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DESCRIPTION OF THE PROBLEM 

 

The emerging ECAV (Electrical, Connected, and Automated Vehicle) technologies will bring profound 

changes to future mobility. The private sector, such as Waymo, Uber, Tesla, and other self-driving 

startup companies, has accelerated road testing and accumulated significant vehicle miles daily. 

However, those datasets are not readily available to the public and academic sector for research and 

evaluation of their potential impact on and interaction with existing transportation infrastructure. With 

the accelerated deployment of connected and automated vehicle (CAV) technologies, public agencies 

have urgent needs (1) to understand how to prepare their transportation infrastructure, traffic 

operations, and management system to support CAVs, (2) on how to design traffic control systems for 

mixed Connected Automated, and Human-driven vehicles and (3) how to utilize the new data sources 

and application platforms of ECAVs to improve traffic mobility, safety, and environmental and energy 

impact. Meanwhile, the rapid development of the AV (Automated Vehicles)-grade sensing technologies, 

including LiDAR (Line Detection and Ranging) and computer vision technologies, have made it possible 

for the public and academic sectors to collect industrial-grade high-resolution vehicle, pedestrian, and 

infrastructure data. Research in this project focuses on planning, developing, and piloting a Smart 

Intersection Mobility Testbed (SIMT) for high-resolution smart mobility and infrastructure data sharing 

and testing of ECAV applications. 

APPROACH 

This project builds the basic platform modules for a proposed pilot Smart Intersection Mobility Testbed 

(SIMT) in downtown New Brunswick. The testbed will be equipped with high-resolution sensors to 

collect the real-time vehicle, pedestrian, and infrastructure change data. Data sharing and testing 

platforms will be built for testing and evaluating different mobility, safety, environmental, and energy 

applications. The proposed testbed will include the following key components. 

● Roadside Sensing and Computing Layer 

● V2I (Vehicle-to-Infrastructure) and I2C (Infrastructure-to-Center) Communication Layer 

● Central Computing, 3D Modeling, and Visualization Layer 

● Traffic, Pedestrian, and Infrastructure Analytic and Modeling Layer 

● In-Vehicle Smart Mobility Service Application Layer. 

● Testing interfaces for mobility, safety, environment, and energy applications. 

METHODOLOGY 

 

Proposed Smart Intersection Mobility Testbed System Design and Components 

This project will establish the pilot Smart Intersection Mobility Testbed (SIMT) at the intersection of 

Albany (Route 27) and George Street in downtown New Brunswick for the collection, processing, 
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visualization, and application testing with the smart mobility sensor data. The proposed testbed includes 

the following key components. 

Roadside sensors 

LiDAR and computer vision sensors are installed at the roadside infrastructure at or near the two 

intersections to collect the real-time vehicle, pedestrian, and infrastructure data. LiDAR sensors will be 

mounted to the existing roadside infrastructure, such as signal or light poles. Computer vision sensors 

consist of a high-resolution video to be deployed on the top of buildings around the testbed sites. 

 

An array of advanced sensors that will collect high-resolution data will form the foundation of the STMG. 

Sensors will range from autonomous-grade LiDAR to differential GPS base stations to HD (High-

Definition) surveillance cameras. An initial data capture using LiDAR will be used to capture roadway, 

transportation facilities, exterior, and in some cases, interior building infrastructure will be collected to 

serve as a "base map" of the SMTG. 

 

Figure 1. Sensor Configuration and Enabling Applications for the SMTG Smart Roadside Unit 

As depicted in Figure 1, the multi-resolution sensors are summarized below. 

• LiDAR – Light Detection and Ranging sensors utilize lasers to create 3D images of the 
surrounding area within 100 – 240m, depending on the type of sensor. High-angle, building-
mounted LiDAR sensors will be used to collect high-resolution vehicle trajectory and velocity 
information to support a variety of CV and other applications. They will also be used at 
intersections to support smart intersection applications. 

• HD Camera – HD cameras that can provide 4K resolution will be used with LiDAR sensors to 
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collect information regarding vehicle operations, pedestrian/cyclist behavior, and interaction at 
smart intersections. HD cameras will be supplemented with network cameras at locations where 
HD resolution is not required. 

• HD GPS/Bluetooth Beacon – Highly accurate vehicle and pedestrian positioning will be provided 
using differential GPS base stations and Bluetooth beacons deployed near the test site to 
increase the accuracy levels of GPS data. The sensors can also provide last-position data by 
triangulating beacon signals around buildings and other infrastructure corners. 

• Millimeter Wave Radar Detector –Millimeter Wave Radar Detectors can be used to collect 
trajectory data of moving objects (vehicles and pedestrians) to supplement the LiDAR sensor 
detection range. It will also provide redundancy for data collection during inclement weather, 
such as snow and fog, when LiDAR sensors have their limitations. 

• Parking Sensor – Sensors that monitor parking spaces will be utilized to support the 
development of smart parking applications. 

• Weather Sensor – Environmental conditions will be closely monitored; these sensors will also be 
used to support applications designed to provide road-weather condition alerts.  

 

Edge/Fog Computing Units:  

Edge/Fog computing units will be built to process the roadside sensor data in the field and transfer the 

processed data to the computing center at Rutgers Smart Mobility Lab to explore next-generation traffic 

management centers (TMCs) functionalities. If approved, the edge/fog computing units will also include 

the connectivity and data feed from the traffic signal controllers at the site. 

The roadside computing layer supports application delivery for test ground users and travelers in the 

project corridor. Given the low latency required to support connected and advanced driving system 

applications, data processing will occur near drivers, pedestrians, and bicyclists at the roadside level. Key 

roadside computing technologies proposed for use at SMTG are summarized below. 

• Edge Processors - LiDAR and other sensors generate significant amounts of data; pushing this 
data to a central location/back office would introduce significant latency into application 
processing. In addition, the large amounts of data generated by LiDAR or camera systems would 
require significant bandwidth for the communications network. Edge processing can alleviate 
much of this challenge by performing the processing locally via direct connections to the 
sensors. Data that will be used locally is immediately available; data to be aggregated with other 
data for use nearby can be pushed to roadside "Fog1" processor nodes. 

• Fog Processor Node – This element serves as an intermediary server at the roadside. It 
aggregates data from edge processors and sends the data to servers found in the Central Data 
Management Environment for storage and further processing/computing. These nodes can also 
disseminate real-time local traffic and infrastructure information to test vehicles and 
pedestrians/bicyclists.  

• RSU – The Roadside Unit is the fixed DSRC unit that serves as the main application platform. 
These units are highly capable Linux computers with radios enabling low latency 
communications, enabling CV applications over distances of 400 – 500 meters with clear lines of 
sight.  

 
1 “Fog” is the term used to refer to intermediate data processing prior to the “cloud.” 
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• Network Security Appliance – Network security will be enhanced through the use of industrial-
grade security appliances that will be installed at nodes with public-facing communications. 
Similar security measures will also be considered in traffic signal controllers involved in the 
testing or equipped with public-facing applications. 

• Wi-Fi/Cellular Connectivity – Local wireless connectivity will be provided via Wi-Fi nodes to 
minimize processing times and as an element of potential pedestrian/cyclist applications. 
Cellular connectivity will be used for connections to the Central Data Management Environment 
and between Fog Processor Nodes for a specific type of data. 

 

Communication network  

The communication architecture realizes the two-way communication between sensing and edge 

computing units and the central computing units at the Rutgers Smart Mobility Lab. The communication 

architecture may include the combination of wired and wireless communication through cellular or 

University network infrastructure.  

The Connected Vehicle technologies should include the conventional C-V2X(Cellular Vehicle-to-

Everything) physical and the emerging virtual roadside units (RSUs). Virtual RSU services are provided via 

Verizon's VZMODE Safety Messaging Framework, resident on MEC will provide access to safety data 

information collected from vehicles and infrastructure for data analysis and subsequent viewing.   These 

virtual RSUs will be configurable via a simple user interface and can be placed anywhere in the 

Innovation Hub. Safety messages can be collected from OBUs mounted in the test vehicles and 

messages generated by ITS services and roadside sensors such as the Computer Vision (CV) software 

processing the live video streams of Bosch traffic safety cameras. Sensor messages include Basic Safety 

Message (BSM), which are generated for vehicles detected in the FoV, and Personal Safety Messages 

(PSM) generated for Pedestrians and other Vulnerable Road Users (VRUs) detected at crosswalks. 

 

Cloud/Center Computing for 3D Data Processing and Modeling 

The server or cloud-based 3D data analytic platforms will process, archive, and model the collected 3D 

LiDAR and Computer Vision data. The data will be denoised, anonymized, and mapped to the 3D space 

of the entire testbed. Object data such as vehicles, pedestrians, temporary road infrastructures (e.g., 

work zones), and infrastructure changes will be extracted and archived. The Central Data Management 

Environment layer represents the storage and application servers housed at the Traffic System Lab at 

Rutgers University for initial processing. Additional processing, as well as cloud-based storage capacity, 

will be provided by Amazon Web Services (AWS). 

• Central Computing Node – Central computing node will process system-wide vehicle and object 
trajectories, consolidate, and reconcile overlapping objects from different sensors, and apply 
anonymization algorithms to mask pedestrians' personal identification information (PII). 

• Amazon Cloud Storage – Additional storage and 3D rendering support will be provided through 
AWS cloud services to supplement local storage at Rutgers University. 

• Smart Mobility Data Portal – Researchers and practitioners can access public data collected by 
test ground sensors and any applications developed by Rutgers researchers. Data will be 
cleansed and anonymized before being shared. 

• 3D Holistic-View Video Wall System: The 3D object data generated will be imported into 3D 



5 
 

 
 

visualization and simulation models that will be displayed in a futuristic 360-view visualization 
theater for real-time inspection of traffic scenes from different angles. 

 

In-Vehicle Smart Mobility Service Applications: The in-vehicle test platform will be developed based on 

the research team's existing mobile applications. The research team has developed a naturalistic driving 

data collection and adaptive traffic signal control. The team will integrate both platforms and establish a 

cellular-based V2I (Vehicle-to-Infrastructure) and C2V (Center-to-Vehicle) smart mobility application test 

platform. 

 

Testing Interfaces for Mobility, Safety, Environment, and Energy Applications:  

The SIMT will include the mobility, safety, environment, and energy application testing interfaces with 

service/controller-end and user-end interfaces. The interfaces will include testing interfaces for 

applications, such as adaptive traffic signal control and intersection safety applications, to improve the 

safety and mobility of drivers, pedestrians, and bicyclists. Initial implementations will take place within 

the testing ground, serving as pilot sites for NJDOT. The applications implemented or investigated by the 

Rutgers Team encompass the range of connected/advanced safety and mobility applications, including 

Smart Intersections, Smart Pedestrian Assistance, Incident Management Assistance, Infrastructure 

Maintenance Assistance support, Road-Weather Intelligence applications, and Advanced Roadside 

Driver Assistance applications. 

 

Proposed Deployment Strategies 

The proposed deployment includes the following four stages. 

• Stage 1: On-Demand Platform and Application Development and Testing: In the first stage, the 

research team will focus on developing the critical sensing, computing, and communication systems 

while building all components on an on-demand platform that can be moved between the roadside 

and the labs. 

• Stage 2: Roadside Instrumentation and Network Configuration: Once the full prototype system is 

developed. The research team will work with Middlesex County, the City of New Brunswick, and 

NJDOT to fully deploy the proposed systems. 

• Stage 3: Computing, Analytics, and Visualization Platform Development: The research team will 

develop prototype applications to process the collected real-time high-resolution smart mobility 

data and create the 3D model for the proposed visualization theater for futuristic TMCs. This stage 

includes building both the static high-resolution environment of the test sites and mapping all 

dynamic 3D objects detected into the environment.  

• Stage 4: Data Sharing and Application Testing Platform Development: The data sharing platform will 

focus on developing 3D high-resolution data packaging, archiving, and retrieval systems. Testing 

interfaces from both the user and service/controller end will also be developed for application 

testing. 
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Proposed Computer Vision Algorithms for SIMT 

 

Existing Commercial CCTV Analytic Products  

The CCTV (Closed Circuit Television) traffic surveillance systems are one of the essential assessments of 

traffic management centers (TMCs) to monitor congestion and incidents in daily operations. Computer 

vision sensors based on CCTV traffic cameras have been explored over the last four decades. Many 

platforms have the capability of crowdsourcing and on-demand video analytics. However, those systems 

often offer heavy-weight all-inclusive packages of smart city functionalities such as TSM&O 21 

(Transportation System Management and Operations), energy and utility management, etc.  

Existing traffic video analytic systems can be classified into three categories: integrated camera and 

analytic solutions, universal virtual sensor solutions, and cloud-based smart city video analytic solutions. 

The integrated camera and analytic solutions use image processing algorithms developed and fully 

calibrated for specific types of video cameras at specific scenes. Many of those systems even encode the 

image processing algorithms within the processing units directly connected to the cameras. Such tight 

integration allows those algorithms to take full advantage of the full resolution and quality of the raw 

Video to generate needed traffic data. Representative platforms include Autoscope and Gridsmart.  

Universal virtual sensor platforms are essentially hardware independent and developed for typical 

intersection, or roadside traffic scenes often observed in existing CCTV traffic cameras. Some platforms 

can be deployed to existing traffic data sources, even PTZ (Pan-Tilt-Zoom) cameras (e.g., TrafficVision ()), 

with the capability of adjusting the "scanlines" or "detector zones" in PTZ operations. Representative 

systems include CitiLog, TrafficVision, MetroTech, GoodVision, Miovision, and KiwiVision.  

The advance in central (CPU) and graphics processing unit (GPU) technologies and cloud computing 

triggers the current wave of cloud-based smart city video analytic solutions. Many platforms, such as 

Placemeter, MicroFocus (ex-HP), IBM Intelligent Video Analytics, Cisco Smart City Cloud, and BriefCam, 

have the capability of crowdsourcing and on-demand video analytics.  

CCTV Traffic Surveillance/Smart City Applications for Intersections 

Traffic operations and management heavily rely on the traffic data collected from intersections and 

roads. Efficient and reliable traffic sensing and detection empower traffic managers to objectively 

measure and assess traffic conditions, mitigate traffic congestion, and adjust traffic signal timing. We 

can effortlessly estimate intersection delay, travel time, and Level of Service (LOS) with high-resolution 

vehicle trajectory data. The trajectory data can contribute to incident management, active traffic 

control, and speed harmonizing, improving safety and mobility from individual intersections to the 

entire roadway network. In the era of connected and autonomous vehicles (CAV), vehicle trajectories 

obtained from roadside sensors play a critical role in many V2I (Vehicle to Infrastructure) applications 

such as Cooperative Adaptive Cruise Control, Dynamic Merge Assistance, and Eco-Traffic Signal Timing.  

Compared to many other traffic sensing devices, traffic cameras have apparent advantages, which can 

be a cost-effective solution in the service of the infrastructure-based detector. Due to its capability to 

provide rich information and a large coverage area, CCTV Camera has been applied for vehicle speed 

measurement, traffic analytics, near-miss reporting, and incident review. The main disadvantage is that 
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vision sensors are sensitive to illumination changes. The video image processing relies on external 

illumination, resulting in lower accuracy at night. The video image detector is often used with other 

types of detectors to provide some back-ups, such as Radar or Remote Traffic Microwave Sensors 

(RTMSs). 

The existing video-based vehicle detection and recognition methods can be categorized as motion- and 

model-based methods. The motion-based method employs motion information to segment moving 

objects from the traffic scene between consecutive frames. In contrast, using a pre-trained template, 

the model-based approach identifies objects based on their appearances. Typical motion-based 

methods include frame differencing, background subtraction, and optical flow. Model-based methods 

include a Histogram of Gradient (HOG) feature detector, Deformable Part Model, and deep learning 

models. The rise of AI (Artificial Intelligence) and deep learning has significantly advanced image object 

detection in recent years. Video-based intersection surveillance will become an indispensable part of 

smart city applications. In the future, CAV technology such as Eco-intersection Approach and Intelligent 

Signal Control will lead to more harmonized speed characteristics. The performance metrics generated 

from trajectory data are critical for CAV-based traffic operation, as they can provide proactive solutions 

and depict a better picture of traffic networks. 

Another commonly seen traffic video analysis is scanline-based. A scanline is a group of pixels on 

selected lanes used for object detection and tracking. There are two types of scanlines: the latitudinal 

scanline, which is defined across the traveling path (Tseng, Lin & Smith, 2002; Zhang et al., 2007; 

Mithun, Rashid & Rahman, 2012; Ren et al., 2014). The other is the longitudinal scanline that is defined 

along the traveling direction (Cho & Rice, 2007; Malinovskiy et al., 2009; Ardestani et al., 2016; Zhang 

and Jin, 2019). Previous scanline-based vehicle detection can only produce spot-specific traffic 

parameters, such as volume, vehicle type, and spot speed. In this study, we used longitudinal scanlines 

to extract the vehicle trajectory in the urban arterial with signal-controlled intersections, which deals 

with more complex scenarios than previous scanline applications.  

Traffic Camera Calibration 

Camera calibration provides a mapping relationship between real-world coordinates and 2D images, 

which is the foundation for extracting vehicle trajectories, measuring speeds, and acquiring other traffic 

information from video footage. Some camera calibration techniques require to detect the vanishing 

point (VP) in the 2D image, which is the point on the image plane formed by the convergence of 

mutually parallel lines in three-dimensional. Others are using reference objects for calculating the 

camera-pose-based perspective transformation. Dailey, Cathey, and Pumrin (2000) developed an 

algorithm to estimate mean traffic speed from uncalibrated cameras without knowing information such 

as camera focus, tilt, or angle. Their algorithm is constrained to several assumptions, such as the 

limitation of the speed of the vehicle, motion constraints on the road plain, linear change of scale factor, 

and known vehicle length distribution. Schoepflin and Dailey (2003) presented a three-stage method to 

calibrate the roadside camera into a speed sensor for traffic management. Their model used the motion 

of the vehicle to estimate the camera position and calibrate the camera by determining the vanishing 

point of the roadway. Cathey and Dailey (2005) proposed an algorithm to calibrate PTZ (pan, tilt, zoom) 

camera, consisting of three phases, (1) lane boundary detection, (2) computation of vanishing point and 
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image straightening transformation, (3) calculation of the image-to-highway scale factor (feet per pixel). 

Grammatikopoulos, Karras, and Petsa (2007) developed an approach for automatically estimating 

camera parameters (camera constant, principal point location, and two radial lens distortion 

coefficients) from images with three vanishing points of orthogonal directions. Dubská et al. (2015) 

proposed a fully automatic camera calibration method without the manual setting under various road 

conditions. Their approach detects and tracks local feature points of moving vehicles and uses the 

trajectories of tracked points to obtain vanishing points corresponding to the direction of moving 

vehicles. Luvizon et al. (2016) used the planar of the inductive loop detector as a reference object to 

construct a homography matrix for measuring vehicle speed from license plate detection. Do et al. 

(2015) developed a method of calibration to measure traffic speed by drawing an equilateral triangle on 

the ground as a 2D reference object. Then they solve the three configuration parameters of height h, the 

tilt angle ψ, and the focus distance f. You and Zheng (2016) developed a dynamic calibration method by 

obtaining two vanishing points: the vanishing point in the direction of the traveled lane and the 

orthogonal vanishing point. 

More recently, Sochor, Jranek, and Herout (2017) developed a deep learning model to assign a 3D 

bounding box for the detected vehicle. Based on the outputs of the deep learning model, they can 

obtain two vanishing points for camera calibration. Their result reduced the distance ratio error of 

vanishing point detection from 0.18 to 0.09, which beat the previous state-of-the-art model. Sochor et 

al. (2018) established a benchmark dataset for evaluating different traffic camera calibration methods. 

The speed of vehicles in the dataset was collected using LiDAR and verified through GPS trackers. 

Bhardwaj et al. (2018) proposed the AutoCalib system for scalable, automatic calibration of traffic 

cameras, using a deep learning model to extract selected key-point features from vehicle images to 

produce a robust estimate of the camera calibration parameters automatically. Their model relies on the 

car's known geometric parameters (e.g., the distance between the two taillights).  

Most of the camera calibration algorithms are based on prior knowledge. Some traffic camera 

calibration methods mentioned above are based on vanishing points inferred from moving objects, 

which causes those models to be sensitive to environmental variations. In practice, other models based 

on reference objects are hard to deploy because traffic operators cannot move the reference object 

every time the PTZ-camera scene changes.  

LiDAR Data Analytics 

Sun, Y. et al. proposed a vehicle trajectories extraction system that used region of interest (ROI) to 

roughly filter the LiDAR data and then used mean distance to separate the inliers and outliers, 

significantly reducing the processing workload. In addition, Random Sample Consensus (RANSAC) was 

used for ground plane segmentation. In 2018, Wu et al. proposed a novel method for vehicle tracking 

and an automatic background filtering method with 3-dimensional density statistic background filtering 

(3D-DSF), frame aggregation, point statistics, threshold learning, and real-time filtering. In 2019, Wu et 

al. developed a novel algorithm for ground points identification and excluding, which includes four 

parts: density-based spatial clustering of applications with noise (DBSCAN)-based points clustering, 

slope-based filtering, shape-based filtering, and ground points matrix extraction. Wu et al. proposed a 

new vehicle classification approach. The paper firstly used 3D-DSF for background filtering, lane 

https://ieeexplore.ieee.org/author/38230275100
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identification, multirectified density-based spatial clustering of applications with noise (MCDBSCAN) for 

lane identification, DBSCAN for object clustering, global nearest neighbor (GNN) for object tracking, and 

then selected six features for vehicle classification based on Naive Bayes, KNN, decision trees, SVM, and 

ANN. Wu et al. developed a semi-automatic approach for roadside LiDAR points registration, which 

could not only improve the effectiveness and accuracy of data integration but also help reduce the 

impact of the occlusion issue on object detection.  

Mobile LiDAR Technology and LiDAR-Camera Integration 

LiDAR sensors, including mobile LiDAR, airborne, and static LiDAR, have been extensively used in 

transportation studies like vehicle and pedestrian detection, object localization, and trajectory tracking. 

With the rise of the self-driving car, LiDAR-based mapping service and sensing technology will play a 

critical role in self-driving vehicles routinely executing complex maneuvers. A wide range of spatial 

information can be extracted from LiDAR point cloud data, including road level (e.g., road surface, lane 

markers, driving lines, cracks, and utility holes), object-level analysis (e.g., buildings, trees, vehicles, and 

power line) to building-structure element level (e.g., façade, doors, windows, roofs) analysis.  

Much research has explored the use of LiDAR for automated urban on-road object detection and 

extraction (Williams et al., 2013; Guan et al., 2016; Ma et al., 2018). For example, Zai et al. (2018) 

proposed an effective 3-D road boundary extraction by employing super-voxels and graph cuts on MLS 

(Mobile LiDAR System) data. Other studies, like Xu et al. (2017), developed a method for automatic 

extraction of road curbs. They evaluated their method on a large scale of residential and urban area 

mobile LiDAR point clouds. Additionally, Yang (2012) presented a technique that can realize the 

automated extraction of road markings from mobile LiDAR point clouds. In this study, 3-D point clouds 

were converted into 2-D geo-referenced feature images, and road markings were filtered by controlling 

LiDAR intensity and elevation value. Finally, road marking outlines were extracted based on prior 

knowledge of road marking shape and arrangement. Yu et al. (2015) proposed an algorithm that uses a 

multi-thread computing strategy to detect urban road utility hole covers with MLS data. Other published 

studies focus on automated urban object extraction, including traffic signs, trees, buildings, vehicles, 

powerlines, etc. (Engelmann et al., 2017; Ye et al., 2018; Che et al., 2019; Wu et al., 2017). Yang et al. 

(2015) proposed a method for urban object extraction with Mobile LiDAR data. They generated multi-

scale super-voxels and reduced computing costs by segmenting super-voxels. Finally, their approach was 

validated with large data sets and achieved accuracy between 90% and 96%. Some studies focus on 

building element extraction from MLS data. For example, MLS data have been successfully used in 

window and façade detection studies by Wang et al. (2011) and Arachchige et al. (2012).  

Another critical topic about LiDAR is the sensor fusion of LiDAR and camera, which has received 

increasing attention over the years. Cameras provide rich texture and color information, while LiDAR 

provides accurate spatial data. Fusing them can provide depth information for the pixels in the camera 

image with reliable 3D point clouds, which are helpful in velocity estimation for precise vehicle tracking 

and autonomous driving. Extensive studies have explored the registration between LiDAR and camera 

imagery. The most common approaches require the existence of known targets in the scene (Zhang et 

al., 2004; Fremont and Bonnifait, 2008; Li et al., 2007; Naroditsky et al., 2011; Vel'as et al., 2014). These 

studies used checkerboards and other types of targets (e.g., triangles, circles, or white-to-black 
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transitions) that are observable by both LiDAR and the camera. For example, Zhang et al. (2004) 

exploited a planar checkerboard and used nonlinear least-squares optimizations to calibrate a single 

optical camera with a 2D scanner. In Narodistsky et al. (2011) 's study, the calibration problem is 

described as a set of polynomial equations, and six correspondences are minimally required for the 

alignment of the LiDAR-camera system. Recently, more researchers have attempted to automate the 

calibration process using features present in the observed scene without markers or targets. For 

example, Pandey et al. (2015) addressed automatic targetless extrinsic calibration by maximizing mutual 

information between image and 3D LiDAR camera. It used the known intrinsic value of the camera and 

estimated the extrinsic parameters to project LiDAR onto camera imagery. The mutual information value 

is computed by comparing the LiDAR reflectivity with the intensities value from camera images. In 

another study proposed by Li et al. (2018), the registration of panoramic image sequences and mobile 

laser scanning point clouds in the urban environment was estimated using parked vehicles as 

registration primitives.  

In contrast, there has been minimal research on PTZ camera calibration using infrastructure 3D LiDAR 

data for vehicle trajectory detection. Previously-published studies of the combination of LiDAR (for 

range information) and camera systems ("for better recognition") have focused on the dynamic data 

fusion between image objects detected in traffic video and the corresponding 3D point cloud clusters 

identified in mobile LiDAR data. In this paper, however, the focus is on using static LiDAR 3D point cloud 

to assist the physical trajectory extraction. Moreover, those methods assume the LiDAR-Camera 

alignment can be accurately estimated when the camera and LiDAR capture the same scene on a mobile 

platform. Such an assumption cannot apply to the proposed LiDAR-Camera system for vehicle trajectory 

detection. The camera and LiDAR capture data at the same time and location in existing papers (Vel'as 

et al., 2014; Li et al., 2018; Pandey et al., 2015). However, in this paper, the traffic cameras capture the 

dynamic roadway condition, while the pre-collected static LiDAR 3D model is used as the basis for 

perspective and coordinate transformation.  

Proposed 2D Video and 3D Infrastructure Data Integration Workflow 

It takes two steps to acquire useful traffic trajectory data from video sensors. The first step is extracting 

vehicle movements from continuous video frames. The second step is converting the video coordinates 

to real-world GPS coordinates to get the real traffic parameters, such as speed, density, and queue 

length. 

Figure 2 illustrates the overall workflow for LiDAR-assisted Traffic Video Analysis. The main Video 

analytic workflow is depicted on the left branch, where raw video data are processed and analyzed to 

generate pixel trajectory. In contrast, the right branch uses LiDAR data to conduct 2D-3D feature 

matching to convert the pixel coordinates into world coordinates to generate physical trajectories.  
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Figure 2. Dataflow of LiDAR-assisted Traffic Video Analysis 

 

Scanline-based Trajectory Extraction 

The scanline methods in the literature review are used on straight highway segments. While for this 

paper, the scanline method was modified for an urban signalized intersection to deal with more complex 

scenarios in terms of road geometry, crossing vehicles, and roadside infrastructure. The scanline-based 

trajectory extraction consists of four major steps: spatial-temporal map (STmap) generation, 

preprocessing, vehicle strands detection, and pixel trajectory detection. Using STmap for vehicle 

trajectory extraction, the conventional two-step trajectory extraction algorithm consisting of object 

detection and tracking is simplified as one step algorithm by segmenting out the vehicle strands on 

STmap. 

STmap is stacked scanline pixels from each video frame. The vertical axis of the STmap can be converted 

into the pixel distance. The horizontal axis represents the frame number. The STmap preserves 

trajectories of any moving objects passing along the scanline. Figure 3 illustrates the scanlines in our 

testing videos, which covered nine lanes at the New Brunswick train station intersection.  
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Figure 3. Scanline-Based Vehicle Trajectory Detection 

 

• Spatial-temporal Map Generation  

First, a piecewise scanline was defined to generate a spatial-temporal diagram by selecting turning 

points along the traveled lanes. Bresenham's line algorithm is used to get the pixel coordinates between 

two turning points. The following is the algorithm.  

Bresenham's Line Pixel Algorithm 

========================================================== 

Input: (𝑋𝑠𝑡𝑎𝑟𝑡 , 𝑌𝑠𝑡𝑎𝑟𝑡) and (𝑋𝑒𝑛𝑑, 𝑌𝑒𝑛𝑑) 

Outputs: pixel coordinates of the straight line between  (𝑋𝑠𝑡𝑎𝑟𝑡 , 𝑌𝑠𝑡𝑎𝑟𝑡) and (𝑋𝑒𝑛𝑑 , 𝑌𝑒𝑛𝑑) 

Algorithm: 

Calculate constants: ∆𝑥 =  𝑋𝑒𝑛𝑑 –  𝑋𝑠𝑡𝑎𝑟𝑡 ;   ∆𝑦 =  𝑌𝑒𝑛𝑑 – 𝑌𝑠𝑡𝑎𝑟𝑡 

Assign value to the starting parameters: 𝑘 =  0, 𝑝0  =  2∆𝑦 – ∆𝑥 

Obtain (𝑋𝑠𝑡𝑎𝑟𝑡 , 𝑌𝑠𝑡𝑎𝑟𝑡) 

while 𝑥𝑘 < 𝑋𝑒𝑛𝑑  (note that 𝑥𝑘 is integer x-coordinate along the line)  

    if 𝑝𝑘  <  0 

        obtain pixel at ( 𝑥𝑘  +  1, 𝑦𝑘 )  

         𝑝𝑘+1  =  𝑝𝑘  +  2∆𝑦 

    Else 

        obtain pixel at ( 𝑥𝑘  +  1, 𝑦𝑘  +  1 )  

        𝑝𝑘+1  =  𝑝𝑘  +  2∆𝑦 –  2∆𝑥 

    𝑘 += 1 

=========================================================== 
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After obtaining the pixel coordinates of scanline points, the scanline points are stacked together from 

every frame, eventually showing the movements of objects passing along the scanline. On completion of 

the stacking scanlines from every video frame, the STmap is created. Each strand on the STmap 

represents a unique object (Figure 4).  

 

 

Figure 4. STmap and Vehicle Trajectory 

• Preprocessing 

Preprocessing is necessary to remove the noises before trajectory extraction. Preprocessing has three 

two modules, static noise removal and shadow detection.  

• Static Noises Removal 

A significant challenge in the urban scenario is static noises caused by lane markers, traffic signs, poles, 

and other infrastructure objects that might leave multiple horizontal marks on STmap. To remove the 

static noises, we first identify static object areas with the horizontal lines on STmap. Then we replace the 

horizontal line with the value of the nearest non-noise pixels. The results are shown in  Figure 5.  

 

  

Figure 5. STmap and Vehicle Strands 

Algorithm 1: Remove Static Noise 

Input:  

            RGB Spatial-Temporal Diagram: 𝑆   

B1 B2
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            Parameter: noise_threshold  

Output:   

            Noise-Free Spatial-Temporal Diagram: 𝑆 

R is row number of S(𝑟, 𝑡)  

T is column number of 𝑆(𝑟, 𝑡)   

Se is Canny Edge detection results of 𝑆 

Do Morphological Dilation on Se   

For every row r0 in 𝑆(𝑟, 𝑡) do   

    If (∑ Se
𝑡=𝑇
𝑡=1 (r0,t))/ T > noise_threshold then   

         Save the Row Number in Rnoise 

    End if 

End for 

For every row r1 in Rnoise do 

    Replace row r1 in 𝑆 with mean value of K-nearest neighbor pixels that are not in Rnoise  

End For 

Return   𝑆 

 

• Remove Shadows  

Shadow detection and suppression is an active research field of image processing. Shadows cast from 

objects often contaminate STmap and result in errors for trajectory detection. However, shadow pixels 

have their attributes, often characterized as lower intensity and fewer textures (see Figure 6).  

 
Figure 6. Shadow Detection on STmap 

 

 

 

 

 

 

 

 

B3
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Algorithm 2: Detect and Remove Shadow   

Input: 

              RGB Spatial Temporal Diagram 𝑆   

              Parameters: shadow_mean, shadow_variance  

Output:   

             Shadow Free matrix: 𝑆𝑛𝑒𝑤   

W: n by n moving window 

G:  Grey level STmap  

For every pixel (r, t) in ST Map do   

        Consider a 3 by 3 window: W = G (r-1: r+1, t-1: t+1)  

    Compute mean value of window W:  Mean(W)   

    Compute variance of window W: Var(W)  

        If   Mean(W) < shadow_mean and Var(W) < shadow_variance then  

                 Replace S(r, t) with a median RGB value of row r of S  

        End if  

End for 

𝑆𝑛𝑒𝑤 = 𝑆  

End for  

Return 𝑆𝑛𝑒𝑤  

 

• Stands Detection  

A group of pixels on STmap that shows the moving object's trajectory is named vehicle strands. During 

this step, three main features of STmap are utilized to segment the vehicle strands, including edge, 

color, and motion.  

• Edge Detection 

The first feature is the edge feature, and the Canny edge detector is used due to its robustness. 

However, the outputs of the Canny Edge detector are incomplete and often lead to cracked segments, 

as shown in Figure 7.  

 

Figure 7. Edge Detection Results for Vehicle Strands C1
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• Background Detection 

Its color information is utilized to analyze further the STmap, which uses histogram thresholding for 

Background detection. This step builds the background model and compares the pixel value with the 

background model to separate moving objects. For the background detection method, we assume the 

intensity level of roadway pavement follows a normal distribution, while the vehicle textures are usually 

randomly distributed. The roadway pavement and vehicle strands often occupy different ranges, as 

shown in histogram Figure 8(a).  

The probability of a pixel 𝑧 given by the intensity distribution is expressed in equation 𝑷𝒛 = 𝑷𝒃 ∗

𝒑𝒃(𝒛) + 𝑷𝒗 ∗ 𝒑𝒗(𝒛)                                      (1).  

𝑷(𝒛) = 𝑷𝒃 ∗ 𝒑𝒃(𝒛) + 𝑷𝒗 ∗ 𝒑𝒗(𝒛)                                      (1) 

Where 𝑝𝑏(𝑧) is the probability distribution of the background, 𝑝𝑣(𝑧) is the probability distribution of 

vehicles, 𝑃𝑏 is a priori probabilities of background, and 𝑃𝑣 is a priori probability of vehicles.  

Considering the background roadway is the majority, the road pixel intensities can be defined by 

background thresholds (𝑇1, 𝑇2). To find the optimum background threshold is described in algorithm 3. 

Figure 8(b) shows the results of replacing all background pixels with a uniform color.  

 
a 

 
b 

Figure 8. Background Model and Thresholding Based Histogram Analysis 

C2

C3
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Algorithm 3: Histogram Based Background Detection  

Input:  

            RGB Spatial-Temporal Map: 𝑆 

Output:  

           Spatial-Temporal Map with uniform Background:  𝑆𝑠 

 

Compute the median RBG value of STMap (𝑅𝑚 , 𝐺𝑚, 𝐵𝑚). 

Convert S to Grey level image G.   

 

For each row r in G: do  

        Compute the histogram of intensity distribution H(r) 

        Find the valleys of H(r) on both sides as (𝑇1, 𝑇2) 

        If 𝑝𝑖𝑥𝑒𝑙(𝑟) ≥  𝑇1 and 𝑝𝑖𝑥𝑒𝑙(𝑟) ≤ 𝑇2                

Set 𝑝𝑖𝑥𝑒𝑙 (𝑟) on S as (𝑅𝑚 , 𝐺𝑚, 𝐵𝑚).  

End  

for 𝑆𝑠 = 𝑆  

Return  𝑆𝑠 

 

 

• Time Differencing 

Time differencing is to use the motion feature on the STmap, which essentially does the frame 

differencing method on the STmap, as the STmap is the progression of a group of pixels over time. The 

following equation describes how we obtain the time differencing result. Detection results are shown in 

Figure 9. 

𝑆𝑇𝑡(𝑟, 𝑡) =  {
1,       |𝑆𝑇𝐺𝑟𝑎𝑦(𝑟, 𝑡) − 𝑆𝑇𝐺𝑟𝑎𝑦(𝑟, 𝑡 − ∆𝑡)| ≥ 𝑡ℎ𝑟𝑙𝑑  𝑎𝑛𝑑 | 𝑆𝑇𝐺𝑟𝑎𝑦(𝑟, 𝑡) − 𝑆𝑇𝐺(𝑟, 𝑡 + ∆𝑡)| ≥ 𝑡ℎ𝑟𝑙𝑑 

0,                                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                           
 (2) 

 

where 𝑆𝑇𝑡  is the binary image output from time differencing method. Vehicle strands are labeled as 1, 

and background pixels are labeled as 0. (𝑟, 𝑡) are row and column indexes for each pixel on ST diagram.  

𝑆𝑇𝐺𝑟𝑎𝑦 is a gray-level STmap, ∆𝑡 is the parameter, and its suggested value is 2. 𝑇ℎ𝑟𝑙𝑑 is the threshold 

parameter for differencing detection, and the suggested value is 10.  

 

Figure 9.  Strands Detection Results Using Time Differencing 
C4
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After edge detection, background detection, and time-differencing, we combine the three results to get 

clean and complete vehicle strands. There are also crossing vehicles on STmap, frequently observed for 

intersection scenarios. However, the crossing cars can be removed based on occupancy (duration) or 

height/width ratio. 

• Pixel Trajectory Extraction 

Since we draw the scanline in the same direction as the direction of traffic, all trajectories always go 

from the top-left to the right-bottom on the STmap. The edges of vehicle strands accurately record the 

front bumpers of vehicles. The goal of this step is to identify the boundaries of each vehicle strand. 

Therefore, the complete movement of the car along the scanline can be obtained. On completion of 

trajectory profiles on STmap, we can acquire the vehicle trajectories in video image coordinates, as we 

know the selected video pixel coordinates of all points of the scanline. The results of generated 

trajectory profiles on STmap are plotted in Figure 10.  

 

Figure 10. Detected Pixel Trajectory on STmap 

LiDAR Processing and Camera Calibration 

• Estimating Video Distortion 

Correcting lens distortion is critical to an accurate projection result. Without a reasonable estimate of 

the camera distortion, it is difficult to calculate the precise projection between the video frame and 

point cloud. The camera calibration and lens un-distortion steps are implemented with the OpenCV 

toolbox. 

• Raw LiDAR Processing 

The New Brunswick mobile LiDAR dataset is hosted in the online mapping system (Figure 11b). And 

LiDAR data can be retrieved by entering the GPS information of the study area (40.496326 N and -

74.446131 W). The raw LiDAR point cloud obtained from the online mapping system is shown in Figure 

11d. After this step, we removed the highlighted building in Figure 11c, which blocks the studied area 

(see Figure 11e). Then, we removed the unnecessary point cloud from the camera view and cleaned the 
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target area by eliminating the noise points. The points belong to vehicles, pedestrians, trees, etc. The 

study area of the point cloud model after cleaning is shown in Figure 11f. 

             

 

Figure 11. LiDAR Data Collection and Processing Procedure 

(a) Rutgers Mobile LiDAR System; (b) New Brunswick Mobile Mapping Database;(c) Study Area on 

Google Map; (d) Raw LiDAR Data (e) LiDAR Data of Test Site Before Cleaning; (f) LiDAR Data After 

Cleaning 

• Camera Calibration with 3D LiDAR Data  

The camera calibration process is to identify the relationship between image pixels with real-world 

coordinates, where both intrinsic and extrinsic parameters determine the relationship. Intrinsic 

parameters are fixed values composed of focal length, optical center, and screw coefficients. Extrinsic 

parameters are usually decomposed to rotation and translation concerning world coordinates.  

Figure 12 shows how to relate the trajectory points from STmap to video image coordinates and then 

transform the trajectory points into real-world coordinates. The STmap coordinates and video image 

translation is already known during the STmap Generation step because the row coordinate (r) in STmap 

(r, t) is the order of generated points using Bresenham's line algorithm.  
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Figure 12. Three Coordinate Systems in LiDAR-Camera System Using Scanline Method 

The following section will explain how to link video coordinates (𝑢, 𝑣) to real-world GPS coordinates (X, 

Y, Z) using matched features on both the 2D camera and 3D LiDAR model. The relationship between 2D 

points and 3D points is represented as the equation (2): 

 

𝜆 [
𝑢
𝑣
1
] = 𝑃 [

𝑋
𝑌
𝑍
1

]                             (3)         

 

Where,  

(u, v) video image pixel coordinate for a reference point  

(X, Y, Z) is world GPS coordinates for a reference point 

𝜆 is a scalar 

𝐾𝑖𝑛𝑡 =  intrinsic parameters  

𝐾𝑒𝑥𝑡 = extrinsic parameters   

𝑃 = 𝐾𝑖𝑛𝑡𝑘𝑒𝑥𝑡,   𝑃 𝑖𝑠 3 ∗ 4 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 

 

The Intrinsic parameter can be obtained through camera calibration in the lab or from known camera 

model parameters. The method to compute matrix P given intrinsic parameter is called the PnP 

problem. "Given n (n ≥ 3) 3D reference points in the object framework and their corresponding 2D 

projections, to determine the orientation and position of a fully calibrated perspective camera is known 

as the perspective-n-point (PnP) problem" (Hartley and Zisserman, 2003). The following equations 

describe how to solve the PnP problem using reference points.  

Equation (2) can be rewritten as equation (3) 

 

[
𝑢
𝑣
1
] =

1

𝜆
[
𝑃1
𝑃2
𝑃3

]𝑋                                                                               (4) 

 

Where 𝑃𝑖  is the 𝑖th row in P, X is the world coordinate of reference point.  

 

 𝑢 =
𝑃1𝑋

𝑃3𝑋
                                                                                        (5) 
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 v =
𝑃2𝑋

𝑃3𝑋
                                                                                        (6) 

 

Equations (4) and (5) can be written as: 

 

(P1 − 𝑢𝑃3)𝑋 = 0                                                                          (7) 

  

(𝑃2 − 𝑣𝑃3)𝑋 = 0                                                                          (8) 

 

By rearranging the items, we obtain equation (8) as: 

 

( 𝑋
𝑇 0𝑇 −𝑢𝑋𝑇

0𝑇 𝑋𝑇 −𝑣𝑋𝑇
)(

𝑃1
𝑇

𝑃2
𝑇

𝑃3
𝑇

) = (
0
0
)                                                (9) 

 

For n points, we can stack equation (8) for all reference points into a big equation: 

 

(

 
 
 
 
 
𝑋1
𝑇 0𝑇 −𝑢1𝑋1

𝑇

0𝑇 𝑋1
𝑇 −𝑣1𝑋1

𝑇

.

.

.
𝑋𝑛
𝑇 0𝑇 −𝑢𝑛𝑋𝑛

𝑇

0𝑇 𝑋𝑛
𝑇 −𝑣𝑛𝑋𝑛

𝑇)

 
 
 
 

(

𝑃1
𝑇

𝑃2
𝑇

𝑃3
𝑇

) = 

(

 
 
 

0
0
.
.
.
0
0)

 
 
 

                                           (10) 

 

Equation (9) can be simply represented as the equation (10) 

 

AX = 0                                                                                            (11) 

 

Where A is a 2n * 12 matrix, which is known from 3D and 2D reference points; 

X is 12 by one matrix that contains all parameters in projection matrix P.  

 

The problem to solve parameter in P is converted to the problem to minimize ‖𝐴𝑋‖2, which can 

be considered as the least square problem.  

 

As we know, the projection matrix P = 𝐾𝑖𝑛𝑡 ∗ [R  t], where R is the rotation matrix, 𝑡 is the 

translation vector. So, the rotation matrix can be recovered through equation (12). 

 

R = 𝐾𝑖𝑛𝑡
−1 P1:3                                                                                      (12) 

 

Where P1:3  is the first three columns of the projection matrix P. 
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To enforce the orthogonal property of rotation matrix R, we need to do the Singular Value 

Decomposition (SVD) in equation (12). 

 

𝑈𝐷𝑉𝑇 = 𝑅                                                                                          (13) 

 

Then we obtain the optimized rotation matrix R and translation vector t through the equation 

below.  

 

R+ = 𝑈𝑉𝑇                                                                                           (14) 

 

t = K−1𝑃4 /𝜎1, where diag(𝜎1, 𝜎2, 𝜎3) = 𝐷.                                      (15) 

 

Therefore, we reconstruct the projection matrix P through the equation below.  

 

P = K [ R+ 𝑡]                                                                                        (16) 

 

OpenCV's Camera Calibration and 3D Reconstruction API (Application Programming Interface) is 

used in this research to obtain all projection matrix parameters (Docs.opencv.org, 2019).   

 
PTZ Camera Recalibration using Motion Estimation 

One crucial issue for traffic monitoring is the ever-changing remote-controlled PTZ cameras. In our 

system, The LiDAR-Camera model mentioned above is initially well-calibrated when the traffic camera is 

used.  To restore the 3D/ 2D relationships of the PTZ camera, the relative camera motion between the 

pre-calibrated camera and zoomed/rotated camera is identified. Motion estimation has many 

applications, including object tracking, human-computer interaction (HCI), Visual Odometry, etc. Motion 

estimation methods can be classified into direct and indirect methods. Direct methods include phase 

correlation, block matching, and optical flow. Indirect methods often refer to feature-based methods 

(Katsaggelos, 2019). This study uses the indirect motion estimation method to estimate the camera 

movement.  

Figure 13 shows the matched SIFT (scale-invariant feature transform) features between a calibrated 

camera and a moving camera. Once the matched features are found, we can establish the coordinate 

system transformation between the calibrated camera image and the real-time camera using projective 

transformation. Any pixel from the moved PTZ camera will be projected onto the pre-calibrated camera 

image. Therefore, the PTZ camera 2D coordinates can be transformed into 3D coordinates using the 

calibrated LiDAR-Camera system.  
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Figure 13. Feature matching between the original image and Rotated-Zoomed image 

 

Multiple images from different angles will be pre-calibrated using the LiDAR model during the initial 

stage to cover the entire surveillance area. The pre-calibrated camera images will be used as static data. 

When the traffic operator moves the PTZ camera, the program automatically finds the best match from 

candidate pre-calibrated images to build a new 2D/3D transformation. This method indirectly 

recalibrates the PTZ camera by matching the new camera scene with pre-calibrated photos, resulting in 

better accuracy and quick response.  

SIMT Digital Twin Modeling 

Infrastructure Data Collection and Modeling 

The infrastructure data was collected through FARO Laser Scanner Focus3D (Figure 14), which offers 

numerous advantages over conventional procedures. The scanner is lightweight and robust, so it can 

easily be transported to any site. The scanner can be set up in minutes and operated using a user-friendly 

touch screen. The laser scanner uses ball-shaped target spheres as a reference to connect individual scans. 

These spheres are placed in various locations and should be seen in each scan. 

Calibrated Camera PTZ Controlled Camera 



24 
 

 
 

 

Figure 14. FARO Laser Scanner Focus3D 

Building Digital Twin Model based on LiDAR Data 

A game engine named Unity is used to establish the Digital Twin Model for the potential needs of 

autonomous vehicle simulation. Unity is the creator of the world's most widely used real-time 3D 

development platform that gives developers around the world the tools to create rich, interactive 2D, 3D, 

VR (Virtual Reality) and AR (Augmented Reality) experiences. It has been used in various industries, 

including games, film and entertainment, automotive, architecture, and construction and engineering 

(AEC). Unity's 1,000-person development team keeps the company at the bleeding edge of technology by 

working alongside partners such as Google, Facebook, Magic Leap, Oculus, and Microsoft. The platform's 

renowned flexibility gives developers the power to target and optimize their creations for over 

25platforms. Games and experiences with Unity have reached 3 billion devices worldwide and installed 

more than 28 billion times in the last 12 months. Unity offers solutions and services for connecting with 

audiences, including Unity Ads, Unity Analytics, Unity Asset Store, Unity Cloud Build, Unity Collaborate, 

Unity Connect, and Unity Certification. Unity is also closely collaborating with autonomous vehicle 

companies like Baidu Inc. Unity can develop a real-time simulation product that creates virtual 

environments allowing developers to test autonomous vehicles in simulated real-world situations. The 

Unity-based real-time simulation will now be available to developers taking part in Baidu's Apollo 

platform: an open, comprehensive, and reliable platform geared towards accelerating the development, 

testing, and deployment of Levels 3, 4, and 5 autonomous vehicles. 

Using simulated scenarios for testing in the automotive industry is a well-established practice. However, 

the scenarios used in the past, for example, to train ABS brake systems, do not suffice for autonomous 

vehicle training. Essentially, autonomous vehicles must be trained to behave like humans, requiring highly 

complex simulations. A vital part of any autonomous vehicle training simulation is the simulation 

environment, aka. the digital twin model. Unity, the real-time 3D rendering platform, is being used by 

engineering teams from Baidu, BMW, Toyota, etc., to efficiently create simulation environments for 
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autonomous vehicle training rich in sensory and physical complexity, provide compelling cognitive 

challenges, and support dynamic multi-agent interaction. 

Our team collected high-resolution LiDAR point cloud data in this study to assist our 3D model 

development. Our team focuses on manually developing the Digital Twin Model of the infrastructure of 

the studied intersection. The Autodesk Recap and Revit are usually used to model shapes, structures, and 

systems in 3D with parametric accuracy, precision, and ease, which helps us create a high-accuracy digital 

twin model. 

The final digital twin model in Unity is developed through the following steps: 

1. Once the LiDAR point cloud data is collected, the point cloud can be loaded into Autodesk Recap 

as the base 3D map of the model creation.  

2. The Autodesk Recap file can be loaded into Autodesk Revit for manual modeling.  

3. The 3D model will be manually drawn in the Revit based on scanned 3D point cloud data, which 

can be exported to various formats for other applications such as Unity.  

4. Unity's built-in tools add other details, such as model textures, traffic signs, and trees, to make 

the Digital Twin model more realistic. Figure 2 shows the final static intersection digital twin model 

imported to Unity, containing the roadways, road markings, signal lights, trees, and buildings. 

 

Figure 15. Final Digital Twin Model in Unity 

The Unity Asset Store provides an expansive library of high-quality content that you can use to quickly and 

easily build complex virtual environments for any simulation. Our digital twin model is easy to extend and 

modify with new elements. 
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Additionally, Unity's machine learning initiative ML-Agents can be integrated into AirSim's capabilities, 

allowing even more experimentation. The open source ML-Agents are available through GitHub and have 

been positively received with well over 4,000 stars. With the release of AirSim on Unity, the two 

communities now have a common ground to experiment, develop, and evolve. 

Vehicle Geometry and Movement Modeling 

To visualize the vehicle movement in the simulation, we have developed our real-time procedures to 

detect vehicles through roadside LiDARs and Cameras. And the vehicle trajectories with longitudinal and 

latitudinal information will be transformed and fed into Unity to visualize the vehicle movements. 

Figure 16 shows a snapshot of vehicles moving in the Digital Twin Model in their specific lanes. Vehicles, 

traffic lights, road lanes, trees, and light pods are placed according to the collected LiDAR data, highly 

close to their real positions in the field. The building in the snapshot is the studied New Brunswick Train 

Station. 

 

Figure 16. Vehicle Movements in Digital Twin Model 

All vehicles, sensors, and related coordinate systems are placed in the world coordinate system. A world 

coordinate system is essential in global path planning, localization, mapping, and driving scenario 

simulation. The vehicle coordinate system used in Unity is anchored to the ego vehicle. The term ego 

vehicle refers to the vehicle with sensors that perceive the environment around the vehicle. 

 



27 
 

 
 

 

Figure 17. Vehicle Coordinates in Digital Twin Model 

As shown in Figure 17, the 𝑋𝑉   axis points forward from the vehicle, the 𝑌𝑉 axis points to the left, as viewed 

when facing forward, and the 𝑍𝑉 axis points up from the ground to maintain the right-handed coordinate 

system. Each axis is positive in the clockwise direction when looking in the positive direction of that axis. 

The origin of the vehicle coordinate system is on the ground, below the midpoint of the rear axle. In 3D 

driving scenario simulations as shown in Figure 18, the origin is on the ground, below the longitudinal and 

lateral center of the vehicle. Locations in the vehicle coordinate system are expressed in world units, 

typically meters. Values returned by the RSU are transformed into the vehicle coordinate system to be 

placed in a unified frame of reference. For global path planning, localization, mapping, and driving 

scenario simulation, the vehicle's state can be described using the vehicle's pose. The steering angle of 

the vehicle is positive in the counterclockwise direction. 

With the coordinate’s transformation tools used, Algorithm 1 describes the logic of vehicle movements in 

the developed Digital Twin Model. The movements of vehicles are determined by the position data 

processed based on the camera and LiDAR data from the roadside unit. It should be noted that there are 

still some instant-shift issues when visualizing the vehicle movements, as the output for the vehicle 

detection is not very stable and smooth. 
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Figure 18. Vehicle Coordinates and Steering Angle in Digital Twin Model 

Algorithm 1: Vehicle Movements 

Data: vehicle position (x,y) of each frame 
Results: vehicle position (x(t0),y(t0)), facing direction θ of current frame 
FOR each frame t0 DO 
       FOR each vehicle i DO 
              Transform position from world coordinates (x(t0),y(t0)) to vehicle coordinates (xv(t0),yv(t0)) 
              Update position for current frame t0 and next frame t0+1 
              Calculate vehicle facing direction θ facing to  position at next frame (xv(t0+1),yv(t0+1)) 
              Transform position back to world coordinates (x(t0+1),y(t0+1))   
       ENDFOR 
ENDFOR  

 
SIMT Prototype Application Demonstration: Intersection Nearmiss Analysis 

With rare traffic crashes, near-misses have been commonly used as surrogates for traffic conflicts. 

Timely detection of near-misses can provide advanced warnings onboard to drivers using smartphone 

apps or onboard devices. At the same time, statistical data on near-misses can be used to designate 

safe corridors and help planners mitigate accident risks. 

The data from infrastructure instruments and onboard devices can detect near-misses and alert drivers 

before accidents happen. Near-miss data and alerts can also be communicated to bicycles and 

pedestrians through personal devices or public billboards. For the proposed hub, near-miss data can be 

collected from infrastructure cameras, onboard devices, and smartphones. For detection and 

prevention purposes, near-miss risks must be calculated in short intervals in real-time (e.g., in 

milliseconds or seconds). Hence, processing images at intersections and roadway segments would 

require extensive edge computing capacity. Recent works published by one of the Co-PIs developed a 

statistical risk model to alter drivers on very short time scales. These works use onboard data from the 
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SHARP-II Naturalistic Driver Behavior database. Four data types are used: event data, time series data, 

driver behavioral data, and vehicle attributes. No image data was used. These works provide coloring 

schemes (e.g., red, yellow, and green) for alerting drivers of potential risks. They also suggest schemes 

with higher resolutions but emphasize that more research is needed to analyze drivers' reactions to 

these real-time alert schemes. 

Further improvements of near-miss risk models would require a close capturing of interactions 

between vehicles in real-time (using cameras, LIDAR, etc.), real-time driving data (e.g., speed, 

acceleration, distance from adjacent cars), real-time roadway conditions, driver behavior, and vehicle 

attributes, and traffic controls (signalized roads vs. non-signalized; 4-way stops, etc.). The hub's 

instruments will capture these data types with vehicles' digital twins. Using this data and further 

extending the idea of a vehicle digital twin, we plan to build 2D and 3D digital frames that enclave a 

vehicle's digital twin and dynamically change in shape (length and width) according to speed, traffic, 

and external conditions (including weather), see Figure 19. The limits set by the digital frame can be 

communicated to drivers through onboard devices or smartphones. These digital frames can be shared 

among vehicles in the case of smart autonomous or connected systems. Near-miss risk can be 

integrated into vehicles' digital twins as a dynamically changing key safety measure. Communicating 

and preventing safety risks in mixed traffic (different vehicle intelligence) environments remains a 

significant challenge we plan to address with the proposed digital twin technology. Autonomous 

vehicles are trained in isolation, i.e., all the reactive and proactive responses originated from the 

trained vehicle. We envision that in the future, using these safety frames, collaborative training will be 

possible. The data from this testbed will enable us to examine some of the earlier theories we 

developed in game-theoretic distributed control systems. 

 

Figure 19. Sample Near-misses 
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Aggregating near-miss data in short time scales (e.g., hours) provides valuable traffic safety data to law 

enforcement and traffic controls. Hot spot designation of roadways using systematic and systemic 

techniques with historical crash data and qualitative measures is not new. Traffic authorities and law 

enforcement have practiced it for many years. But using real-time individual trip data to build dynamic 

road safety heat maps is novel and new. The Co-PIs have already developed a preliminary risk heat 

mapping model of roadway sections, where a roadway section is divided into safety-risk uniform 

segments [9]. Risk attributes for each such segment are calculated from aggregating drivers' risk profiles 

that use the segment over time. Heat mapping is sensitive to the time of the day, weather conditions, 

traffic conditions, and the mix of drivers and vehicles. 

See Figure 20 for an example. A 700-feet long roadway subsection is divided into three segments: Link 1, 

Link 2, and Link 3. Driving behaviors are taken into consideration. According to the study done by CDM 

Smith, we define three types of drivers based on driving speed, acceleration, following distance, and so 

on. Type 1 drivers are cautious while driving, while type 3 drivers are aggressive. The driving behavior of 

type 2 drivers is between type 1 and type 3 drivers. 

 

Figure 20. Sample roadway segments 

Intersection Near-miss Applications 

A near-miss has the potential to cause but does not result in a traffic accident. Studying near-miss 

events will help find the causal factors of future accidents and prevent them. The Intersection Near-miss 

Application is developed based on a data-driven methodology named Safe Route Mapping (SRM), as 

shown in Figure 21. SRM can combine multiple data sources, predict the conflict risk, and produce heat 

maps in real-time. These heat maps can be used by authorities to designate safe corridors, dispatch law 

enforcement, and strategize safety projects. 
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Figure 21. Flow chart of the SRM 

Firstly, the data required by the methodology can be collected from the roadside camera. The scanline-

based algorithm helps recognize the vehicles at the intersection and calculate each vehicle's GPS 

information, speed and acceleration, and the inter-relation between them, as shown in Figure 22. 

 

Figure 22. The scanline-based image recognition algorithm 

The next step is to determine the traffic conflict indicators, including Time to Collision (TTC), modified 

Time to Collision (MTTC), and Minimum Deceleration to Avoid Collision (DRAC). These indicators are 

often used for crash estimation. However, we are not just interested in the real-time estimation of the 

probability that a crash would occur but also in predicting the conflict probability in the next few 

seconds. Light Gradient Boosting Machine Classifier (LGBM) is introduced to predict whether the 

indicators will be held within the safety threshold taking driver behaviors, roadway characteristics, 

vehicle status, distance, and speed as our inputs, as shown in Figure 23. 
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Figure 23. Inputs and outputs of an LGBM model to predict TTC in the next second 

Since different indicators would overestimate or underestimate the crash probability under different 

circumstances, and historical crash data is also a good reference for conflict risk, Fuzzy Logic is applied to 

combine all the outcomes and generate our final risk score. The inputs and outputs are shown in Figure 

24. 

 

Figure 24. Structure of the fuzzy logic model 

SIMT Living Lab Application: Physics-Informed Deep Learning (PIDL) 

PIDL was first proposed as an alternative solver of partial differential equations (PDE) in the pioneering 

work. Since its inception, PIDL has become an increasingly popular data-driven tool for data-driven 

solutions or discovering nonlinear dynamical systems. Recent years have seen a growing interest in 

applying PIDL to various engineering areas. There is also a gradually rising effort to encode ordinary 

differential equations (ODE) into neural networks to approximate ODE solutions [8] or identify 

dynamical system models. 

In transportation, a related study used neural networks of different structures to capture the general 

behavior of a car-following model and predict the acceleration of a vehicle using velocity and distance 

information. Yang et al. (2018) combined the Gipps model with DL-based models (back-propagation 
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neural networks and random forest, respectively) and trained the optimal weights of these two models 

for collision avoidance of predicted trajectories. Shi et al. (2020) encoded traffic flow models into neural 

networks for traffic state estimation. However, the application of PIDL to a data-driven solution of car-

following dynamical equations or system identification of such behavior is a largely unexploited area.  

The generic architecture of a PIDL consists of two deep neural networks: one (i.e., the data-driven 

component) for predicting the unknown solution, while the other (i.e., the model-driven component), in 

which physics in the form of PDEs or ODEs are encoded, for evaluating whether the prediction aligns 

with the given physics. Human driving exhibits highly unstable and nonlinear behaviors, and accordingly, 

physics-based models may not suffice to reveal the highly nonlinear nature of driving behavior, leading 

to high bias. Moreover, the physics-encoded computational graph can be treated as a regularization 

term of the other deep neural network to prevent overfitting, i.e., high-variance.  

In summary, the hybrid of both components overcomes high bias and high variance induced by the 

individual ones, rendering it possible to leverage the advantage of both the model-based and data-

driven methods in terms of model accuracy and data efficiency.  

FINDINGS 

2D Computer Vision and 3D Infrastructure Data Integration Results 

Scanline-Detection Validation 

The trajectory outputs of the scanline-based vehicle detection algorithm were validated based on 

trajectory-level and point-level performance metrics. The ground-truth traffic volume data were 

provided through a commercial video analysis platform. We validate the trajectory-level performance by 

comparing the ground-truth traffic volume with the proposed scanline-based traffic volume at four 

cross-sections, as shown in Figure 25(a).  

The point-level performance of the scanline-based trajectory model is conducted by a manual 

video counting tool developed with VLC (VideoLAN Client) media player API. The tool collects the exact 

video timestamps of vehicles passing some pre-determined scanline points, as shown in Figure 25(b). 

Two points were pre-defined along each scanline. One is the entry point, representing the point where 

vehicles are getting on the scanline. The other point is the exit point, representing the point where 

vehicles get off the scanline. When a vehicle hits the entry point or endpoint along its traveling 

direction, we click the button of lane number on the VLC interface to record the timestamp of that 

event. Then we compare the manually collect trajectory points with trajectory points using the proposed 

method to evaluate the accuracy of our proposed model.   

The two-level trajectory detection results are presented in the result analysis section. 
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Figure 25.  2D Video Detection and 3D LiDAR Model Validation  

(a. Ground-Truth Volume data; b. Video Lane Counter (VLC) for Trajectory Point Validation; c. Reference 

Points for Camera Calibration in both video Coordinates and GPS coordinates; d. 2D/3D Matching 

Results)   

LiDAR-Camera Projection Validation 

We calculated the projective transformation matrix between LiDAR point cloud and CCTV video by 

picking five key points in the study area (selected locations can be seen in Figure 25(c)). To quantify the 

performance and accuracy of the 3D/2D matching algorithm, we prepared a validation dataset 

consisting of six points. Each feature point's pixel coordinates and GPS coordinates in the validation set 

were recorded. Then we applied the computed 2D/3D projection matrix to transform the 3D 

coordinates back to 2D pixel coordinates. We used the Mean Squared Error (MSE) to estimate the 

difference between the values of the projection result and the recorded pixel coordinates. The Mean 

Squared Error for validation feature points is 1.7025 pixels given 2.7K image resolution, indicating good 

accuracy.  

Table 1 shows the validation data, project errors, and calibrated projection parameters for this LiDAR-

camera system.  
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Table 1. Validate Proposed Calibration Method with Ground-truth GPS and Photo Information  

Point No. Feature Pixel Coordinates Actual World GPS Calculated pixel with calibration 

A [1334, 1343] [507030.1097,605701.4065,43.9999] [1334.11,1343.65] 

B [1464, 1285] [507067.4849,605714.5925,43.6899] [1462.95 1286.45] 

C [1650, 1208] [507130.5481,605736.7185,42.3899] [1653.95 1206.58] 

D [1712, 1218] [507135.3601,605726.0935,41.8599] [1713.00 1218.45] 

E [1613, 1378] [507054.9209,605662.6563,42.9499] [1614.62 1378.71] 

F [1545, 1366] [507050.2029,605673.6563,43.2799] [1546.61 1365.96] 

Projection Error MSE = 4.7106 pixel; Average Pixel Discrepancy = 1.7025 pixel 

Calibration 
Parameters 

Tx(m) Ty(m) Tz(m) α(deg) β(deg) µ(deg) 

-280.279 149.841 141.0 1.83592 -1.11952 0.934099 

 

Figure 26 illustrates two performance metrics that can be used as intersection performance 

measurements for operational analysis. Figure 26(A) is the frequency heat map showing detected 

vehicles' frequencies. The brighter areas indicate the higher detected vehicle frequency, implying a 

queuing/congestion issue, long waiting time, and limited capacity. As we can see, the waiting time for 

the westbound lane is the highest, which is consistent with our observation from the Video. This 

detection frequency map can diagnose traffic congestion to accommodate fluctuating traffic. 

Figure 26 is created after calculating the moving speed of each object using the GPS position of 

each trajectory point. The average speed heat map is a useful performance metric for intersection safety 

management because many crashes are speed related. Speed profile is critical to optimize signalized 

intersection based on traffic flow theory, as there is a fundamental relationship between speed, queue, 

and volume. However, without LiDAR assistance, it is usually too difficult to know the real-world speed 

characteristic of traveling vehicles from just CCTV cameras. 

 

Figure 26. Traffic Analysis Using Vehicle Trajectories Detected from CCTV Camera 
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Trajectory Detection Accuracy Analysis 

This section will discuss the scanline-based vehicle trajectory detection result, present the projected 

physical trajectory with a 3D LiDAR roadmap, and demonstrate the potential benefits of using LiDAR-

assisted video traffic analysis.  

Scanline-based Vehicle Trajectory Detection Results in Table 2 show the detected vehicle and ground-

truth data at both trajectory-level and point-level. The total volume detection accuracy is 90.87% for all 

four main approaches. Due to the tilted camera angle, the scanline on one lane might capture vehicles 

from the adjacent lane. The invasions of adjacent-lane vehicles lead to duplicated counts of vehicle 

volume. A potential solution to remove duplicated counts is to find the concurrent detections on 

adjacent lanes. Generally, the scanline method tends to over-counting because it may count vehicles on 

the other lanes due to occlusions.  

The second half of Table 2 shows the point-level trajectory detection results by comparing manually 

extracted points with the model trajectory. An event is a vehicle hitting either the enter or exit points on 

the scanline. We can see that the weighted average detection rate is 92%, indicating a good model 

performance for trajectory detection.  

Figure 27 (a), (b), (c), and (d) show the detected trajectories based on travel distance along the scanline 

from four major directions. Trajectories from each direction are color-coded and demonstrate two signal 

cycles. The VLC checkpoints are plotted on the trajectory diagrams, demonstrating that our algorithm 

can provide high-resolution results.  

Table 2. Scanline Vehicle Detection Validation Results 

Trajectory Level Comparisons 

Direction 
Number 

Direction 
Scanline Detection 
Volume  

Ground-
Truth 
Data 
Volume 

Traffic Count 
Accuracy  

1 Southbound Right 55 55 100.00% 

2 Southbound Left 132 120 90.00% 
3 Eastbound Through 119 126 94.44% 

4 Westbound Through 148 115 71.30% 

 Total Count 454 416 90.87% 
Point Level Comparisons 

Lane 
Number 

Direction 
Number of Sampled 

Trajectory Points 
Point Level Time Accuracy 

1 Southbound Right Turn 30 86.667% 

2 Southbound Left Turn 94 80.85% 

3 Westbound Through 57 100% 

4 Eastbound Through 66 84.85 

Average   88.09% 
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LiDAR-Camera Projection Results 

Figure 27 illustrates the physical trajectory projected on the 3D urban infrastructure map using the 

3D/2D camera calibration method. Such visualization can give traffic managers a holistic view of traffic 

flow collected through a 2D infrastructure camera. This picture demonstrates many prominent features 

using the LiDAR system than other camera calibration models. With the growth of large-scale digital 

mapping systems, we can acquire more realistic and extensible trajectory data from the proposed 

system to build traffic flow profiles and promote various traffic studies.  
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Figure 27.  Trajectory Results Investigation 
(a. Southbound Right-turn; b. Southbound Left-turn; c. Westbound Through; d. Eastbound Through; e. 
Projected Physical Trajectory on High-resolution 3D Street Model.) (Note: blue dots on the image a, b, c, 
d are sampled trajectory points using VLC counter)  
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In the future, CAV technology such as Eco-intersection Approach and Intelligent Signal Control will lead 

to more harmonized speed characteristics. The performance metrics generated from trajectory data are 

critical for CAV-based traffic operation, as they can provide proactive solutions and depict a better 

picture of the traffic network.  

Regarding image processing speed, our scanline-based model shows advantages over the state-of-the-

art deep learning model tested on an Intel i7-8750H 2.20 GHz CPU computer. It takes 5.48 seconds on 

average to process each frame and 47 hours to run a 20-minute video clip using the Mask-RCNN model 

for vehicle detection. However, using the same computer, the scanline-based model takes roughly 12 

minutes to process one STmap from a 20-minute video with competitive accuracy.  

 
Near-miss Analysis Results 

Figure 28(a) illustrates the risk profile for a Type 1 driver passing through three differently colored links 

in L1 traffic. Figure 28(b) shows conflict risks for many Type 1 drivers who pass through the three links. 

Finally, in Figure 28(c), we have average conflict risks for all sampled drivers. We note that these 

samples are taken within a given time period on a given day. One can always repeat this sampling for 

the same period for many days to receive aggregate risk measures over drivers and days. Figures 29 and 

30 show how average risk profiles change with driver types and traffic conditions, respectively. 

  

Figure 28. Risk profile of the sample roadway section. 
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Figure 29. Average risk profiles of different types of drivers in L2 traffic. 

 

Figure 30. Average risk profiles of Type 1 drivers in different traffic levels. 

In all cases, Link 2 shows a higher conflict probability than others. As the traffic level changes, the 

overall risk profiles fluctuate. Besides, Type 2 driver seems to be more conflict-prone. Next, we fuse 

crash count estimates with driver-based risk measures to obtain a more comprehensive risk heat map. 
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These heat maps can provide valuable information to drivers in terms of safe navigation and safe route 

planning and law enforcement in terms of dispatching resources and configuring traffic controls. We 

imagine that, in the future, these heat maps will be used by autonomous vehicles for in-vehicular 

controls (e.g., speed, acceleration, etc.). In this proposal, we will demonstrate, through the simulation 

of digital twins, the use of these dynamic heat maps for traffic safety and impacts on traffic congestion. 

We used three videos filmed at the intersection in New Brunswick to train the LGBM model and validate 

our SRM algorithm. We took one of the videos as the training dataset, which has 1,425 cars and 17,560 

records. The other two videos were used as the testing dataset, one with 2,289 cars and 21,589 records 

and the other with 1,107 cars and 10,180 records. We defined the records as the information (speed, 

acceleration, etc.) for each vehicle every 1 second at the intersection. 

 

Figure 31. Road segments 

As illustrated in Figure 31, the intersection was divided into 7 segments, and we predicted the risk levels 

for each every 1 second. The risk levels were defined as: Very small (Risk score is less than 20); Small 

(Risk score is between 20 and 40); Medium (Risk score is between 40 and 60); Large (Risk score is 

between 60 and 80); Very Large (Risk score is larger than 80). 

The heat map demonstrated in Figure 32 is created to illustrate the difference between the actual risk 

level and the predicted risk level in the next 1 second and 2 seconds. 
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Figure 32. Heatmap of the actual and predicted risk level at 300 seconds in the Video 

Assuming our Null hypothesis is that the risk level is very small, small, or medium, the Type I and Type II 

errors for two testing videos are listed in Table 3 and Table 4. 

Table 3. Type I and Type II errors of the predicted risk levels in video 1 

 

Table 4. Type I and Type II errors of the predicted risk levels in video 2 

 

The result shows that our algorithm can distinguish between low-risk levels (the risk score is very small, 

small, or medium) and high-risk levels (the risk score is large or very large) in most situations. The 

outcome can be used in traffic safety applications to warn the drivers if the conflict risk level on a 

specific road segment at the intersection is high. 
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Currently, the application relies on the data collected from roadside devices. The data we can get is 

limited because we may require more information on driver behavior to understand and predict the 

conflict risks fully. The next phase of developing the application is to build a hybrid model for nearmiss 

and warning using data from both infrastructure and driver-based devices such as cell phones. 

The Android application we have built in a different project can be useful for us to extend the hybrid 

model. The App, shown in Figure 33, can collect the trip information and upload it to our database. It 

can also analyze the safety issues during the trip and inform the drivers of unsafe behaviors. 

 

Figure 33. Screenshots of the smartphone application 

Figure 34 and Figure 35 reveal the user interface of our database. The information collected from the 

driver side can supplement the data retrieved from roadside cameras. Combining these data resources 

with a hybrid model will help us improve the SRM algorithm. 
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Figure 34. Database for the trip information 

 

Figure 35. Database for detailed travel records 

CONCLUSIONS 

The outcome of the proposed research is a small-scale intersection smart mobility testbed. The 

developed hardware-software-and-cloud systems can be scaled to develop a full-size smart mobility 

testing ground in the City of New Brunswick.  
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The project developed the detailed system design and specifications for prototype smart mobility 

testbed facilities, including the sensing, computing, communication, data, and application testing 

modules. 

This project successfully developed the key components of a prototype smart intersection mobility 

testbed with components including high-resolution sensing, 3D infrastructure modeling, and CAV 

application testing.  

The research outcome also validated that pilot safety and mobility applications can be implemented and 

tested with the capabilities of the proposed testbed for application testing, 3D data visualization, and 

sharing. Furthermore, the team will develop plans and strategies for scaling up the proposed testbed 

concept toward a full arterial testing corridor. 

 

RECOMMENDATIONS 

The research outcome leads to the following recommendations for building arterial smart mobility 

testbeds. The recommended key components of the system are as follows: 

• Traveler Interface: The Traveler Interface Layer represents the technologies or means through 

which travelers in the SMTG and test vehicles would interact with the system. The overall approach 

for the SMTG does not preclude the use of devices not shown in the graphic; other devices, such as 

CV On-Board Units (OBU), could be used for application testing.  

• Sensor Infrastructure: An array of advanced sensors that will collect high-resolution data will form 

the foundation of the STMG. Sensors will range from autonomous-grade LiDAR to differential GPS 

base stations to HD surveillance cameras. An initial data capture using LiDAR will be used to capture 

roadway, transportation facilities, exterior, and in some cases, interior building infrastructure will be 

collected to serve as a "base map" of the SMTG. 

• Roadside Computing Environment: The roadside computing layer supports application delivery for 
test ground users and travelers in the project corridor. Given the low latency required to support 
connected and advanced driving system applications, data processing will occur near drivers, 
pedestrians, and bicyclists at the roadside level. 

• Central Data Management Environment: The Central Data Management Environment layer 

represents the storage and application servers housed at the Traffic System Lab at Rutgers 

University for initial processing. Additional processing, as well as cloud-based storage capacity, will 

be provided by Amazon Web Services (AWS). 

• Public Agencies Operations Support: The Public Agencies layer addresses applications and 

resources that will be developed to provide tangible benefits to NJDOT and local jurisdictions that 

support the SMTG. 

• Living Laboratory: The Living Laboratory will consist of four individual but related research, 
development, testing, and transfer (RDT2) labs, which will focus on Technology, Data, Applications, 
and Knowledge Transfer 
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