanline-based algorithm to detect traffic signals from regular CCTV 
cameras available at major arterial intersections. By analyzing the patterns of queuing vehicles in the ST 
Map, the algorithm can identify the starting and ending time of signal phases efficiently. In this paper, rather 
than just detecting aggregated traffic states, the objective is to generate real-world vehicle trajectories that 
are comparable to NGSIM data. 

Another important aspect of traffic video analysis is to reconstruct real-world trajectories through camera 
calibration. Schoepflin and Dailey (2003) introduced a three-stage dynamic camera calibration process for 
roadside traffic cameras. Cathey and Dailey (2005) have proposed a technique to remove the perspective 
effects from CCTV cameras based on 2D/3D motion models. The related formula of the coordinate 
transformation and the solution to obtain the transformation matrix will be provided in the methodology 
section.  
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3.System Design and Architecture 

 
Figure 6 The Proposed System Framework for Cloud-based Video Traffic Counter 

 
Figure 6 shows the design of the proposed cloud-based traffic counter system based on CCTV traffic 
cameras. The system will be built on two cloud platforms including a cloud database system (Amazon RDS 
(Relational Database System)) and a cloud computing system (EC2 (Elastic Compute Cloud)). The system 
takes the traffic video feed from 511 NJ cameras, generate dynamic traffic flow data that can be added to 
TRANSCOM (XCM) link condition data feed. Several key system components are summarized as follows. 
● STLine Generation: The STLines are longitudinal scanlines with which the video analytic algorithms 

detect and track vehicles. The STLines will be manually processed for all CCTV traffic camera feeds 
used and need to be periodically updated to reflect changes due to major PTZ operations. The automated 
algorithm will be developed to readjust the STLines due to minor PTZ operations. The output of the 
STLine generation modules is detailed lane-by-lane ST scanline geometries with all pixel coordinates 
of the turning points recorded. The results will be fed into the lane direction determination module and 
the STMap analytic module. 

● Lane Direction Determination: The relative positions of cameras are critical in the proposed cloud 
counter since it is the key information for lane direction detection, which can match the generated flow 
count with its corresponding direction of the traffic flow. A table containing the camera installation 
information can be acquired from NJDOT. The output of this module will be used in the lane direction 
determination module. 

● STMap Analytics: This is the core video analytic module that generates and analyzes the STMap 
(Spatial-Temporal Map) from traffic video streams. Every STMap consists of accumulated pixels from 
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the scanline of each lane from continuous video frames. STMap turns the 3Dimension video*time into 
2Dimension line*time. Some denoising techniques are introduced to remove the impact of static objects, 
occlusions, and lane changes. Traffic counts are conducted by tracking the strands generated by vehicles 
on the STMap. The output of the STMap analytics is vehicle counts for the Dynamic Flow Counting 
module. 

● Dynamic Flow Counting: The vehicles can be counted based on the extracted strands from the STMap 
Analytics module. The detected strands are vehicle parts extracted by the corresponding STLine, one 
strand for one vehicle. The counts of this module will be stored in Amazon RDS and integrated with 
the XCM feed. 

● Result Archiving, Exporting, and Integration with XCM Feed: The result generated by dynamic 
flow counting will be stored in the database for long-term storage and other analysis in the future. 
Meanwhile, the result will also be integrated with XCM feed and published to the public. 

 
4.Video Analytic Models 
4.1.Video Characteristics used in Analytic Algorithms 
The proposed algorithm is one special characteristic of traffic video, the spatial-temporal map. The detailed 
definition of the scanline and STMap is as follows. 

 
Figure 7 The Generation of STMap (Spatial-Temporal Map) From CCTV Video Input 

 
Figure 7 describes the Spatial-Temporal map (STMap) generated from video input using a predefined 
scanline and leaving vehicle strands for each moving vehicle. The spatial-temporal map is a frame-by-frame 
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stacking of the pixel values on the scanline, showing the time progression of groups of pixels. Every moving 
object passing through the scanline will leave a group of strands. These groups of moving strands can be 
used to generate the groups of “pixel trajectories.” The following is the detailed definition of key STMap 
related features. 
Pixel: (𝑟𝑟𝑝𝑝𝑖𝑖 ,𝑓𝑓𝑝𝑝𝑖𝑖). In a STMap, every pixel is RGB point and has the coordinates (𝑟𝑟𝑝𝑝𝑖𝑖 ,𝑓𝑓𝑝𝑝𝑖𝑖), where 𝑟𝑟 means the 
𝑟𝑟th row from top to bottom, 𝑓𝑓 means the 𝑓𝑓th frame from left to right, 𝑝𝑝 means the 𝑝𝑝-th strand, 𝑖𝑖 means the 
𝑖𝑖th point. 
 
STLine: A Spatial-Temporal line (STLine) is generated from a scanline marked in a video that scans only 
one line rather than the whole view in order to reduce the consumption in computing resources. STLine is 
comprised of consecutive line segments marked in camera view that covers the detection range of the CCTV 
video. An appropriate STLine can preserve the trajectories of the vehicles passing through the 
corresponding lane, which enables it to use STMap for traffic monitoring. The intermediate pixels between 
STLine turning points are obtained through the DDA or Bresenham line drawing algorithm. To get the 
traffic state from CCTV camera video, STLines should be predefined in traveling lanes so that the whole 
trajectory of vehicles can be reflected by accumulating the pixel progressions on STLines. The vertical axis 
shows STLine from (𝑥𝑥𝑙𝑙1,𝑦𝑦𝑙𝑙1) to (𝑥𝑥𝑙𝑙𝑀𝑀𝑙𝑙 ,𝑦𝑦𝑙𝑙𝑀𝑀𝑙𝑙) and the horizontal axis shows different frames, one unit for 
one frame.  
STMap: As Figure 7(c) shows, STMap is created by stacking pixel values on STLines for each frame from 
the video feeds. Time-Lapse pixel changes of STLines caused by moving vehicles will lead to distinctive 
strands on STMap. These groups of strands can be used to generate pixel trajectories to show the traces of 
vehicles to record vehicle movements on monitoring CCTV camera, which contains both the accurate time 
and distance measurements. The vertical axis of a STMap represents the traveled distance along predefined 
STLine and the horizontal axis of an STMap represents the frame number.  
Strand: Every vehicle that passes through a STLine will leave a special pattern on the STMap, which is 
named as a strand, e.g. the black pattern in Figure 7(c). Stands are quite different from the background and 
can be regarded as evidence of vehicle passing. Every vertical line in a strand of STMap is left by a vehicle 
or more. With frame changing, the vehicle strands move from top to bottom and show clearly the vehicle 
movement. The color of strands also depends on the vehicles’ color. 
  
4.2.The Proposed STLine-based Video Analytic Algorithms 
The proposed STLine-based video analytic algorithms include the following key processing steps. Some 
example processing results are provided to illustrate the outputs for each step. 
 
 
Table 1 Key modules and sample outputs of the proposed video analytic algorithms 

Processing Methods/Modules Sample Output 

a. Scanline based Camera 
and Lane Direction 

Determination 
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b. Spatial-Temporal Diagram 

 

c. ST Diagram Denoising and 
Preprocessing 

 

d. Vehicle Strands Detection 
from ST Diagram 

 

e. Crossing Vehicle Removal 
from ST Diagram 
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f. Strand Edge (Front bumper 
location) Detection and Pixel 

Trajectory Output 

 

g. Occlusion Detection and 
Separation 

 
 
Table 1 shows the major modules from the proposed model as well as the intermediate images from model 
outputs. In Table 1, Figure a is the matching results of a predefined scanline (in green) with the camera 
location. Figure b shows the generated STMaps from a time interval. Figure c shows the preprocessing 
outputs by identifying and removing horizontal noises from STMaps. Figure d connected edges using the 
heuristic analytics algorithm. Figure e is refined strands after removing crossing vehicles. Figure f shows 
the extract trajectories that represent detected vehicles from video input. Figure g shows the result of 
occlusion detection and separation, it's easy to see that the connected strands have been separated 
successfully based on a different color. 
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4.3.STLine Marking 

 
Figure 8 Examples of STLines in Camera View 

 
Before the counter can work, STLines have to be marked manually. A python script is used for STLine 
generation. It can read & check the RTMP links and capture & display the snapshots from the cameras one 
by one. Then the operator is able to mark the STLines on the snapshots by three steps: 1. Clicking left 
mouse to put inflection points of each STLine; 2. Pressing 'Space' to confirm the current STLine and start 
to mark the next one; 3. Pressing 'J' to save the STLines on the current snapshot and jump into the next 
snapshot. 'Space' and 'J' are chosen for they are friendly to both right hand operating and left hand operating. 
The STLines should be close to the most frequent trajectory of each lane, which requires experience-based 
human determination for now. 
 
4.4.STLine-direction-based Camera and Lane Direction Determination 
There are over 400 traffic cameras published to the New Jersey’s 511 website by NJDOT and NJTA, each 
with its own installation respective to the roadways they are observing. These traffic cameras typically do 
not provide the direction they are facing which makes it difficult to determine the direction of traffic flow. 
The direction is needed in order to match the lanes in the video to the lanes in the field so that the counting 
results of two directions will not be reversed. One factor that should also be noted is that most of these 
traffic cameras have pan, tilt, and zoom capabilities and are being operated in real-time by different 
agency’s Traffic Operations. This means the cameras can be panned, tilted, or zoomed at any given moment 
which can cause the direction of traffic with respect to the video feed to change.  

In order to begin simplifying this problem, it was decided that NJDOT cameras would be focused 
on first. The NJDOT cameras were then grouped into 7 configurations by locating these cameras on Google 
Earth and determining which of the 7 configurations would fit best for each camera. 
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Figure 9 STLine-the connection between Camera View and STMap for Camera Direction Determination 

 
Figure 9(a) above provides a visual representation as well as the naming convention for each of these 7 
configurations.  
Next, a reference table was created determining which of the seven configurations a camera fits into as well 
as the geographic location of the camera with respect to the roadway, intersection, or interchange.   

The Lane Direction Determination method in this paper is simple and can be used for direction 
determination for the cameras which have asymmetric scenes, such as type 1, 2 and 6. Two inputs are 
required in this method. The first one is the relative position of the cameras to the road. A reference table 
containing a relative position was used. The relative position was expressed in EB, SB, WB, NB for 
roadside cameras and SE, SW, NE, NW for corner cameras. The other one is the STLine with the same 
direction of vehicle movement. For cloud-based vehicle counting in this paper, the STLines were marked 
manually to save the computing resources, which consisted of points that start from where vehicles came 
from and end where vehicles left. The STLines have the potential to be generated from trajectory rather 
than manual marking if ignoring the computing resources it will take.  

For a roadside camera installed on the EB side of the road, 2 directions of lanes will be in the 
camera view. For example, the STLine in the Figure 9(b) has a start point (𝑥𝑥𝑙𝑙1,𝑦𝑦𝑙𝑙1) and endpoint(𝑥𝑥𝑙𝑙2,𝑦𝑦𝑙𝑙2). 
If 𝑥𝑥𝑙𝑙2 > 𝑥𝑥𝑙𝑙1, which means the endpoint is on the right of the start point, this STLine is on the same side 
with the camera, EB. If 𝑥𝑥𝑙𝑙2 < 𝑥𝑥𝑙𝑙1, WB.  
For a camera installed at the southeast (SE) corner of an intersection or interchange, 4 directions of lanes 
will be in the camera view. For example, the STLine in the Figure 9(d) has a start point (𝑥𝑥𝑙𝑙1,𝑦𝑦𝑙𝑙1) and 
endpoint(𝑥𝑥𝑙𝑙𝑀𝑀𝑙𝑙 ,𝑦𝑦𝑙𝑙𝑀𝑀𝑙𝑙). If 𝑥𝑥𝑙𝑙𝑀𝑀𝑙𝑙 > 𝑥𝑥𝑙𝑙1,𝑦𝑦𝑙𝑙𝑀𝑀𝑙𝑙 > 𝑦𝑦𝑙𝑙1, the STLine is on an EB lane. The whole relationship is in 
the table below. 
Table 2 Relations between Camera Directions and STLine Pixel Coordinate Characteristics 

Roadside Camera Position Northbound Roadside Southbound Roadside 
Start Point(x1,y1), 
Endpoint(x2,y2) 

𝑥𝑥𝑙𝑙1 > 𝑥𝑥𝑙𝑙𝑀𝑀𝑙𝑙 𝑥𝑥𝑙𝑙1 < 𝑥𝑥𝑙𝑙𝑀𝑀𝑙𝑙 𝑥𝑥𝑙𝑙1 > 𝑥𝑥𝑙𝑙𝑀𝑀𝑙𝑙 𝑥𝑥𝑙𝑙1 < 𝑥𝑥𝑙𝑙𝑀𝑀𝑙𝑙 

Direction of lane SB NB NB SB 
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Roadside Camera Position Eastbound Roadside Westbound Roadside 
Start Point(x1,y1), 
Endpoint(x2,y2) 

𝑥𝑥𝑙𝑙1 > 𝑥𝑥𝑙𝑙𝑀𝑀𝑙𝑙 𝑥𝑥𝑙𝑙1 < 𝑥𝑥𝑙𝑙𝑀𝑀𝑙𝑙 𝑥𝑥𝑙𝑙1 > 𝑥𝑥𝑙𝑙𝑀𝑀𝑙𝑙 𝑥𝑥𝑙𝑙1 < 𝑥𝑥𝑙𝑙𝑀𝑀𝑙𝑙 

Direction of lane WB EB EB WB 
Corner Camera Position Northeast Corner 

Start Point(x1,y1), 
Endpoint(x2,y2) 

𝑥𝑥𝑙𝑙1 > 𝑥𝑥𝑙𝑙𝑀𝑀𝑙𝑙 
𝑦𝑦𝑙𝑙1 > 𝑦𝑦𝑙𝑙𝑀𝑀𝑙𝑙 

𝑥𝑥𝑙𝑙1 > 𝑥𝑥𝑙𝑙𝑀𝑀𝑙𝑙 
𝑦𝑦𝑙𝑙1 < 𝑦𝑦𝑙𝑙𝑀𝑀𝑙𝑙 

𝑥𝑥𝑙𝑙1 < 𝑥𝑥𝑙𝑙𝑀𝑀𝑙𝑙 
𝑦𝑦𝑙𝑙1 > 𝑦𝑦𝑙𝑙𝑀𝑀𝑙𝑙 

𝑥𝑥𝑙𝑙1 < 𝑥𝑥𝑙𝑙𝑀𝑀𝑙𝑙 
𝑦𝑦𝑙𝑙1 < 𝑦𝑦𝑙𝑙𝑀𝑀𝑙𝑙 

Direction of lane SB EB WB NB 
Corner Camera Position Southeast Corner 

Start Point(x1,y1), 
Endpoint(x2,y2) 

𝑥𝑥𝑙𝑙1 > 𝑥𝑥𝑙𝑙𝑀𝑀𝑙𝑙 
𝑦𝑦𝑙𝑙1 > 𝑦𝑦𝑙𝑙𝑀𝑀𝑙𝑙 

𝑥𝑥𝑙𝑙1 > 𝑥𝑥𝑙𝑙𝑀𝑀𝑙𝑙 
𝑦𝑦𝑙𝑙1 < 𝑦𝑦𝑙𝑙𝑀𝑀𝑙𝑙 

𝑥𝑥𝑙𝑙1 < 𝑥𝑥𝑙𝑙𝑀𝑀𝑙𝑙 
𝑦𝑦𝑙𝑙1 > 𝑦𝑦𝑙𝑙𝑀𝑀𝑙𝑙 

𝑥𝑥𝑙𝑙1 < 𝑥𝑥𝑙𝑙𝑀𝑀𝑙𝑙 
𝑦𝑦𝑙𝑙1 < 𝑦𝑦𝑙𝑙𝑀𝑀𝑙𝑙 

Direction of lane WB SB NB EB 
Corner Camera Position Northwest Corner 

Start Point(x1,y1), 
Endpoint(x2,y2) 

𝑥𝑥𝑙𝑙1 > 𝑥𝑥𝑙𝑙𝑀𝑀𝑙𝑙 
𝑦𝑦𝑙𝑙1 > 𝑦𝑦𝑙𝑙𝑀𝑀𝑙𝑙 

𝑥𝑥𝑙𝑙1 > 𝑥𝑥𝑙𝑙𝑀𝑀𝑙𝑙 
𝑦𝑦𝑙𝑙1 < 𝑦𝑦𝑙𝑙𝑀𝑀𝑙𝑙 

𝑥𝑥𝑙𝑙1 < 𝑥𝑥𝑙𝑙𝑀𝑀𝑙𝑙 
𝑦𝑦𝑙𝑙1 > 𝑦𝑦𝑙𝑙𝑀𝑀𝑙𝑙 

𝑥𝑥𝑙𝑙1 < 𝑥𝑥𝑙𝑙𝑀𝑀𝑙𝑙 
𝑦𝑦𝑙𝑙1 < 𝑦𝑦𝑙𝑙𝑀𝑀𝑙𝑙 

Direction of lane EB NB SB WB 
Corner Camera Position Southwest Corner 

Start Point(x1,y1), 
Endpoint(x2,y2) 

𝑥𝑥𝑙𝑙1 > 𝑥𝑥𝑙𝑙𝑀𝑀𝑙𝑙 
𝑦𝑦𝑙𝑙1 > 𝑦𝑦𝑙𝑙𝑀𝑀𝑙𝑙 

𝑥𝑥𝑙𝑙1 > 𝑥𝑥𝑙𝑙𝑀𝑀𝑙𝑙 
𝑦𝑦𝑙𝑙1 < 𝑦𝑦𝑙𝑙𝑀𝑀𝑙𝑙 

𝑥𝑥𝑙𝑙1 < 𝑥𝑥𝑙𝑙𝑀𝑀𝑙𝑙 
𝑦𝑦𝑙𝑙1 > 𝑦𝑦𝑙𝑙𝑀𝑀𝑙𝑙 

𝑥𝑥𝑙𝑙1 < 𝑥𝑥𝑙𝑙𝑀𝑀𝑙𝑙 
𝑦𝑦𝑙𝑙1 < 𝑦𝑦𝑙𝑙𝑀𝑀𝑙𝑙 

Direction of lane NB WB EB SB 
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4.5.Static Noise Removal on STMap 

Figure 10 Illustration of the Static Noise (e.g. Light poles, lane markings, etc.) Removal Algorithms 

As Figure 10(a)(b) shows, the static noise on STMap results from static objects usually stays longer in the 
same row, which has a significant difference with the strands caused by moving vehicles and can be detected 
by its duration and color difference. For example, in the camera view of US1 at NJ18, there is a pole 
covering all three westbound lanes and there are horizontal patterns in its STMaps of the three westbound 
lanes which do not have vertical movement at all and occupy the same rows for a long time. 
Detection: For a processing window consists of 𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤𝑝𝑝𝑝𝑝𝑤𝑤𝑝𝑝𝑤𝑤 of video frames, 

𝑇𝑇𝐷𝐷𝑝𝑝 = 𝑚𝑚𝑚𝑚𝑥𝑥 (𝑓𝑓𝑝𝑝𝑖𝑖) −𝑚𝑚𝑖𝑖𝑚𝑚 (𝑓𝑓𝑝𝑝𝑖𝑖) 
if 𝑇𝑇𝐷𝐷𝑝𝑝 > 0.8 × 𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤𝑝𝑝𝑝𝑝𝑤𝑤𝑝𝑝𝑤𝑤  or ( 𝑇𝑇𝐷𝐷𝑝𝑝 > 0.4 × 𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤𝑝𝑝𝑝𝑝𝑤𝑤𝑝𝑝𝑤𝑤
𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑑𝑑𝑝𝑝𝑝𝑝𝑤𝑤_𝑤𝑤𝑝𝑝𝑑𝑑𝑑𝑑), then 𝑝𝑝 is static noise. 
Where 𝑇𝑇𝐷𝐷𝑝𝑝 indicates the time duration of the strand 𝑝𝑝, (𝑟𝑟𝑝𝑝𝑖𝑖 ,𝑓𝑓𝑝𝑝𝑖𝑖) is the coordinate of the 𝑖𝑖th point in strand 
𝑝𝑝 , 𝑟𝑟𝑝𝑝𝑖𝑖  for vertical axis and 𝑓𝑓𝑝𝑝𝑖𝑖  for horizontal axis, 𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤𝑝𝑝𝑝𝑝𝑤𝑤𝑝𝑝𝑤𝑤  indicates the total time of the 
processing circle, 𝑅𝑅𝑅𝑅𝐵𝐵𝑝𝑝 indicates the mean RGB value of the strand, 𝑅𝑅𝑅𝑅𝐵𝐵𝑝𝑝𝑝𝑝  indicates the mean RGB value 
of neighbor row, 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑑𝑑𝑝𝑝𝑝𝑝𝑤𝑤_𝑤𝑤𝑝𝑝𝑑𝑑𝑑𝑑 is a set value for RGB difference threshold.  
Removal: To remove the static noise after the detection, a search for nearest non-noise-rows will be 
activated based on the detected static rows and the nearest non-noise-rows will be used to replace the static 
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noise rows after filling in the potential trajectory columns on the nearest rows without noises. Sobel vertical 
edge detector is used to detect the trajectory in nearest rows without noises and the detected trajectories 
will be replaced with the average color of nearest rows without noises from above and below the noisy 
rows. As Figure 10(c) shows, during the filling, if the noisy rows have vehicle trajectories on them, the 
blocks of pixels of vehicles will not be replaced to avoid removing critical trajectory information. If the 
filling rows, that is rows above or below the noisy rows without noises, have vehicle trajectories, the blocks 
of pixels of vehicles on those rows will be replaced by pixels before or after those blocks to avoid creating 
ghost vehicles. 
___________________________________________________________________________________ 
For  𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 in 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 
For row 𝑟𝑟 from detected noise rows 𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 to both up and down boundaries, 
if 𝑟𝑟 ∉ 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 
use Sobel edge detector to extract the column indexes of vertical edges 𝑓𝑓1,𝑓𝑓2, … ,𝑓𝑓𝑝𝑝 in row 𝑟𝑟, 𝑟𝑟 − 1 𝑚𝑚𝑚𝑚𝑑𝑑 𝑟𝑟 −
2, 

𝐶𝐶𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡 = {𝑟𝑟𝑑𝑑1 , 𝑟𝑟𝑑𝑑2 , … , 𝑟𝑟𝑑𝑑𝑛𝑛} 
𝑟𝑟𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑚𝑚𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅𝐵𝐵(∁𝑅𝑅𝐶𝐶𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡) 

 𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑟𝑟 
___________________________________________________________________________________ 
Where 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the aggregation of the detected noise rows 𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑟𝑟𝑑𝑑1 , 𝑟𝑟𝑑𝑑2 , … , 𝑟𝑟𝑑𝑑𝑛𝑛 are the columns of detected 
trajectory in row 𝑟𝑟, 𝐶𝐶𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡  is the aggregation of detected trajectory columns 𝑟𝑟𝑑𝑑1 , 𝑟𝑟𝑑𝑑2 , … , 𝑟𝑟𝑑𝑑𝑛𝑛 , 𝑟𝑟𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  are the 
corresponding columns of detected trajectory in row 𝑟𝑟, 𝑅𝑅 is the aggregation of all the columns on row 𝑟𝑟, 
∁𝑅𝑅𝐶𝐶𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡 is the complementary set of 𝐶𝐶𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡. 

4.6.STMap-based Vehicle Crossing Removal 
Similar to Static Noise Removal, vehicle crossing can be detected by its time duration and height/width 
ratio too. The following is the proposed algorithm. 

If 𝑇𝑇𝐷𝐷𝑝𝑝 < 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑑𝑑𝑇𝑇𝑇𝑇 𝑚𝑚𝑚𝑚𝑑𝑑 𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑝𝑝
𝑇𝑇𝑇𝑇𝑝𝑝

> 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑑𝑑𝑆𝑆
𝑇𝑇
, or 𝑆𝑆𝑖𝑖𝑆𝑆𝐴𝐴𝑝𝑝 < 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑑𝑑𝑝𝑝𝑝𝑝𝑆𝑆𝑝𝑝, 

then strand 𝑝𝑝 is vehicle crossing, 
𝑃𝑃 = {𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑝𝑝} 
𝑃𝑃 = 𝐶𝐶𝐶𝐶𝑟𝑟𝐶𝐶𝑟𝑟𝑏𝑏𝑡𝑡𝑝𝑝𝑏𝑏𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏𝑝𝑝𝑤𝑤 

Where 𝑆𝑆𝑖𝑖𝑆𝑆𝐴𝐴𝑝𝑝  indicates the size of the object, 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑑𝑑𝑇𝑇𝑇𝑇 , 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑑𝑑𝑆𝑆
𝑇𝑇

 and 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑑𝑑𝑝𝑝𝑝𝑝𝑆𝑆𝑝𝑝  are threshold values set 

manually, 𝐶𝐶𝐶𝐶𝑟𝑟𝐶𝐶𝑟𝑟𝑏𝑏𝑡𝑡𝑝𝑝𝑏𝑏𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏𝑝𝑝𝑤𝑤 is the color of background. 
___________________________________________________________________________________ 

4.7.STMap-based Vehicle Occlusion Detection and Separation 
From the roadside angle, vehicle occlusions can create significant issues for computer vision algorithms. 
In the previous HASDA model, due to the use of aerial video, the algorithm does not need to deal with 
severe vehicle occlusions which lead to significant undercounting of vehicles. In the proposed model, a 
new occlusion treatment method is proposed. The method is based on the observations that when vehicles 
are getting close to the camera locations, the separation among vehicles can be large enough for their strands 
to split on the STMap. The bisection method is used for occlusion separation. The detailed algorithm is as 
follows. 
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Figure 11 Illustration of the Proposed Occlusion Detection and Removal Algorithm 
Mean Frames based Occlusion Detection: First, the black and white STMap 𝑏𝑏𝑏𝑏𝑏𝑏𝑅𝑅𝑙𝑙×𝐹𝐹(where 𝑅𝑅𝑙𝑙 is the 
total number of pixels of the STLine on Lane 𝑟𝑟, 𝐹𝐹 is total number of video frames to be analyzed) is labeled 
by the connected components inside. To detect if there are any occlusions, mean frames that one label have 
are calculated: 

𝑚𝑚𝐴𝐴𝑚𝑚𝑚𝑚 𝑓𝑓𝑟𝑟𝑚𝑚𝑚𝑚𝐴𝐴
𝑟𝑟𝐴𝐴𝑚𝑚(𝑓𝑓𝑖𝑖𝑑𝑑𝑓𝑓𝑝𝑝)

(𝑓𝑓𝑖𝑖𝑑𝑑𝑓𝑓𝑝𝑝)  −𝑚𝑚𝑖𝑖𝑚𝑚 (𝑓𝑓𝑖𝑖𝑑𝑑𝑓𝑓𝑝𝑝)
÷ (𝑟𝑟𝑚𝑚𝑡𝑡𝑚𝑚 − 𝑟𝑟𝑚𝑚𝑝𝑝𝑝𝑝) 

Where 𝑟𝑟𝑚𝑚𝑡𝑡𝑚𝑚 is the maximum row index that label 𝑝𝑝 has, 𝑟𝑟𝑚𝑚𝑝𝑝𝑝𝑝 is the minimum row index that label 𝑝𝑝 has, 
𝑓𝑓𝑖𝑖𝑑𝑑𝑓𝑓𝑝𝑝 is the frame indexes that label 𝑝𝑝 occupied on row 𝑟𝑟, 𝑟𝑟𝐴𝐴𝑚𝑚(𝑓𝑓𝑖𝑖𝑑𝑑𝑓𝑓𝑝𝑝) is the total number of 𝑓𝑓𝑖𝑖𝑑𝑑𝑓𝑓𝑝𝑝. 
If 𝑚𝑚𝐴𝐴𝑚𝑚𝑚𝑚 𝑓𝑓𝑟𝑟𝑚𝑚𝑚𝑚𝐴𝐴𝑓𝑓 < 𝑚𝑚𝐴𝐴𝑚𝑚𝑚𝑚 𝑓𝑓𝑟𝑟𝑚𝑚𝑚𝑚𝐴𝐴𝑓𝑓 𝑡𝑡ℎ𝑟𝑟𝐴𝐴𝑓𝑓ℎ𝐶𝐶𝑟𝑟𝑑𝑑, there exists at least one occlusion. Then the bisection-
based occlusion separation is activated. 
Bisection-based Occlusion Separation: The bisection-based occlusion separation will keep searching for 
splits within the search area chosen by bisection method. The first search area is the half STMap near the 
camera and it will keep being divided into 2 parts and the one close to camera will be searched until the 
splits occlude each other again or the search area is too narrow to supply valid information. 
______________________________________________________________________________ 
For  search area 𝑚𝑚 between 𝑓𝑓𝐴𝐴𝑚𝑚𝑟𝑟𝑠𝑠ℎ 𝑟𝑟𝑖𝑖𝑑𝑑𝑥𝑥𝑝𝑝 and 𝑓𝑓𝐴𝐴𝑚𝑚𝑟𝑟𝑠𝑠ℎ 𝑟𝑟𝑖𝑖𝑑𝑑𝑥𝑥𝑝𝑝−1(𝑓𝑓𝐴𝐴𝑚𝑚𝑟𝑟𝑠𝑠ℎ 𝑟𝑟𝑖𝑖𝑑𝑑𝑥𝑥0 is the boundary of camera 
side, e.g. the bottom of Figure 11) 
Connect the components inside 𝑚𝑚 and label the components, total labels number is 𝑝𝑝𝑝𝑝, 
Group the 𝑝𝑝𝑝𝑝s together if the distance between any two of them is less than the separation threshold in case 
of over-separations, 
Else, 
Use Mean Frames based Occlusion Detection to check if there’s occlusion inside the search area 𝑚𝑚,  
If there is occlusion inside 𝑚𝑚, 

𝑓𝑓𝐴𝐴𝑚𝑚𝑟𝑟𝑠𝑠ℎ 𝑟𝑟𝑖𝑖𝑑𝑑𝑥𝑥𝑝𝑝+1 =
𝑓𝑓𝐴𝐴𝑚𝑚𝑟𝑟𝑠𝑠ℎ 𝑟𝑟𝑖𝑖𝑑𝑑𝑥𝑥𝑝𝑝 + 𝑟𝑟𝐴𝐴𝑓𝑓𝐴𝐴𝑟𝑟𝐴𝐴𝑚𝑚𝑠𝑠𝐴𝐴 𝑟𝑟𝑖𝑖𝑑𝑑𝑥𝑥

2
, 

Else, 
𝑟𝑟𝐴𝐴𝑓𝑓𝐴𝐴𝑟𝑟𝐴𝐴𝑚𝑚𝑠𝑠𝐴𝐴 𝑟𝑟𝑖𝑖𝑑𝑑𝑥𝑥 = 𝑓𝑓𝐴𝐴𝑚𝑚𝑟𝑟𝑠𝑠ℎ 𝑟𝑟𝑖𝑖𝑑𝑑𝑥𝑥𝑝𝑝−1, 

𝑓𝑓𝐴𝐴𝑚𝑚𝑟𝑟𝑠𝑠ℎ 𝑟𝑟𝑖𝑖𝑑𝑑𝑥𝑥𝑝𝑝+1 =
𝑓𝑓𝐴𝐴𝑚𝑚𝑟𝑟𝑠𝑠ℎ 𝑟𝑟𝑖𝑖𝑑𝑑𝑥𝑥𝑝𝑝 + 𝑟𝑟𝐴𝐴𝑓𝑓𝐴𝐴𝑟𝑟𝐴𝐴𝑚𝑚𝑠𝑠𝐴𝐴 𝑟𝑟𝑖𝑖𝑑𝑑𝑥𝑥

2
, 

If 𝑝𝑝𝑝𝑝 < 𝑃𝑃𝑝𝑝 − 1 or search area 𝑚𝑚 is too narrow, 
Stop and Return separated labels, 
Else, 
Search 𝑚𝑚 + 1. 
______________________________________________________________________________ 

=
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4.8.STMap-based Vehicle Counting Combined with Lane-changing Detection 
The proposed system effectively reduces the impact on vehicle counting caused by lane-changing. In the 
proposed system, the strands are only counted on the camera side for 3 reasons: 
a) The camera side has better resolution of the vehicle.
b) The camera side has a better angle, at which the vehicles usually separate from each other.
c) Only counting one side reduce the possibility of overcounting caused by lane-changing.
______________________________________________________________________________
For strands that come to camera,
If 𝑚𝑚𝑚𝑚𝑥𝑥 (𝑓𝑓𝑝𝑝𝑝𝑝𝑖𝑖) < 0.3 × 𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤𝑝𝑝𝑝𝑝𝑤𝑤𝑝𝑝𝑤𝑤,
then the strand 𝑝𝑝 belongs to a vehicle that merges out of current lane and it should not be counted.
Else,
𝑠𝑠𝐶𝐶𝑐𝑐𝑚𝑚𝑡𝑡+= 1,
Where 𝑚𝑚𝑚𝑚𝑥𝑥 (𝑓𝑓𝑝𝑝𝑝𝑝𝑖𝑖) is the horizontal index of the rightmost point in strand 𝑝𝑝, 𝑚𝑚𝑚𝑚𝑥𝑥 (𝑟𝑟𝑝𝑝𝑝𝑝𝑖𝑖) is the vertical index
of the bottommost point in strand 𝑝𝑝.
For strands that are away from the camera,

𝑖𝑖 > 0.7 × 𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤𝑝𝑝𝑝𝑝𝑤𝑤𝑝𝑝𝑤𝑤,
then the strand 𝑝𝑝 belongs to a vehicle that merges in the current lane and it should not be counted. 
Else, 
𝑠𝑠𝐶𝐶𝑐𝑐𝑚𝑚𝑡𝑡+= 1. 
___________________________________________________________________________________ 

5.Cloud computing architecture and system configuration

Figure 12 The Proposed Cloud Computing Architecture and System Configuration 
In the test platform, the cloud computing services are implemented in the Amazon Web Service (AWS) 
platform. AWS is the industry-leading cloud computing services with its comprehensive toolsets, low 
pricing, user-friendly dashboards for managing different services, and the availability of documentation 
and examples. EC2 instances were used to analyze the real-time traffic video, extract useful information 

If
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from the video and transfer the information to the Oracle database deployed on Amazon RDS. Another EC2 
instance was used to collect the database data and TRANSCOM data feed and publish them. 
 
The chosen t2.micro instance with unlimited burst activated was launched which had a 2.5GHz vCPUs with 
1GiB memory. Linux was installed because of its open-source, multi-functional, efficiency and stable 
characteristics. The operating system version installed on the AWS EC2 instances was Amazon Linux AMI 
release 2018.03, on which python 3.6.5 was installed. To ensure the stability for running over the years and 
save the cost, a daily auto-rebooting was set at 9 p.m., after which the light condition is not good enough 
for traffic detection. The video processing script would be initiated the next morning when the light 
condition is good. 
 
5.1.Daily Reboot 
The daily reboot is based on the CRON schedule. The default time zone is UTC-0, which is inconvenient 
and needs to be changed to Eastern Time Zone. 
Firstly, sudo vim /etc/sysconfig/clock to edit the clock configuration file. Locate the ZONE entry and change 
it to ZONE=”America/New_York”, press esc, type in :wq , press enter to save the profile. 
After changing the time zone, use sudo crontab -e to edit the system crontab file. Then, type in 0 21 * * * 
/sbin/reboot -h now. Last step, press esc, type in :wq , press enter to save the profile. The detailed table of 
the 5 values set in crontab is below. 
Table 3 Crontab Scheduling Parameters Configured in Amazon Web Services(AWS) 

Field Name Value Sample Value Range Description 

Minute 0 0-59 The exact minute that the task will start. 

Hour 21 0-23, * The exact hour that the task will start. If use *, the 
task will start every hour. 

Day of Month * 1-31, * The exact day(of the month) that the task will start. 
If use * for Day of Month and Day of Week, the task 
will start every day. 

Month * 1-12, * The exact month that the task will start. If use *, the 
task will start every month. 

Day of Week * 0-7, * The exact day(of the week) that the task will start. If 
use * for Day of Month and Day of Week, the task 
will start every day. 

 
5.2.Daily Runner 
Similar to Daily Reboot, Daily Runner is based on CRON schedule too. However, it uses crontab -e rather 
than sudo crontab -e. They are different files from two different directories. 
Firstly, a bash file named run.sh has to be created in the directory /home/ec2-user/. The contents of the bash 
file should be in a format like this: nohup python TrafficCounter.py 'I-80 at I-287' &. nohup means no hang-
up, which will keep the code running consistently. Python is the executor that will execute the script. 
TrafficCounter.py is the script. 'I-80 at I-287' is the camera location that will be monitored. & is to let the 
task run in the background. 
Secondly, the bash file has to be executable. Type in chmod 777 run.sh and punch Enter. 
Thirdly, use crontab -e to edit the user crontab file. Type in 30 6 * * * . $HOME/.bash_profile; sh run.sh 
2>>/home/ec2-user/log. Then esc+:wq+enter to save the profile. 
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5.3.Python Configuration 
Many python modules were required. The modules used to process the videos are as follows. 

Table 4 Python Modules Deployed in AWS Cloud Computing Platform 
Module name Version Function 
numpy 1.14.3 The fundamental package for 

scientific computing with 
Python. 

cv2 3.4.3 An open-source computer vision 
and machine learning software 
library. 

csv 1.0 Read and write csv files. 
scipy.ndimage.gaussian_filter 1.1.0 Gaussian filter. 
cx_Oracle 6.4.1 Connect database. 
time, datetime N/A Current time. 
threading N/A Multi-threading. 

The video analytic modules deployed in AWS completes the following tasks.  
● STLine Loading and Direction Determination: The AWS EC2 instance reads the camera relative

position table and STLine table from database to match all the STLines with the lanes based on the
direction of STLines and generates the metafile for each camera containing information such as STLine
coordinates, Lane directions, RTMP link, camera location. The AWS EC2 instance then uses the
metafile to generate the STLines for all the lanes.

● STMap Generation: The EC2 instance gets the Real-Time Messaging Protocol (RTMP) link of the
camera and reads the corresponding video from NJ511. Once the video is read successfully, it will use
STLines to extract the pixels from the video and keep generating the STMaps.

● STMap Processing: The EC2 instance denoises and processes the STMaps, then the EC2 instance
extracts the strands from STMaps.

● Result Archiving: The EC2 instance stores the result back to RDS every minute.
● Flow Data Exporting and Publishing: The EC2 instance reads the corresponding TRANSCOM data

feed, adds the result to the feed and publishes it.
The first task is a pre-processed task and only needs to be run once, but the remaining four tasks have to 
keep running. 

6.TransFusion Link Data Processing
TRANSCOM provides real-time travel time data feed over the road networks composed of road links. In
general, TRANSCOM receives data from 1) TRANSCOM member agencies and centers in New Jersey,
New York, and Connecticut; 2) Travel time data from E-ZPass electronic toll; 3) Third-party transportation
Data Providers including from INRIX and HERE(Nokia). TRANSCOM uses its Data Fusion Engine to
validate and aggregate real-time and historical information (e.g., speed and travel time) referenced to a local
transportation network. In addition, TRANSCOM converts these inputs to a geographically universal
format.

Table 5 is the list of selected routes in Northern NJ, which are manually processed to acquire the upstream 
and downstream order among road links. TransFusion Link Data has 65,667 links in New Jersey road 
network, and 5,855 of them (major parts of freeways in north New Jersey) were selected.  
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NJ 3 All I-95 All 
NJ 4 East of Paramus Road I-195 All 
NJ 17 North of 3 to 287 NJ 208 All 

NJ 18 138 to Paulus Blvd & Paulus 
Blvd to River Road I-278 All 

NJ 21 North of 280 I-287 All 

NJ 24 All NJ 440 Bayone bridge to 78 & East of 
95 to outerbridge crossing 

I-78 All NJ 495 All 
I-80 All 
6.1.ArcGIS-based Direction Processing 
To generate the direction of TransFusion Links accurately based on the New Jersey’s Standard Route 
Identifier (SRI) system, the following steps need to be completed in ArcGIS: 
6.1.1. Feature to line Tool 
Since there are small gaps between adjacent links generated based on TransFusion link data, links need to 
be connected for manually creating routes. Feature To Line tool is used to connect Transcom links in 
preparation for the next step. 

Figure 13 Create New Network Dataset for Matching with the TRANSCOM Link System 
6.1.2. Create New Network Dataset 
Network Analyst Tool is selected to create routes. Right-click the shapefile generated in Step 1, then create 
a new network dataset. 

Table 5 Selected Links used for the Evaluation of the Proposed Platform 
Route Selected Part Route Selected Part 
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Figure 14 Create New Route for Geospatial Matching with CCTV Traffic Camera Locations 

6.1.3. Create New Route 
Go to Customize => Toolbar =>Network Analyst. A Network Analyst Toolbar will pop up. Then create a 
new route layer by using this toolbar, as shown in the figure below. 
Create stops for the desired route using Create Network Location Tool and create the desired route passing 
these stops using Solve. 

 
Figure 15 Export Directions of Routes for Geospatial Matching with CCTV Traffic Camera Locations 

6.1.4. Export Directions of Routes 
Use the Directions tool in Network Analyst Toolbar. If there is a route created in the network, the direction 
window will pop up, containing information about which links have been passed, as shown in the figure 
below. The direction of the route can be saved as text format, showing the LINKID of links along the 
corresponding route. 
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Figure 16 Final Direction Results Generated for Geospatial Matching with Camera Locations 

6.2.Matching between TransFusion Links and CCTV Cameras 
The road links are matched with CCTV cameras based on the camera locations. Road links that are matched 
with cameras if they are main roads and within 200 feet of the cameras. The following figure shows an 
example at the intersection of I-78 and NJ-24. The camera is “I-78 at NJ 24” facing towards I-78, therefore, 
surrounding road links of I-78 are matched with this camera. What’s more, the TransFusion links also have 
the direction information, which is also stored and will be used for the direction matching in the STMap. 

 
Figure 17 Matching Example between the Cameras and its Adjacent Links 

 
7.Traffic Database Management System 
7.1.Database Management 
The database was deployed on Amazon RDS db.t3.micro instance, which had 2 vCPU and 1GB RAM. The 
version of the database was Oracle 11.2.0.4.v17, which could work with the python module cx_Oracle.  
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Figure 18 Database Entity-Relationship Diagram (PK: Primary Key; FK: Foreign Key) for Database 

Tables used in the Proposed Platform 
 
Figure 18 is the Entity-Relationship Diagram of the database. The database was used for the storage of pre-
marked STLines, relative position table, and the generated results. The relative position table contains the 
installation information of the cameras, which could be used for lane direction determination. The main 
table is the CAMERA_POSITION table with information on their names and installs positions. 
TMC_CAMERA_MATCH is related to two tables, including 1) one-to-one relate to 
CAMERA_POSITION table on its CAMERA_ID field, and 2) one-to-many relate to 
TMC_IDENTIFICAION_5K on the LINKID field. Table ST_LINE and Table T_NJCloudCounter_MOES 
relate to the CAMERA_POSITION on the CAMERA_ID field. The following is the Table field information 
and their corresponding description. 

 
Table 6 Data Fields in TMC_IDENTIFICATION_5K Table 
Description: Selected TMC links in North NJ. 
Field Name Field Type Field Name Field Type 
LINKID NUMBER END_LONGITUDE NUMBER 

ROAD VARCHAR2(50 
BYTE) MILES NUMBER 

DIRECTION VARCHAR2(6 BYTE) ROAD_ORDER NUMBER 
INTERSECTION VARCHAR2(2 BYTE) ROUTE_OSET NUMBER 
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STATE VARCHAR2(5 BYTE) RTENUM NUMBER 

COUNTY VARCHAR2(2 BYTE) SRI VARCHAR2(10 
BYTE) 

ZIP NUMBER SRI_NAME VARCHAR2(50 
BYTE) 

START_LATITUDE NUMBER MP_START NUMBER 
START_LONGITUDE NUMBER MP_END NUMBER 
END_LATITUDE NUMBER SPEED_LIMIT NUMBER 
 
Table 7 Data Fields in CAMERA_POSITION Table 
Description: Relative position table sample 
Field Name Field Type 
Camera_ID NUMBER 
LOCATIONSTRING VARCHAR(200) 
POSITION_TYPE NUMBER 
RELATIVE_POS VARCHAR(20) 
 
Table 8 Data Fields in TMC_CAMERA_MATCH Table 
Description: the TransFusion Links matched with cameras 
Field Name Field Type 
Camera_ID NUMBER 
LOCATIONSTRING VARCHAR(200) 
LINKID NUMBER 
TMC_NAME VARCHAR(200) 
TMC_DIR VARCHAR(20) 
 
Table 9 Data Fields in ST_LINE Table 
Description: The pre-marked STLines metadata for each camera included STLine information such as Lane 
ID, Lane Direction(Calculated using model 4.2 with relative position table), STLine points and Real-Time 
Messaging Protocol (RTMP) link, based on which the script read the real-time video stream and generated 
the STMaps, one STMap per lane. Table 9 shows a sample of the metadata. 
Field Name Field Type 
Camera_ID NUMBER 
LOCATIONSTRING VARCHAR(200) 
LANEID NUMBER 
RTMP_LINK VARCHAR(200) 
INSTALL_POS VARCHAR(20) 
 
 
Table 10 STLines Data Structures 

Lane ID Lane 
Direction 

𝑥𝑥1 𝑦𝑦1 … … 𝑥𝑥𝑀𝑀 𝑦𝑦𝑀𝑀 

Lane 1 SB 𝑥𝑥11 𝑦𝑦11 … … 𝑥𝑥1𝑀𝑀 𝑦𝑦1𝑀𝑀 
… … … … … … … … 

Lane 𝑟𝑟 NB 𝑥𝑥𝑙𝑙1 𝑦𝑦𝑙𝑙1 … … 𝑥𝑥𝑙𝑙𝑀𝑀 𝑥𝑥𝑙𝑙𝑀𝑀 
RTMP 

link 
rtmp://***.***.***/live/xxxxx_nj 
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Table 11 Data Fields in T_NJCloudCounter_MOES Table 
Description: The processing script could generate the STMaps based on the pre-marked STLines and detect 
the vehicles, with which the public TRANSCOM feed could be added and republished. The Location String, 
Land ID, Direction, Datetime, Flow Count, Speed, Occupancy, Density, Queue Length, Shockwave Speed 
extracted from videos and read from TRANSCOM feed were stored in Oracle database. 

FIELD_NAME FIELD_TYPE 
LOCATIONSTRING VARCHAR2(200 

BYTE) 
LANEID NUMBER 
DATETIME DATE 
FLOWCOUNT NUMBER 
SPEED NUMBER 
OCCUPANCY NUMBER 
DENSITY NUMBER 
QUEUELENGTH NUMBER 
SHOCKWAVE_SPEED NUMBER 
DIR VARCHAR2(200 

BYTE) 
DIRECTION VARCHAR2(20 

BYTE) 

8.System Calibration and Evaluation
8.1.Model Evaluation

Where 𝑏𝑏𝑇𝑇𝑝𝑝𝑡𝑡𝑡𝑡𝑙𝑙is the total minutes, 𝐶𝐶𝐺𝐺𝑇𝑇is the ground truth count, 𝐶𝐶𝑇𝑇is the detected count. 
Mean Error is calculated to evaluate the undercounts and overcounts of the proposed algorithm through the 
whole video. The more it is close to 0, the better the result is. Mean Absolute Error and Mean Absolute 
Percentage Error is used to evaluate the average performance and stability of the proposed algorithm in 
every minute. The lower the better. Ground truth vehicle counts are manually counting results that have 
been grouped by a time interval to reduce the impact of human reaction time. 

8.2.Key Parameters 
For vertical threshold which stands for length, ratios are used because the length of STLines may vary with 
the cameras' height, angle, and resolution. For the horizontal threshold which stands for time, values are 
used because the frame rate is consistently 8 frames per second. The noise ratio threshold is the threshold 
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parameter to detect static noises. For each row of a STMap, if the occupancy of this row after horizontal 
edge detection and dilation operation is greater than this threshold, then it will be considered a row with 
static noise. Time frame duration is the parameter to filter small blocks. Patterns that are either longer than 
this parameter or wider than this parameter will not be filtered. The time difference threshold is the 
parameter for the time difference detection algorithm. Based on the assumption that the intensity of moving 
object changes faster than the background, this parameter is used to segment out vehicle strands on STMaps. 
The threshold parameter to avoid overcounting caused by lane changes. The lane changes happen before 
the threshold will be removed but the incomplete strands that end before the threshold because of other 
issues will also be removed. 

Table 12 Key parameters 
Parameter List Descriptions 

Noise ratio 
threshold 

The recommended range is 0.2-0.6 for all lanes.  

Time frame 
duration 

The preset value is 15 and the recommended range is 10-20. 

Time difference 
threshold 

The preset value is 15 and the recommended range is 10-20. 

Lane change 
threshold 

The recommended range for this threshold is between 0.3 and 0.7. 
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9.System Evaluation and Pilot Testing Results 
9.1.CCTV Traffic Camera Data Sources 
New Jersey’s 511NJ system is an Advanced Traveler Information System that is available by phone or web 
24 hours a day, 365 days a year.  The information posted to this system is gathered by multiple public 
agencies including the New Jersey Department of Transportation and consists of information including but 
not limited to travel times, incident and construction information, as well as live traffic video.  The 511NJ 
traffic video streams provide over 450 real-time traffic feeds to the motoring public and include video 
streams from NJDOT as well as the New Jersey Turnpike Authority. These video streams are generated 
from permanent traffic cameras installed by both organizations to help monitor traffic conditions and 
monitor New Jersey’s roadways for incidents. These cameras installed along interstates, highways, and 
arterials are located at key strategic locations determined by Traffic Operations from each agency. 

 
Figure 19 Camera View and STLines 

 
The recorded videos used in this paper are from the 511NJ system which has a resolution of 320*240. The 
12-min-long video tested in this paper was captured around 12:05 P.M. on 21st July 2019 from a roadside 
camera of NJ18 at US1. It was sunny with good lighting. The other video tested in this paper was captured 
around 10:40 A.M. 10th April 2018 from an intersection camera of US1 at Henderson Road. 

 
Figure 20 Snapshot of the VLC Traffic Counter for Generating Ground Truth Data 
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The ground truth data used was obtained through manual counting on traffic videos. The raw ground truth 
consisted of the time and the lane number of each vehicle passing and was grouped into 1-min-interval or 
5-min-interval traffic counts according to demand. 
 
The native test device is a 15-inch MacBook Pro which has an Intel 8850H@2.6GHz CPU with 32G RAM 
and the system is macOS Mojave 10.14.5. The cloud test server is AWS EC2 t2.micro instance, which has 
a 2.5GHz vCPUs with 1GiB memory and the system is Amazon Linux AMI release 2018.03. The evaluation 
was based on 1 min count. 
 
9.2.Video Analytic Model Validation Results 
9.2.1. ST-Line Creation and ST Map Generation and Denoising 
 

 
(a)NJ18 at US1 with STLines 

 
(b)Raw STMap 

 
(c)Static Noise Free STMap 

Figure 21 STMap Generation from Traffic Video with Pre-marked STLines 

31



 

 
 

The STLines marked in Figure 21(a) were used to generate the STMap. Figure 21(b) is the STMap of lane 
4 between the 4801st frame and 5280th frame from a 12-min-long video recorded from NJ18 at US1.  The 
horizontal axis of a STMap consists of frames and the vertical axis consists of STLine points. The raw 
STMap cannot be directly used for vehicle detection before some appropriate denoise processing. It is easy 
to find that the static noise in Figure 21(b) was caused by the black pole in Figure 21(a). The system does 
not process the whole camera view but detects static noise in STMap by its color difference and time 
duration. Figure 21(c) shows the Static-Noise-Free STMap, in which the static noise rows in Figure 21(b) 
have been detected and filled with the searched clean rows. Most of the trajectory columns in the filled row 
have been detected and replaced with row's average color. By comparing Figure 21(a) and Figure 21(b), it 
is obvious that the static noise was cleaned effectively and some of the missing part of strands was fixed, 
which allowed the following steps to extract the strands and count vehicles. There are some pixels kept in 
static noise rows because they have trajectory neighbors. 
 
9.2.2. Strand Clustering Processing Results 

 
Figure 22 Sample output of Canny Edge Processing Algorithms for the STMap 

 
Canny edge detector is used for edge detection to extract strand from denoised STMap (Figure 21(c)). From 
Figure 22, we can easily find that there are ungregarious edges around the detected static noise rows. Those 
are caused by the pixels kept with potential trajectories determined by their neighbor rows, among which 
51/63 are in real strands. Generally speaking, canny edge detector decently completed its job and filtered 
the irrelative background, but further steps are required to separate the connections between strands and 
extract the strands correctly. 

 
(a)Time difference: Time difference threshold=10 
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(b)Time difference: Time difference threshold=15 

 
(c)Time difference: Time difference threshold=20 

Figure 23 Sample Output of Time Differencing Processing of the STMap 
 

The time-difference-based motion detector is used as a reference for strand extraction. The time difference 
algorithm is based on the assumption that the change of background is slower than the change between 
background and the vehicle strands within a time interval. From Figure 23(a)(b)(c), 10 is too small for a 
threshold which fails to filter all the noise. Although the one with 15 as threshold only detects 6 strands, 
the detected strands are all correct, which is acceptable for a supplement. 20 is too big that keeps only 2 
strands. 

 
(a) Sample Output of Thresholding 
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(b) Sample Output of Thresholding After Filtering the Smaller Components 

Figure 24 Sample Output of Thresholding 
 
As another source of reference, thresholding is used to separate the roadway background and vehicle strands 
based on the assumption that they occupy different ranges of the intensity value. It used the denoised STMap 
as input and use thresholding method to separate different parts in the STMap. The threshold values are 
generated automatically using the triangle method, which resulted in the misdetection at the bottom of the 
Figure 24(a). The removal of static noise cuts the background apart, which made the triangle method 
separated two parts of background too. As Figure 24 shows, there are a lot of small noise detected because 
their intensity values exceed the threshold value. Therefore, a size filter was applied to filter the small noise, 
as Figure 24(b) shows. 

 
Figure 25 Sample Output of Canny Combined with Time Difference and Threshold 

The output of time difference module and threshold module were then combined together as a mask to 
process the output of canny edge detection, as Figure 25 shows. 

34



 

 
 

 
Figure 26 Sample Output of Filled Canny 

The edges are not enough for strand extraction. Before strand extraction, the edges have to be filled, as 
Figure 26 shows. After filling, there's still small noise around the static noise rows which should be removed 
and can be removed based on their duration. 

 
Figure 27 Sample Output after Removing Noise by Duration 

A duration-based filter is used to remove the small noise in Figure 27 left by the conservative static noise 
removal. 

 
Figure 28 Sample Output of Counted Strands 

Figure 28 shows the result of strand detection. Most strands including the smaller ones caused by lane-
changing have been detected successfully. However, there is still over-counting caused by inconsistent 
strands. Combining with the raw STMap, the separation results from the strong change in color, which may 
be the effect of irregular vehicle movement. Generally, the strand extraction and vehicle detection have 
decent performances. 
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9.3.Lane Direction Results 
Using the Table 2 combined with camera relative position table, the directions of the lanes in 220 of 444 
NJDOT cameras of type 1, 2, 6 can be determined automatically and the directions of the lanes in other 11 
cameras of type 3, 5 can be determined easily by checking whether the camera is facing the intersection or 
not. The rest cameras may require other solutions to match lanes manually such as comparing the features 
in the camera view with the features in Google Street Map. 

 
Figure 29 Lane Direction Determination Sample 

Figure 29 shows some results of Lane Direction Determination. Figure 29(a)(b) are 2 samples of type 1 
cameras that are installed at the roadside. Type 1 cameras that only have 2 directions of lanes are easy to 
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deal with and the lanes of different directions are marked in different colors. Figure 29(c)(d) are 2 samples 
of type 2 cameras that are installed at the corner of the intersection. The direction of the lanes in type 2 
cameras are also determined well. Figure 29(e) shows a sample of type 3 cameras, which are installed in 
the median of the intersection. Type 3 cameras require extra effort for lane direction detection during 
STLine marking. It requires the manual checking result of whether it’s facing the intersection or not. By 
default, type 3 cameras should face the intersections. In the sample above, it’s facing the intersection of US 
1 at Henderson Rd, combined with this extra information, the directions of the lanes in Figure 29(e) can 
also be determined. Figure 29(f)(g) are two samples of type 4 cameras, which are installed in the median 
of a roadway. The proposed lane direction determination method is not applicable to symmetry views, 
which means type 4 and type 7 cameras cannot use the proposed method directly. More features are required 
for the determination. Figure 29(f) was determined by the curvature of the road, which can be manually 
matched with the map. However, Figure 29(g) is not determinable, at least not determinable based on its 
STLines and relative position. Figure 29(h) is a sample of type 5 cameras, which are installed in-between 
2 intersections. It requires manual checking of which intersection the cameras are facing by comparing the 
constructions in the camera view with Google Street Map. Figure 29(i) is a sample of type 6 cameras, which 
are installed at the corner of interchanges. Usually, type 6 cameras are similar to type 2 cameras. The only 
difference is that type 6 cameras may not be able to see the lanes beneath. Figure 29(j) is a sample of type 
7, which is installed in the median of interchanges. Its asymmetry installation enables the determination 
like the roadside camera, but the lack of relative position information disables the determination. 
 
9.4.Traffic Flow Detection Results 
The ground truth and auto count results from both the proposed algorithm and HASDA model are as follows. 

 
Figure 30 Count Results 

Figure 30(a)(b) show the comparison of Ground Truth, Count Result and HASDA Count Result of a 12-
min-long video captured from NJ 18 at US 1. Ground Truth is generated from a manual count result 
completed and checked by experienced human.  
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From Figure 30(a) which is the comparison of count results in eastbound lanes, HASDA's performance is 
unsatisfying especially during those minutes with big number of vehicles. HASDA is a model designed for 
an aerial view, in which there's no occlusion. However, occlusions are quite common in the traffic camera 
views.  

 
With occlusion detection and removal modules added, the count result of the proposed system has better 
correlation with ground truth. The count results of 1st, 2nd, 3rd, 5th, 8th, 9th and 10th minute are almost 
the same and for the results of other minutes, the biggest error is in the 4th minute, when the manual count 
result is 44 while the auto count result is 36. The reason for undercounts may be the streak, which influenced 
the strand extraction module of the proposed system and will be discussed in the next section. The ME of 
the eastbound result generated by the proposed system is 1.25, which means it has 1.25 counts/min on 
average in ground truth data. The MAE and MAPE of the eastbound result are 3.416 and 10.62%, which is 
acceptable considering the motorbikes and trucks that may influence the vehicle detection performance and 
is much better than 26.58 and 59.06% of HASDA. 
From Figure 30(b), HASDA has better performance on westbound than eastbound. As has been mentioned 
before, HASDA is designed for an aerial view, in which most things are symmetry. However, in the traffic 
camera view, things are no more symmetry. The ME of the westbound result generated by HASDA is 1.5 
which means the eastbound result is 1.5 counts/min in the ground truth. The MAE is 3.5, which reflects 
that on average the HASDA's result in eastbound has 3.5 counts/min difference with ground truth. The 
MAPE is 11.07%, which means the vehicle detection has around 89% accuracy. The direction 
determination module enables the proposed system to adjust vehicle detection strategies based on the 
direction of lanes. In a traffic camera view, vehicles are divided into two types based on their movements: 
Come to Camera and Away from the Camera. The size and resolution of the vehicles in the camera view 
vary with the distance, which is quite different from the situation that HASDA has been dealing with and 
leads to the performance difference of HASDA in processing Come to Camera and Away from Camera 
STMaps. The ME of the westbound result generated by the proposed system is -1.25, which means it has 
1.25 counts/min on average over ground truth. The MAE and MAPE of the westbound result are 2.083 and 
5.91%, which means it has 2.08 counts difference on average with ground truth and 94% accuracy of vehicle 
detection at 1-min-level.  
Another test was conducted to evaluate the performance of vehicle counting at intersections at 5-min-level. 
Figure 30(c)(d) show the result of a 1-hour-long video at the intersection of US 1 and Henderson Rd. This 
time the proposed system was influenced by the frequent appearance of vans, trucks and crossing vehicles 
and the ME raise to 6.7 on southbound and -5.2 on northbound, which means that in every 5 minutes there 
are 6.7 undercounts on southbound and 5.2 overcounts on northbound totally. The undercounts in 
southbound was caused by the vehicles turned-in which did not get into lanes in time and missed both 
STLines in neighboring lanes, which will be discussed in the next section. The overcounts in northbound 
was because the manual count result only counted the vehicles moving out of the intersection, while the 
proposed system also detected the vehicles joined in from the intersection. There are obvious differences 
between the manual count result and the auto count result of southbound during the 41st and 58th minute 
and northbound during 33rd and 46th minute, which was caused by the red light. In both minutes, there 
were big waves of vehicles waiting for the green light, which makes the occlusion more severe and makes 
lane-changing happen more frequently. The MAE of the proposed system is around 6.79 for southbound 
and 6 for northbound, which indicates that in every 5 minutes the number of mis-detected vehicles is around 
6. The MAPE is 11.97% for southbound and 11.92% for northbound, which means that the accuracy of 
vehicle detection is around 88% for the intersection. The result of HASDA has 61% MAPE on southbound 
and 54% MAPE on northbound, which is much worse than the proposed system. 
The proposed algorithm has better performance and stability on videos shot from roadside camera compared 
with HASDA model. HASDA model has trouble dealing with the occlusion caused by camera angle, which 
leads to the severe undercounts and has been solved in the proposed algorithm. It also has limitation on 
removing static noise because of its color-based static noise detection, which leads to severe misdetection 
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of vehicles because a pole covers the view of WB lanes. In the proposed algorithm, static noise is detected 
by horizontal edge rather than mean value of color and replaced with clean rows nearby. 

 
(a) Come to camera 

 
(b) Away from camera 

Figure 31 Strand Detection Sample 
 
As the figure above shows, Figure 31(a) is the final STMap of a “come to camera” lane and the strands’ 
endpoints are used to count vehicles because the occlusion usually appears at the start. In a “come to camera” 
lane, lane changes are dealt by only counting the ones ends in the lane. As can be seen in Figure 31(a), 
although a lane change threshold of 0.5 was set there are still lane changes that have been overcounted. 
Figure 31(b) is the final STMap of an “away from camera” lane and the strands’ start points are used to 
count vehicles. Only the vehicles that start from “away from camera” lane shall be counted to avoid double 
counting caused by lane changes.  
 
9.5.Cloud Deployment and Computational Cost Estimation 
 

 
Figure 32 CPU Occupancy Sample 

HASDA Model took only 91.33s on Intel 8850H@2.6GHz and 111.54s on AWS t2.micro instance while 
the proposed algorithm took 151.71s to process the 12-min-long video with 5760 frames using one thread 
on Intel 8850H under Mac OS and 205.68s to process the video on AWS t2.micro instance. The longer 
processing time is mostly caused by complex occlusion separation and new static noise removal methods 
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may also have a slight influence. Although the processing time is longer than the HASDA Model, 205.68s 
for processing a 12-min-long video is still good enough for large-scale cloud deployment. 
 

 
Figure 33 Performance of Deployment Tests on Sep. 6th, 2019 

 
To further estimate the cost of deployment, an online test was conducted. Three days' cost and workable 
camera number were collected. On Sep 6th, 7 cameras worked for over 90% of the total time and the cost 
was $5.50. On Sep 7th, 15 cameras worked properly, and the cost was $6.62. On Sep 8th, 12 cameras 
generated enough results with the cost of $6.02. On average the cost for each camera is around 
$0.5 per day. To process 400 cameras for one year, the total annual cost will be around $73000. 
 
 
9.6.Limitations of the Proposed Models 
The proposed models still have some limitations that need to be addressed in future work. The main 
limitations include the limitations with lane direction determination for mid-block cameras, vehicle 
shadows caused by glitches in video streams, low-angle lane or vehicle occlusions, and scanline 
readjustment for PTZ operations. The detailed descriptions are as follows. 
 
9.6.1. Lane direction determination for Type 4 & Type 7 
 

 
Figure 34 Lane Direction Determination Sample at US 1 at Bakers Basin Rd. 

The proposed lane direction determination model is based on the asymmetry of installation and traffic view. 
However, there are 217 of 482 NJDOT cameras installed symmetrically or do not have the installation 
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information which cannot be determined. For example, the camera installed at US 1 at Bakers Basin Rd. is 
one of the lane-direction-undetermined type 4 cameras. The only solution to match the lanes for now is to 
check and compare the features such as buildings, forests, billboards, etc. 
 
9.6.2. Streak caused missing information in STMaps 
 

 
(a) 

 
 (b) 

Figure 35 Streak Samples at 4th min in the tested 12-min video 
As Figure 35 shows, the streaks resulted from poor bandwidth connected different vehicles together, which 
resulted in the severe occlusion and could not be separated by analyzing STMaps with missing information.  
 

41



 

 
 

9.6.3. vehicle coverage caused by low angle 

 
Figure 36 Sample of Coverage by Large Vehicles in Neighboring Lanes 

As has been emphasized, the proposed STLine based vehicle detection method saves a lot of computing 
resources by only extracting the information from STLines, which also results in the loss of information 
and disables the ability to look outside the STMaps. In Figure 36, limited by the loss of information, what 
the proposed system can process is only the STMap generated from the information that STLines extracted, 
which prevents it from detecting the vehicles covered by large vehicles in neighboring lanes even if they 
show parts for a while that humans can see and recognize them. 

 
Figure 37 Sample of Coverage by Vehicles in Same Lane 
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The proposed occlusion detection model relies on the separation that usually happens when the vehicles 
come close to the camera. However, if the camera angle is too low, there will not be any separation, which 
directly makes it impossible to deal with occlusions.  

9.6.4. PTZ operations caused STLine matching issue 

 
Figure 38 Sample of STLine Shifting Caused by PTZ Operations 

Most of the NJDOT cameras support PTZ operations, which will result in the shift of STLines as Figure 38 
shows. Then the STLines have to be updated or they will not be able for vehicle counting. 

 

10.Cloud Deployment Strategies and Cost Analysis Results 
 
10.1.Proposed System Deployment Schematics with Existing TRANSCOM Systems 
The following figures show the deployment schematics of the proposed cloud-based traffic counter over 
the existing TRANSCOM (XCM) system (Consensus Systems Technologies, 2015). The traffic counter 
takes the real-time CCTV video feed either from through 511NJ or the video servers by Traffic Management 
Center or TRANSCOM. The traffic count will generate traffic flow data with the same roadway link system 
used by TRANSCOM to be integrated into their data fusion engine (XCM DFE). Then the flow data will 
be incorporated into the XCM Data Exchange (XCM DE) and XCM SPATEL and archiving systems for 
agency data archiving and sharing.  
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Figure 39 Private Cloud Deployment Schematics with Existing TRANSCOM Systems 

44



 

 
 

 
Figure 40 Amazon Cloud Deployment Schematics with Existing TRANSCOM Systems 

 
Traffic counter module can be deployed either on outside third-party cloud like Amazon Web Services 
(AWS) or be deployed at a dedicated server system within TRANSCOM or NJ Traffic Management Center. 
If it is deployed at AWS, there are some additional communication and network configuration to access the 
video stream and transfer the result. 
 
10.2 Private versus Commercial Cloud Deployment  
Deploying the proposed platform can be deployed both in private cloud in dedicated server clusters within 
transportation agencies and public cloud services like AWS, Microsoft Azure, or other cloud platforms. 
The following is a comparison of the pros and cons of using different deployment strategies. 
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Table 13 Comparison between Commercial Cloud Deployment and Personal Cloud Deployment 

 Commercial Cloud Personal Cloud 

Server Types Cloud Server Instances Dedicated Servers 

Initial Cost Free High 

Computing Cost High Low 

Operations/Maintenance Easy Complicated 

Communication Cost Free(Usually High) Low 

Storage Cost Low(Usually High) Low 

Upgrades Easy and Cheap Difficult and Expensive 

Security AWS Security Private 

Data Dissemination Easy and Free(Usually Expensive) Low 

𝐶𝐶𝑇𝑇𝑝𝑝𝑡𝑡𝑡𝑡𝑙𝑙 = 𝐶𝐶𝑝𝑝𝑝𝑝𝑡𝑡 + 𝐶𝐶𝑝𝑝𝑝𝑝 ∗ 𝑇𝑇𝑝𝑝𝑝𝑝 + 𝐶𝐶𝑡𝑡𝑝𝑝𝑑𝑑 ∗ 𝐷𝐷𝑝𝑝𝑡𝑡𝑝𝑝 + 𝐶𝐶ℎ𝑤𝑤 ∗ 𝐷𝐷𝑝𝑝𝑡𝑡𝑝𝑝 
Cloud server instances do not require any initial cost while private cloud on dedicated servers do cost a lot 
to purchase hardware.  

● Initial Cost: Cloud server instances do not require any initial cost because they charge for the 
usage, while dedicated servers require an initial cost for server purchasing and deployment. 

● Computing Cost: The proposed system requires much computational resource which results in 
high computing cost for cloud server instances. In the long term, dedicated servers cost less for 
computing because only power consumption and appropriate maintenance fee will cost after 
purchase.  

● Operations/Maintenance: The operation/maintenance of cloud server instances is much easier 
than dedicated servers as all it needs is to sign in to the console and click the actions. However, the 
dedicated servers require manual management, security check, periodically backup, etc. 

● Communication Cost: Benefit from the high-in-low-out network demand of the proposed video 
analytic system and the output-charge-only policy of AWS, the communication cost of cloud server 
instances is almost free, while the dedicated servers require high bandwidth to access real-time 
traffic videos. The low-resolution video streams take up around 800kbps/camera, which means it 
requires around 320Mbps of download bandwidth to access 400 cameras.  

● Storage Cost: The Get-Process-Drop design of the traffic counter module reduces the need for 
storage. Only the output result will be recorded and stored in the database for long term storage, 
which makes the storage cost very little.  

● Upgrades: The upgrades of cloud server instances are quite easy without extra hardware purchase 
fee. All it needs is just to open new instances with better/newer CPUs. However, dedicated servers 
require a completely upgrade instead, which will be close to the initial cost.  

● Security: The data of cloud server instances is protected by AWS security, which is reliable enough. 
The data of dedicated servers is private.  

● Data Dissemination: As has been mentioned before, the high-in-low-out network demand of the 
proposed system fit into the free 1GB/month output data policy, which does not cost extra money. 
Meanwhile, the low bandwidth demand for uploading data does not cost much either. 

 
 

46



 

 
 

11.Conclusions and Future Work  
 
In this research, we proposed, built, deployed, tested, and evaluated a cloud-based traffic counting system 
based on CCTV traffic video streams. The proposed system improved some of the existing traffic counting 
algorithms for low-angle CCTV camera by novel methods to use a fraction of the video frames for analytics 
(the STLine), efficient processing of static noises caused by roadway infrastructure and signs and occlusion 
among vehicles. The streamlined workflow of the proposed platform alleviated the limitation and the 
instability of storage and the modularized system design allows for further improvement to be easily 
deployed in the future. The proposed system is able to completely support the automatic detection of camera 
directions with three types of roadside and intersection camera location scenarios and the manual processing 
of the camera directions with other cameras. Compared with traditional video traffic monitoring systems, 
the proposed high-efficiency STMap-based system can process real-time video with low consumption of 
computing and publish the result data feed with slight delay. The detailed contributions are as follows. 
 

● Video Analytic Models: To solve the ubiquitous lane matching problem, an installation-
asymmetry based lane direction determination method is proposed to match the lanes in camera 
view to real lanes. Combining the limited information that STLine extracted with the asymmetry 
in CCTV traffic camera view, the proposed system simplifies the occlusion problem to finding the 
separation parts of the occlusion in STMap. An occlusion detection method is proposed based on 
the assumption that most of the occlusions happen in CCTV camera views are far from the camera 
and will separate from each other when they are close to the cameras. An existing-time-based static 
noise removal method is proposed to help with background removal in STMap. 

● Adapting for NJ CCTV Traffic and Video Data Sources: The proposed system combined 511NJ 
traffic video stream, pre-marked STLine coordinates, camera installation details table, and 
TRANSCOM link condition data feed together, which enabled the whole Get-Process-Drop 
process of reading real-time CCTV traffic video streams, generating and processing STMaps, 
sending the counting results to database, publishing the counting results as feed. The pre-marked 
STLine coordinates were used to generate STMaps from the video streams. A camera installation 
detailed table from NJDOT was used to match the cameras and the lanes in camera views with 
TRANSCOM links. In case that the pre-marked STLines might be ineffective due to PTZ 
operations, the proposed system also has a local version that can display the video stream and show 
the pre-marked STLines, which enables the operator to determine whether the STLines are effective 
and re-mark the STLines if needed. 

● Cloud-based Deployment: The proposed system including video processing module, database 
module and feed publishing module was deployed on cloud using AWS RDS DB instances and 
AWS EC2 instances. An Amazon Machine Image (AMI) sample containing Amazon Linux with 
the required software and dependency packages was created for easy duplication of the proposed 
system and can be shared with Amazon Account ID easily. Daily reboot and auto-re-initiation were 
set to further reduce the cost and improve the reliability. 

● Computational Cost Reduction: The proposed real-time traffic counter cost much less than 
traditional systems in the market as it can be deployed on a normal computer with a CPU and 
network access, not like the traditional systems such as Autoscope, let alone the deep-learning-
based traffic monitoring system such as GoodVision. In terms of effectiveness, it also processes 
existing video much faster than traditional systems. 

The proposed system took 151.71s to process the 12-min-long video with 5760 frames 
using one thread on Intel 8850H under Mac OS and 205.68s to process the video on AWS t2.micro 
instance. The MAPE were 5%-10%, which were fine considering the low cost it took and could be 
improved in the future. When dealing with real-time video, the proposed system took up 2%-3% 
CPU and 100MB RAM per camera on a server with 2 E52470 v2 Xeon CPUs, which proved that 
the proposed system was quite suitable for large scale deployment. 
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● Promising Detection Performance and Efficiency: Compared the generated results with ground 
truth, the proposed system has better performance dealing with cameras installed on highway at a 
medium angle, in which the vehicles get separated from each other. For the occlusion happens at 
intersections because of red lights, the occlusion detection may not work as expected.   

 
Future work on the proposed platform will be conducted from the following key directions. 

● Automated Detection of Camera Direction: The proposed methods for camera detection still 
relies on some knowledge from transportation agencies regarding the relative locations of cameras 
with respect to the highway or intersections. Future research will focus on the use of existing 
Google satellite and google street view images to graphically match the video images to determine 
the precise location of the cameras and traffic directions. 

● Adaptive STLine detection with PTZ operations: For now, the STLines still need to be marked 
manually and every time a Pan-Tilt-Zoom (PTZ) operation is performed, the STLines have to be 
re-marked, which is definitely not a smart choice. There are two potential solutions to solve this 
problem. 1. Since that the STLines are already marked, what we need to do is realize the PTZ 
operation detection and once a PTZ operation is performed, do the feature-based auto recalibration 
to adjust the STLines. 2.Since the STLines should be close to the most frequent trajectory of each 
lane, the STLines can be marked using traditional trajectory detection. However, these two 
solutions both require video processing for the who video view, which is not compatible with the 
purpose of STLine methods: make it compute easily. 

● Occlusion Removal for CCTV Traffic Cameras: The proposed separation-detection-based 
occlusion detection is limited by the assumption that the vehicles will separate from each other 
when they come close to the camera, which requires the camera installed at the medium or high 
angle. To solve the occlusions happen near the camera because of large vehicle coverages at low 
angle cameras or side view angle cameras, color and size of the strands may need to be considered 
as reference data to separate occlusion. 

● Lane-change Tracking and Processing: The proposed system has a simple lane change detection 
which can only correct the vehicle counts rather than track the vehicles in neighboring lanes. To 
track the whole process of vehicle lane change behavior, it’s necessary to create the relationship 
between neighboring lanes and calibrate the coordinates of neighbor STLines. 

● Deep-learning based Video Analytic Models: In addition, deep-learning-based image analysis 
may also be added to analyze the STMap to extract the strands, which is different from a deep-
learning-based traffic monitoring system because it will only focus on the extracted STMaps rather 
than the whole video. 
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