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1. Introduction 

Transit providers must understand crowd dynamics to meet passenger demand efficiently and 

safely (Reuter, 2003). For example, flow volume in stations can be correlated to system capacity, 

which is an essential metric for transit agencies to evaluate the quality of service and make critical 

scheduling decisions (Sørensen et al., 2019). Crowd density is another essential metric for 

evaluating transit service and safety (Helbing et al., 2015), and allows transit agencies to monitor 

the safety of their passengers (Song et al., 2019). Individual movement trajectories and walking 

speeds are also important for analyzing passenger behavior, which provides insight into facility 

design to improve customer experience (Ye et al., 2008). 

 

To acquire critical crowd data, various approaches and solutions have been used (Table 1). 

Many passenger counting technologies have been developed to obtain flow volume. According to 

a survey from over 50 city metro authorities, commuter railroads, and surface transport providers 

around the world (Reuter, 2003), manual methods (e.g., staff counting, manual estimation based 

on train arrivals/departures) still dominate the practice and are rated as most useful at disaggregate 

data analysis on individual level (Boyle, 1998). However, acquiring and analyzing these data are 

labor-intensive and time-consuming. Automatic fare collection devices (AFCs) (Pinna et al., 2010), 

have been widely used in some countries (e.g., China). Nevertheless, card penetration is crucial to 

obtain accurate ridership. Field surveys (Song et al., 2019) or manually counting people at an area 

under observation from closed-circuit television (CCTV) records (Saleh et al., 2015) are 

commonly used manual methods for acquiring the crowd density. For analyzing the passenger 

movement, like walking speed, field surveys with stopwatches or manually review of walking 

length and duration from video records (Ye et al., 2008) are the commonly employed manual 

methods. Similarly, these methods are also labor intensive and time consuming. 

 

Computer vision-based techniques show promise at overcoming the limitations of manual 

methods with low costs and high efficiency and receive much attention from academia and 

industry for crowd analytics (Junior et al., 2010; Saleh et al., 2015; Sindagi and Patel, 2018). 

 

Table 1.1. Approaches Comparison Matrix for the Crowd Dynamic Metrics 

Metrics Approaches Advantages Limitations 

Flow 

volume 

Manual methods 

(Boyle, 1998; Reuter, 

2003) 

Easy to implement without 

any professional devices 

Labor-intensive, time-

consuming; reliability is 

impacted by the checkers 

Electronic registering 

fareboxes (Pinna et 

al., 2010; Reuter, 

2003) 

Aggregate data on route-

wide or system-wide level 

Reliability is impacted by 

operator compliance and 

attitudes 
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Automatic fare 

collection devices 

(Pinna et al., 2010; 

Reuter, 2003) 

Individual level data, easy 

to operate for passengers 

and operators 

Card penetration impacts the 

accuracy 

Infrared sensors 

(Pinna et al., 2010; 

Reuter, 2003) 

Capability of managing 

fast and compact flows 

Incorrect activations by 

luggage, multiple sensors on 

each door 

Treadle mats (Pinna 

et al., 2010; Reuter, 

2003) 

Less issues of incorrect 

activations, high accuracy 
Need of slow passenger flows 

Computer vision-

based methods 

(Junior et al., 2010) 

Less issues of incorrect 

activations, high accuracy, 

capability of managing fast 

and compact flows 

Robustness in multi-

scenarios, large storage and 

computational capacity 

requirement 

Crowd 

density 

Manual methods 

(Saleh et al., 2015; 

Song et al., 2019) 

Easy to implement without 

any professional devices 

Labor-intensive, time-

consuming 

Computer vision-

based methods (Ye et 

al., 2008) 

Low cost, high efficiency, 

visual display 

Robustness in multi-

scenarios, large storage and 

computational capacity 

requirement 

Walking 

behavior 

Manual methods (Ye 

et al., 2008) 

Easy to implement without 

any professional devices 

Labor-intensive, time-

consuming 

Computer vision-

based methods (Ye et 

al., 2008) 

Low cost, high efficiency, 

visual display 

Robustness in multi-

scenarios, large storage and 

computational capacity 

requirement 

 

However, existing studies mainly focus on counting passengers in a static image to estimate 

crowd density and cannot acquire flow volume, monitor crowd density or analyze passenger 

movement. Meanwhile, most commercially available CV-based products focus on counting, not 

estimating crowd density monitoring or analyzing walking behavior. Moreover, these products are 

targeted to scenarios of low-density and small-flow-volume crowds such as shopping malls and 

office buildings, which contrasts with the typical environment of a high-density rail transit station.  

 

These studies and products mainly utilize video data from cameras with high-angle views 

for counting people and crowd density estimation (Li et al., 2016; Punn and Agarwal, 2019). 

However, the cameras in transit stations are more commonly top-view fisheye lens cameras, to 

accommodate for low overhead clearances. Top-view cameras capture more extensive images with 

line distortion than normal lens cameras, as shown in Figure 1.1.  An added benefit of these 

cameras is that they do not capture facial information, which addresses privacy concerns of big 
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video data collection.  These specific features make the analysis of video data from top-view 

fisheye lens cameras more difficult from that from normal lens cameras.  

 

 

Figure 1.1. Illustration of Top View and High-angle View, View of Normal Lens Camera and 

View of Fisheye Lens Camera 

 

From the above, there are three challenges to develop a practicable, comprehensive CV-

based high-density crowd analytics model framework for the videos from top-view fisheye lens 

cameras. This study aims to provide implementable and generalized solutions for these challenges, 

as shown in Table 1.2. 

 

Table 1.2. Challenges and Solutions for AI-aided Crowd Analytics in Rail Transit Station 

 Challenges Solutions 

I 

How to acquire individual dynamic 

trajectory information from video 

records of high-density crowds in rail 

transit station? 

We propose a head detection + 

tracking model framework to get 

trajectories. 

II 

How to measure the real distance from 

video frames, especially for the 

distorted images? 

We formulate a camera calibration 

method with extrinsic parameters and 

intrinsic parameters extracted from 

the video frames. 

III 

How to calculate three essential 

metrics of crowd analytics using the 

trajectories from the proposed model 

framework? 

We develop the calculation methods 

of three metrics (i.e., flow volume, 

crowd density, walking speed) with 

individual trajectory. 

 

The remainder of this report is organized as follows. Chapter 2 shows a comprehensive 

literature review on pedestrian counting and crowd density calculation using computer vision 

techniques, as well as studies on top-view fisheye lens video data analysis. Chapter 3 specifies the 

methodology proposed in this study. Chapter 4 describes the model implementation and validation 

using video data from Beijing Subway stations. Chapter 5 discusses the potential practical 

Top viewHigh-angle 

view

x

y

x

y
View of normal lens camera View of fisheye lens camera
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applications of the proposed model framework. Chapter 6 concludes this report and proposes 

future improvements 
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2. Literature Review 

2.1. Crowd Analytics with Computer Vision 

Flow low volume, crowd density and walking speed are the three basic metrics for crowd 

analysis, and their relationships are defined as fundamental diagrams. These diagrams are used to 

estimate capacity and Level of Service (LOS) of various facilities in transit stations. With the 

improvement of computer vision techniques, they can be acquired by multiple methods, including 

computer vision and convolutional neural network (CNN)-based methods. 

 

The computer vision based methods are categorized into two categories, (1) regression-

based methods, (2) detection-based methods (Junior et al., 2010; Saleh et al., 2015; Sindagi and 

Patel, 2018). Regression-based methods are proposed to estimate the number of people for 

extremely dense crowds in the images (Sindagi and Patel, 2018). These methods formulate the 

relationship between the image features (e.g., blob area) of people and crowd density using 

regression models. This method is mainly used to estimate total crowd density in an image but 

cannot be used to segment each individual. In the methods, features contain low-level features 

(e.g., blob area, perimeter-area ratio) (Ryan et al., 2009) and texture features (e.g., contrast, 

homogeneity, entropy) (Chan et al., 2008), which are also commonly used in detection-based 

methods. 

 

Detection-based methods count the number of people by detecting each person in an image 

and calculate the crowd density using counted people number with region area (Li et al., 2016). 

Monolithic detection is a commonly used technique, which identifies the crowd with extracted 

features from a whole-body (Saleh et al., 2015; Sindagi and Patel, 2018). For example, binary 

classifier feature extraction methods for a scanning window detector shows a detection rate of 

about 93% in typical surveillance scenarios (Jones and Snow, 2008). However, occlusion in high-

density crowds adversely impacts the performance of whole-body detection models. Three head-

like detection methods are proposed to tackle this challenge; Haar wavelet transform for feature 

extraction of the head-like contour (Sheng-Fuu et al., 2001), omega shape (Ω) feature for the head-

shoulder part (Li et al., 2009), and 3D shape model using three ellipsoids (Zhao et al., 2008).  These 

methods excel in high density environments as they are robust to partial occlusions and atypical 

part appearances. 

 

CNN is a state-of-the-art machine learning method and has superior capabilities for 

learning non-linear functions from the input data (Zhao et al., 2019). A CNN was used to formulate 

a deep CNN regression model for estimating people’s numbers from images by determining the 

relationship between image features and the number of people in the image (Wang et al., 2015). 
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In addition, studies have used CNNs for feature extraction (Sheng et al., 2018), which 

demonstrated CNNs suitability for pedestrian detection. R-CNN is one of these features based 

CNNs with superior performance (Girshick et al., 2014) that extracts a large number of region 

proposals from an input image and computes features for each proposal using CNN.  Objects are 

detected by classifying each region with features.  Following R-CNN, Fast-RCNN (Girshick, 2015) 

and Faster-RCNN (Ren et al., 2017) were developed to improve the computational efficiency and 

model performance.  You Only Look Once (YOLO) is a recent development in CNN detectors 

that isolates objects using CNN in a single analysis of an image. This methodology has greatly 

improved computational efficiency while maintaining a high detection accuracy (Redmon et al., 

2016; Redmon and Farhadi, 2018). Although the detection accuracy of YOLO is lower than that 

of Faster-RCNN, the superior computational efficiency makes YOLO a promising solution for the 

application in practice. 

 

Most previous studies focus on pedestrian detection in an image, static counting, and 

density estimation but do not implement trajectory-based analyses. Some studies have attempted 

to overcome this challenge through methods such as the Kanade-Lucas-Tomasi (KLT) tracker, 

which is a commonly used tracking methodology (Rabaud and Belongie, 2006; Sidla et al., 2006). 

As an optical flow-based method, KLT tracks people using displacements of the dominant points 

and acquires people’s walking trajectories.  In these studies, a “virtual gate” was defined to count 

people with trajectories (Sidla et al., 2006), and the trajectories can also be employed to calculate 

walking speed (Hediyeh et al., 2014a; Sultan and Khan, 2013). However, these methods are 

susceptible to occlusion or illumination changes. Recently, a simple online real-time tracking with 

a deep association metric (or Deep SORT) (Wojke et al., 2017) was developed. In Deep SORT, 

persons are detected in each frame, and the detections are matched based on feature similarity to 

acquire their tracks.  Deep SORT solves occlusion tracking problems effectively and is more 

suitable for high-density tracking as in the context of rail transit station. 

 

2.2. Top-view Fisheye Lens Video Analysis 

Fisheye lens cameras capture larger areas than conventional cameras. They are widely used 

in security surveillance system (Tai et al., 2018; Wang et al., 2019). Furthermore, top-view fisheye 

lens cameras benefit from less mutual occlusion among objects in a scene and protecting individual 

privacy without facial information (Krams and Kiryati, 2017). However, the lenses capture wide 

visual fields by distorting the lines in images, which makes the pedestrian detection and tracking 

challenging. Most studies using videos from top-view fisheye lens cameras focus on pedestrian 

detection, while studies on pedestrian tracking are scarce. 
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A significant difference between conventional camera analysis and fisheye lens camera 

analysis is the camera calibration that extracts camera parameters from the video images. Except 

for extrinsic and intrinsic camera parameters, distortion parameters are the crucial parameters for 

fisheye lens camera. For acquiring the distortion parameters, a geometric-mathematical model for 

describing the physical and optical behavior of the sensor is essential (Puig et al., 2011). To extract 

parameters quickly and automatically, generalized parametric fisheye lens models were proposed 

using a polynomial form with distortion parameters (Kannala and Brandt, 2006; Scaramuzza et al., 

2006). These models calculate extrinsic, intrinsic parameters and distortion parameters using 

several checkerboard images captured by the cameras. Because of the simple expression and robust 

performance, these models are widely used to calibrate fisheye lens cameras. 

 

With the calibrated parameters, undistorting the deformed video frames as well as 

converting image scale to real-world scale need to be conducted for further analysis. For pedestrian 

detection, there are two different approaches (Wang et al., 2019): the first is detecting people 

directly on distorted video frames and then undistorting images (Tamura et al., 2019; Wang et al., 

2019). For example, blobs extracted by background subtraction were used to detect people; 

undistorted images using intrinsic and extrinsic camera parameters were employed to track people 

(Meinel et al., 2014). Images of the COCO dataset were rotated to train the YOLO model for 

detecting the rotated people (Tamura et al., 2019). Mask-RCNN was utilized to detect the 

deformed shape of people, and tacking was implemented based on the detected masks (Wang et 

al., 2019). The second one is undistorting fisheye video frames into normal images and then 

detecting people in them (Seidel et al., 2018). For example, projecting distorted images to normal 

images was implemented by the camera calibration model, and YOLO was used to detected people 

in research by Seidel et al. (Seidel et al., 2018). 

 

Converting image scale to real-world scale is essential for crowd dynamic analysis by 

computer vision techniques and conversions based on camera parameters are common practice 

(Hediyeh et al., 2014b). Scale conversion is based on the similarity triangles that are formulated 

by points in real world, corresponding points in the image and the central point of camera lens. 

After getting the real length of trajectories, crowd dynamics (e.g., walking speed) can be analyzed. 

For example, we can calculate the instantaneous walking speed by using the displacement of 

tracked points over successive frames (Sultan and Khan, 2013). We can also calculate average 

walking speed by setting two parallel screen lines and calculating the shortest distance between 

two intersecting points of trajectory with two screen lines (Hediyeh et al., 2014a). 
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2.3. Knowledge Gaps and Intended Contribution 

A Taken together, there are two gaps in existing studies on computer vision based crowd 

analytics: (1) few studies focus on individual dynamic trajectory extraction from distorted video 

records, especially for high density crowd videos; (2) existing studies ignored calculating basic 

metrics for crowd analysis from the on-site detection data, which limits the application for crowd 

safety monitoring and control in transit stations. 

 

This study proposes a novel approach to fill these gaps in two major ways. 

(1) We integrate pedestrian detection, people tracking, and camera calibration 

technique to acquire individual trajectories from distorted video records; moreover, an individual’s 

head is used to isolate a person’s visible features under high density crowd conditions. Formulating 

three methods for crowd analysis in video,  

a. An IO (In and Out) Matching flow volume counting algorithm. 

b. A Voronoi diagram based crowd density calculation algorithm, and a 

trajectory based walking speed calculation algorithm, to extract the three 

metrics from on-site video records. 

c. A prediction method is employed to get the positions of “missing” people. 
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3. Methodology 

We developed a comprehensive model framework with three layers to implement crowd 

dynamic analysis with computer vision techniques, as shown in Figure 3.1: (1) head detection and 

tracking for individual trajectory extraction, (2) camera calibration for undistorting and scale 

converting, (3) crowd analysis. Video feeds are input into the analysis framework and are detected 

and tracked to acquire individual trajectories. Head detection and a tracking-by-detection paradigm 

is employed to adapt to high-density crowd scenarios. Camera calibration is used to rectify barrel 

distortion of video frames caused by fisheye lens and convert an images’ scale to real-world scale. 

We propose a trajectory-based person counting method, an individual-based crowd density 

calculation method, and a walking speed calculation method to obtain the basic crowd metrics. 

These results can be displayed or archived for specific application or further analysis.  

 

 

Figure 3.1. Research Architecture 

3.1. People Detection and Tracking 

To achieve the goal of monitoring high-density crowds in transit station with crowd 

analytics metrics, we firstly extract individual dynamic positions and trajectories from video 

records. In high density scenarios, head detection is a commonly used technique. Additionally, 

computational efficiency and detection accuracy are essential for use of this technology in practice. 

Based on these requirements, we propose a generalized head detection and tracking framework by 

integrating techniques of YOLO (You Only Look Once) and Deep SORT (Simple Online and 

Realtime Tracking with a Deep Association Metric), as shown in Figure 3.2. People are detected 
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by YOLO algorithm which is a state-of-the-art real-time object detection system in both detection 

accuracy and computational efficiency. Deep SORT is employed to track the previously detected 

people as an extension of the SORT algorithm.  Deep SORT excels over its predecessor by 

performing better under occlusion conditions 

 

Video Records / 

Video Stream

Extract each 

frame image

Resize the input 

image

Run 

convolutional 

network

Non-maximum 

suppression

Mark detected 

people with B-boxes

Calculate distance 

between  predicted one 

and detected one

Match predicted 

ones with detected 

ones

Display the tracking 

identifiers

People Detection (YOLO)

People Tracking (Deep SORT)

Predict B-boxes for 

the next time

 

Figure 3.2. People Detection and Tracking Framework 

 

3.1.1. People Detection 

Video feeds are input into YOLO, and each image frame is extracted to detect all 

identifiable people within it. YOLO resizes the image into a square size (e.g., 448  448) and 

divides the resized image into multiple grid cells (e.g., 7  7).  Bounding boxes are predicted for 

each cell based on a convolutional neural network, as shown in Figure 3.3. The bounding box is a 

rectangular box that can be determined by x and y coordinates of the central point, width w, and 

height h. It marks the detected object with a confidence score conf. Therefore, each predicted 

bounding box contains five values (x, y, w, h, conf). The confidence score conf is calculated by 

Equation (1). 

 

 

Figure 3.3. People Detection Architecture 

Input frame from video stream
S X S grid on input

B-boxes + Confidence

Class Probability Map

Convolutional Network

Non-max Suppression
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( ) truth

predObject IOUconf P=       (1) 

 

In this equation P(Object) is the probability of object existing in the cell. If no object exists in the 

cell, conf is 0. Otherwise, conf equals the IOU (intersection over union) between the predicted box 

and the ground truth. 

 

Meanwhile, each grid cell also predicts C conditional class probabilities P(Class|Object) 

for the detected object and we can get a class probability map, in which C is the number of classes. 

In this study, we mainly focus on the class of people’s heads. 

 

Consequently, the class-specific confidence scores confc for each bounding box are 

calculated by Equation (2). The bounding boxes with class-specific confidence scores are filtered 

out by a predefined threshold. A non-maximum suppression algorithm is used to filter out the 

bounding boxes with high values of IOU between these bounding boxes. The remaining ones are 

detected bounding boxes for the people. More details can be found in the work of Redmon et al. 

(2016). 

 

( ) ( ) truth

predClass Object Object IOUcconf P P=      (2) 

3.1.2. People Tracking 

The detected bounding boxes, corresponding confidence scores and features are input into 

the Deep SORT module, and Figure 3.4 shows the tracking architecture. A Kalman filter is 

employed to predict positions of the detected bounding boxes for the next time step. At the next 

time step, new detections are input, and the predicted tracks are processed following their status 

(i.e., confirmed or unconfirmed) to match with new detections. 
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 Tracks
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YTentative
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Figure 3.4. People Tracking Architecture 

 

The confirmed tracks are matched by using matching cascade algorithm. The matching 

cascade algorithm records the time duration of each track since the last update, and the shorter 

track are prioritized first. For matching, the similarity of motion information (e.g., the position of 

bounding boxes) and the similarity of appearance features between predicted Kalman tracks and 

newly detected tracks are measured to get weighted similarities. The weighted similarities are input 

into the Hungarian algorithm, which is a widely used combinatorial optimization algorithm, to get 

a matching matrix. A matching threshold max_threshold is used to get matched tracks and 

unmatched tracks. This method is resilient to missed tracking in sequential frames due to partial 

occlusion. 

 

Then, unconfirmed tracks and the unmatched tracks from the matching cascade phase are 

input into IOU association algorithm to conduct matching with unmatched newly detected ones. 

IOU values between unmatched tracks and newly detected tracks are calculated as matching metric, 

as shown in Figure 3.5. IOU values are input into the Hungarian algorithm to get a matching matrix. 

A matching IOU threshold max_iou_threshold is used to acquire the matching results. 
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Figure 3.5. Definition of IOU 

 

After the process, we get three result sets: matched tracks, unmatched tracks, and unmatched 

detections. If the tracks are matched in n frames, we set them as confirmed tracks and update their 

information. Otherwise, their statuses are still tentative. For the unmatched tracks, if they are 

unconfirmed tracks, we delete them from the track list. If they are confirmed, but unmatched time 

is larger than a threshold max_age, they are also deleted. For the unmatched detections, we create 

new track identifiers for them. More details can be found in the work of Wojke et al. (2017). 

 

3.2. Camera Calibration 

To ascertain critical crowd metrics, accurate trajectories in a real-world coordinate system are 

needed. A camera calibration is used to convert the distorted images caused by the fisheye lens 

and remap the image coordinate system to the real-world coordinate system in this study. 

 

3.2.1. Camera Parameters 

For a pinhole camera, we can use two parameter sets to project a point in real-world coordinates 

to pixel coordinates in the image frame. Extrinsic parameters transform world coordinates to 

camera coordinates, which is a rigid transformation from 3D to 3D. Intrinsic parameters transform 

camera coordinates to pixel coordinates in the image frame, which is a projective transformation 

from 3D to 2D. 

 

Extrinsic parameters include a rotation matrix R and a translation vector t. The rotation matrix 

describes the camera rotation information relative to three coordinate axes of the world coordinate 

system; the translation vector describes the translation information of the camera optical center 

relative to the origin of the world coordinate system. A point pw (xw, yw, zw) in the world coordinate 

system is transformed to a point pc (xc, yc, zc) in the camera coordinate system, as shown in Equation 

(3) 

Predicted Track

Newly Detected 

Track

Overlap

Union

Area of Overlap
IOU

Area of Union
=
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The point pc projects to point p (x, y) in image plane followed by Similar Triangles rule for a 

simple pinhole camera, as shown in Figure 3.6. This projection can be represented by Equation 

(4). Next, we transform the point p to pi (u, v) in pixel coordinate system with image resolution, as 

shown in Equation (5). Integrating the two equations in Equation (4), we get the camera intrinsic 

matrix K, as shown in Equation (5). 

 

 

Figure 3.6. Projection from Camera Coordinate System to Pixel Coordinate System 
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  (4) 

 

In this equation, f is focal length in world units, which is one of the intrinsic parameters. dx, dy are 

the length of one pixel in world units; u0, v0 are the optical center in pixel units, which are all the 

intrinsic parameters 
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For the fisheye lens camera, the position of a point will be distorted when it is projected to 

image plane. We assume the fisheye lens obeys the equidistance projection model that is the most 

commonly used (Kannala and Brandt, 2006), and this distortion can be modeled by using distortion 

parameters. In this study, we employ a general projection form as shown in Equation (6) (Kannala 

and Brandt, 2006). Therefore, point p is distorted to point p’ (x’, y’), as shown in Equation (7). 

 
3 5 7 9

1 2 3 4d k k k k     = + + + +     (6) 

 

Where: k1-4 are the distortion parameters, θ is the angle between the principal axis and the incoming 

ray, θd is the angle between the principal axis and the projection ray. 

 

' '

2 2 2 2
,    d c c d c c

c cc c c c

z x z y
x y

z zx y x y

  
=  = 

+ +
   (7) 

 

Where: (x’, y’) is the coordinates of the distorted point, other indicators are the same as mentioned 

before. 

 

For the fisheye lens camera used in this study, we ascertain all 20 parameters, including 12 

extrinsic parameters, 4 intrinsic parameters, and 4 distortion parameters. They are used to undistort 

the video frames and convert the image scale. 

 

3.2.2. Video Calibration 

After getting the camera parameters, intrinsic parameters and distortion parameters can be 

used to undistort video image frames with Equation (4) – (7). For image scale conversion, we 

assume the tracking point marked on individual head is his/her position point on the ground. When 

a tracking point moves a distance of xc, as shown in Figure 3.7, the displacement on the undistorted 

video image frames will be x. We obtain the camera installation height H from extrinsic parameter 

zc, and the focal length from intrinsic parameter f. With the body height h of human being, we can 

determine Equation (8) followed by the Similar Triangles rule and calculate the tracking point 

moving distance xc. We employ this distance to calculate walking speed for each person. 

 

( ) ( )c c

c

f H h
x H h x f z h x f

x x

−
=  = − = −    (8) 
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Figure 3.7. Illustration of Image Scale Conversion 

 

3.3. Crowd Metrics Calculation 

Flow volume, crowd density and walking speed are the essential metrics to describe crowd 

status. Therefore, we propose an IO (In and Out) Matching method to identify the people walking 

direction and count the people passing through a specific cross-section (e.g., a door of bus or train) 

for acquiring flow volume. We formulated an individual-based crowd density calculation method 

to measure the accurate crowd density. We also used the trajectory information to calculate 

individual walking speeds. 

 

3.3.1. Flow Volume 

We designated a “virtual gate” (VG) as a cross-section for counting flow volume, which is a 

rectangle region, as shown in Figure 3.8. Moreover, we defined four walking directions for flow 

counting, and an IO Matching method to count people walking through the VG. 

 

 

Figure 3.8. Designated Virtual Gate in One Scenario 
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We established two real-time attributes for each tracked pedestrian: walking direction and IO status. 

We calculated the walking direction on vertical and horizontal levels using the latest n track 

information for each tracking ID at each time frame. Firstly, for each detected person i their 

positions are ascertained. The counter will be triggered only when the number of position records 

is larger than threshold min_last = 5; or it will go to the next pedestrian i+1. The benefits of this 

process are twofold.  The first is to mitigate the counting disturbance of some misidentified 

individuals, and the second one is to avoid the misjudgment of walking direction by using limited 

position information. The threshold can be set a suitable value based on test outcomes. IO status 

is updated following spatial relations between the individual trajectory and edges of the VG. If the 

trajectory of people i intersects two edges of the VG, IO status of the people will be set as passed, 

and people i will be counted in the flow volume of his/her walking direction. If people i is walking 

to the VG or walking in the VG, his/her the IO status will be set as tentative for further analysis. 

If people i is walking out VG, he/she will be matched with people with tentative status. We 

calculate the similarity of their features as the matching index; a predefined threshold is used to 

get the matched one. They are counted as one person by the counter of the corresponding walking 

direction. Both of the IO statuses of the matched people are set as passed. This method addresses 

the emergent challenge of incorrectly changing tracking IDs. In this study, we use walking speed 

as the matching index 

 

3.3.2. Crowd Density 

In a high-density crowd, people can only perceive the local density without a whole picture of 

the entire crowd. To reflect the individual heterogeneity, we use the Voronoi diagram to formulate 

the occupancy area for each people and calculate individual-based crowd densities. 

 

Voronoi diagram (Longley et al., 2005) is a plane partition method that divides a plane into 

regions based on a given set of points in the plane. At first, we formulate a triangulated irregular 

network that meets the Delaunay criterion using the points (Longley et al., 2005). Then, the 

perpendicular bisectors for each triangle edge are generated to form the edges of the Voronoi cells. 

Then, the perpendicular bisectors for each triangle edge are generated to form the edges of the 

Voronoi cells. The occupancy area Ai for a point i is the region containing the point. Consequently, 

we calculate the individual-based crowd density Di by Equation (9). 

 

1.0i i
D A=       (9) 
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However, some people in the image frames may not be detected due to occlusion or view angle, 

and we cannot get their positions in some frames. Consequently, failing to detect these occluded 

individuals will negatively impact the accuracy of crowd density. To overcome this challenge, we 

propose a position prediction method to get coordinates of the “missing” people. 

 

For the unmatched tracking identifiers at frame t, we regard them as the “missing” identifiers. 

We assume that they will remain their walking speed vt (vxt, vyt) at frame t; their positions (x, y) at 

frame t+n are predicted by Equation (10) 

 

( ) ( );    xt t yt tx v t n t x y v t n t y= +  + = +  +    (10) 

 

The (xt, yt) is position of the “missing” people at frame t; Δt is the time interval of one frame; other 

variables are same as above. 

 

Considering that the prediction error increases over time, a maximum effective time 

threshold is predefined. If the update time of an unmatched tracking identifier is larger than the 

threshold, the identifier will be removed from the prediction process and be considered as lost 

forever. In this study, we set the value of threshold max_age in tracking model as the maximum 

effective time threshold. 

 

3.3.3. Walking Speed 

Walking speed is an essential indicator for flow volume counting and crowd density 

calculation, as well as a crucial metric for crowd analytics. For each tracked person, we record the 

coordinates in real-time. Therefore, we can calculate the instantaneous walking speed vt (vxt, vyt) at 

frame t by Equation (11). 

 

( ) ( )1 1;    xt t t t tv x x t y y y t− −= −  = −      (11) 

 

In the above equation (xt-1, yt-1), (xt, yt) are positions of the tracked people at frame t-1 and t;Δt is 

the time interval of one frame. 

 

As stated in crowd density calculation section, we will remain the walking speed vt (vxt, vyt) for 

“missing” people. The walking speed will be recorded until the “missing” time reaches maximum 

effective time threshold max_age. 
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4. Model Implementation 

To validate the model framework (Figure 10) proposed in this study, we used the system to 

evaluate video records from two major subway stations in China. Pedestrian detection was 

implemented based on the “tiny” version of YOLOv3 (YOLO3-tiny) which is faster than other 

models and more suitable for practical application (Redmon and Farhadi, 2018). Pedestrian 

tracking is implemented with the standard version of Deep SORT (Wojke et al., 2017). 

 

4.1. Data Description 

To verify the generalization and robustness for various scenarios of the proposed model 

framework, we utilized surveillance video data of two different scenarios to implement the model, 

as shown in Figure 4.1. The first scenario (Scenario A) is alighted passengers walking to a stair 

and transferring to another line. A top-view fisheye lens camera shows the walking behavior of 

passengers in front of the entrance of the stair. The second scenario (Scenario B) is passengers 

walking in a passage while transferring to another line. Similarly, a top-view fisheye lens camera 

captures the walking behavior of passengers. For video records in these scenarios, the width and 

height of frame are 352  240 pixels and the frame rate is 30 frames per second. In this study, we 

selected two video records for each scenario, and each video record lasts for about 30 minutes. 

One video record for each scenario is used to train the model, and another one is used to test the 

model. 

 

    

Figure 4.1. Surveillance Video Records of Two Scenarios (left: Scenario A, right: Scenario B) 

from Beijing Subway 
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Figure 4.2. Implementation of the Entire Model Framework 

 

4.2. Model Training 

To maximize model performance for detection and tracking, we trained the detection and 

tracking model to get the weights files and optimized parameters. We extracted 500 frame images 

from each training video and labeled the heads of all identifiable people in images with rectangle 

boxes, as shown in Figure 4.3. Coordinates of label boxes and the classification (i.e., Head class) 

in an image are recorded into an annotation file. The labeled images and annotation files are 

randomly split into a training set, a testing set, and a validation set. 

 

 

Figure 4.3. Extracted Images from Top-view Videos 

 

These data are employed to tune the training hyper-parameters at first, and then train the 

model with the optimized hyper-parameters to acquire the best model weights file. After getting a 

well-performed detection model, we refine tracking model parameters max_dist = 0.7, 

max_iou_dist = 0.7 and max_age = 5. The original weights file provided by Wojke et al. (2017) is 

employed as the cosine metric feature representation for person re-identification in this study. 
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Meanwhile, we extract camera parameters from video records. Checkerboard images 

should be captured by the camera to calibrate the parameters. Note that the extrinsic parameters 

are calculated based on the world coordinate system in the checkboard plane, we choose the ground 

floor as the checkboard plane. For reducing the labor work further, we employ the floor tiles shown 

in the videos as the checkerboard for camera calibration. We extract several images with floor tiles 

and draw grid cells covering the floor tiles exactly, as shown in Figure 12; the floor tiles are square 

shape with 0.65 m of edge. The checkerboard images and the edge length are input into the camera 

calibration tool; camera parameters and the undistorted images are output as shown in Table 3 and 

Figure 12 

 

  

(a) Checkerboard with floor tiles (b) Undistorted image frame 

Figure 4.4. Camera Calibration 

 

Table 4.1. Camera Intrinsic Matrix and Distortion Coefficients 

Camera intrinsic matrix Fisheye lens distortion 

coefficients 

147.00 0.00  197.20 -0.13399 (k1) 0.00933 (k2) 

0.00  106.50 128.06 -0.02622 (k3) -0.00638 (k4) 

0.00  0.00  1.00  0.0000 (k5) 0.0000 (k6) 

 

We measured the size of checkerboard in undistorted image frames, 150 pixels  150 

pixels. From Figure 3.6, zc is calculated in accordance with Similar Triangles rule, zc = 3250 mm 

 147 pixels / 150 pixels = 3185 mm. Individual body height is set as h = 1600 mm ((CNHFPC), 

2015), so we can convert image scale to real scale using xc = (3185 mm – 1600 mm) x pixels  / 

147 pixels = 10.78x mm 
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4.3. Model Validation 

We configured the model framework with trained models and optimized parameters. A 

“virtual gate” was set up in the middle of the frame with a width of 20 pixels. A new video record 

of Scenario A was input into the model framework and we selected a clip that records passengers’ 

walking behavior in a time-headway within 250 seconds to validate model results. Utilizing the 

CV-based flow volume counting method, we obtained the flow volume in every 5-second as shown 

in Figure 13. The ground truth of the flow volume in every 5-second was counted manually and 

the error between ground truth and model results was calculated as shown in Figure 4.5. The total 

number of passengers from ground truth is 200, while total number counted by the proposed 

method is 190. Therefore, the counting accuracy of the proposed CV-based people counting 

method is 95%. We analyzed the negative error, and they are mainly caused by occlusion in a high 

density crowd.  

 

We recorded individual-based crowd density and walking speed of each frame and 

validated the results by the fundamental diagram of density-speed. We reorganized the data by 

averaging walking speed with crowd density interval of 0.01 people/m2 to reduce noise. The CV-

based model results are shown in Figure 4.6 as well as the benchmark survey results of Older 

(1968) and Mōri and Tsukaguchi (1987). Older surveyed the crowd density and walking speed at 

an open boundary shopping street in Slough, England; Mōri and Tsukaguchi conducted the survey 

at open boundary footpaths in Osaka, Japan. From the figure, the relationship between crowd 

density and walking speed from the CV-based model result is consistent with the benchmark 

datasets. When crowd density is less than 3 people/m2, the model result is consistent with Older’s 

survey result and when crowd density is larger than 3 people/m2, the model result is consistent 

with Mori and Tsukaguchi’s survey result. As the benchmark datasets, the scenarios are different 

from the studied scenario, so they only get the same values on some sections. But this result 

validates that our model performs well for crowd density and walking speed calculation. 
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Figure 4.5. Validation Results for People Counting by the Proposed Model Framework 

 

 

Figure 4.6. Fundamental Diagram of Stair Scenario 

 

We used a new video record from Scenario B as the model framework input and selected 

a clip that records passengers’ walking behavior in a time-headway within 180 seconds to validate 

model results. The CV-based flow volume counting results as well as the flow volume ground 

truth in every 5-second are shown in Figure 4.7. The number of people passing through the “virtual 

gate” counted by the model framework is 191, while the ground truth is 187. The accuracy is 

97.87%, which is higher than the accuracy of the stair scenario because the crowd densities in this 

scenario are smaller than the ones of the stair scenario. 

 

0

2

4

6

8

10

12

14

0

20

40

60

80

100

120

140

160

180

200

0
 

1
0

 

2
0
 

3
0
 

4
0

 

5
0
 

6
0
 

7
0
 

8
0

 

9
0
 

1
0
0
 

11
0

 

1
2

0
 

1
3
0
 

1
4
0
 

1
5

0
 

1
6

0
 

1
7
0
 

1
8
0
 

1
9

0
 

2
0
0
 

2
1
0
 

2
2
0
 

2
3

0
 

2
4
0
 

2
5
0
 

F
lo

w
 v

o
lu

m
e

A
cc

um
u
la

te
d
 

vo
lu

m
e

Time (s)

Flow volume from CV-based model Flow volume from ground truth

Accumulated volume from CV-based model Accumulated volume from ground truth

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 1 2 3 4 5 6 7

W
al

k
in

g
 s

p
ee

d
 (

m
/s

)

Crowd density (people/m2)

CV-based Model Older survey at shopping street Mori & Tsukaguchi survey at footpath



 

29 
 

 

 

Results of individual-based crowd density and walking speed are validated by the 

fundamental diagram of density-speed. We reorganized the data by averaging walking speed with 

crowd density interval of 0.01 people/m2 to reduce noise. The CV-based model results are shown 

in Figure 4.8 as well as the benchmark survey results of Older (1968) and Mōri and Tsukaguchi 

(1987). From the figure, the amplitudes are different from each other for three datasets. This is 

primarily due to the natural variation caused by different countries, scenarios, and walking habits 

in the datasets. However, the relationship between crowd density and walking speed from the CV-

based model result is consistent with those from the benchmark datasets, which indicates walking 

speed decreases as crowd density increases. This result shows the proposed model framework also 

works well for crowd density and walking speed calculation in passage scenario. Above all, our 

model framework performs well for crowd dynamic metrics calculation in multiple scenarios. 

 

 

Figure 4.7. Counting Results of New Video Data from Camera in Transfer Passage 

 

0

2

4

6

8

10

12

14

0

20

40

60

80

100

120

140

160

180

200

0
 

1
0
 

2
0
 

3
0
 

4
0
 

5
0
 

6
0
 

7
0
 

8
0
 

9
0
 

1
0
0
 

11
0
 

1
2
0
 

1
3
0
 

1
4
0
 

1
5
0
 

1
6
0
 

F
lo

w
 v

o
lu

m
e

A
cc

um
u
la

te
d
 

vo
lu

m
e

Time (s)

Flow volume from CV-based model Flow volume from ground truth

Accumulated volume from CV-based model Accumulated volume from ground truth



 

30 
 

 

 

 

Figure 4.8. Fundamental Diagram of Passage Scenario 
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5. Application and Discussions 

In this study we developed practical applications including automatic passenger counting, 

crowd safety monitoring, and social distancing monitoring for COVID-19. 

 

5.1. Automatic Passenger Counting 

Passenger counting is the application of flow volume in public transit system. In most 

metro systems, ticket records only provide origin and destination (OD) information to transit 

providers. However, there are several potential paths between an OD pair in a large metro network, 

and several different operation companies may provide service in the network. Under this situation, 

clearing and settling of ticket fares is a crucial issue for the joint operation companies. The main 

solution in practice is estimating path choice of passengers based on individual attributes and travel 

cost of each path. However, the solution needs a large amount data to tune the model parameters 

and network extension will impact the model performance. 

 

CV-based flow volume counting method proposed in this study provide another promising solution 

for transferring passenger counting. The validation results show the counting accuracy of 95% - 

98% and it also records the transferring direction (e.g., Line A to Line B and Line B to Line A). 

Furthermore, the real-time display function is developed for monitoring, as shown in Figure 5.1. 

 

 

Figure 5.1. Transferring Passenger Counting 

 

5.2. Level Of Service (LOS) Evaluation 

Level of service (LOS) is an important metric of performance in analysis of existing 

pedestrian facility conditions. Evaluating LOS of facilities contributes to identify any potential 

problems at an early stage (Cepolina et al., 2018). Highway Capacity Manual (HCM) provided a 
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guidance of LOS criteria for walkway based on crowd density in six levels (A-F) (Rouphail et al., 

1998), as shown in Table 4.  

 

Table 5.1. Recommended HCM walkway Level of Service (LOS) criteria (Rouphail et al., 

1998) 

LOS A B C D E F 

Density(peo

ple/m2) 

≤0

.18 

0.18-

0.27 

0.2

7-0.45 

0.45-

0.71 

0.71-

1.33 
≥1.33 

Status 
Fr

ee flow 

Reaso

nably free 

flow 

Sta

ble 

flow 

Approa

ching 

unstable 

flow 

Unst

able flow 

breakd

own flow 

 

Based on the criteria, we can evaluate the LOS of the walking facilities in this study. For the 

walking facility in Scenario 1, the average crowd density is 0.574 ped/m2 and the LOS is D which 

means passengers walk in crowded surroundings. For the walking facility in Scenario 2, the 

average crowd density is 0.228 ped/m2 and the LOS is B which means passengers can walk freely 

as they desired, and the facility can service more people. Furthermore, we can use LOS to evaluate 

the effectiveness of infrastructure improvement quantificationally. 

 

5.3. Social Distancing Monitoring 

The COVID-19 pandemic has impacted people’s travel behaviors and public transit 

operations.  Many cities are developing solutions to maintain social distancing in public spaces for 

a phased reopening, especially for passengers in transit stations. Considering the dynamic position 

tracking technique in this study, the proposed model framework can be utilized to monitor the 

social distancing in transit stations. 

 

We set an individual safety area for each tracked person based on their tracked positions 

and set the half-length of social distance (for example, 6 feet in the U.S.) as the radius of the safety 

area. The safety area is displayed by different colors with the distance to the tracking position to 

show the emergency levels, as shown in Figure 5.2. We choose blue (0, 0, 255), green (0, 255, 0), 

yellow (255, 255, 0) and red (255, 0, 0) to indicate 1, 2/3, 1/3, 0 of the half-length of social distance, 

and the color of other distance is gotten by interpolation. If the safety areas of passengers are 

separated, it means they keep the social distancing rules, as shown in the left of Figure 5.2. While, 

if the safety areas integrate with each other, it means these passengers don’t keep the social 

distancing rules, as shown in the right of Figure 5.2. Green color integration means that their 
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distance is about 50% of social distance (3 feet) (e.g., passenger 69 and 50); red color integration 

means that their distance is about 10% of social distance (0.6 feet) (e.g. passenger 65 and 50). 

 

   
(a) keeping social distancing   (b) violating social distancing 

Figure 5.2. Social Distancing Monitoring 
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6. Conclusions 

This study aims to formulate a generalized CV-based crowd analytics model framework. We 

focus on solving three challenges to achieve this goal: (1) acquiring dynamic information from the 

video data, (2) projecting distorted images to the real-world reference system, (3) calculating 

essential metrics from trajectory information. We implemented pedestrian detection and tracking 

with head features to solve the first challenge. We trained the model with our data and the detection 

accuracy was 0.80 of precision and 0.75 of recall ratio. The performance provides the model a 

opportunity for application in practice. For the second challenge, we employ equidistance 

projection model to calibrate the distorted image frame and convert the image scale to real scale. 

Based on the calibrated results, we formulate an IO Matching counting method, an individual-

based crowd density calculation method based on Voronoi diagram, and a trajectory-based walking 

speed calculation method to solve the third challenge. Video records from two different scenarios 

to validate the model framework, and results show high flow volume counting accuracy of 95%-

98% and reasonable density-speed fundamental diagrams which are consistent with empirical 

studies. 

 

Based on the crowd analytics, we also developed several practical functions, including 

automatic passenger counting, crowd safety monitoring, and social distancing monitoring for 

COVID-19.  Additionally, in future works, we will improve the person tracking model to solve the 

challenge of lost tracking people fundamentally. Furthermore, more functions, such as trajectory 

analysis, will also be added in the future. 
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