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1 Introduction 

1.1 Background and Motivation 

Accurate information about the location and type of rotorcraft landing sites is an essential asset for 
the Federal Aviation Administration (FAA) and the Department of Transportation (DOT). However, 
the acquisition, verification, and regular updating of information about these landing sites is a 

challenging task. The lack of reliable information on helipad sites is a risk factor in several accidents 
and incidents involving rotorcrafts. The U.S. Helicopter Safety Team (USHST), of which the FAA 

is a key member, has identified and produced recommendations from their infrastructure working 

group to modernize and improve “the collection, dissemination, and accuracy of heliport/helipad 

landing sites” as a high priority to increase helicopter safety. 
There are thousands of landing locations for helicopters spread across the United States. In 

general, rotorcraft operators can get information about helipads, heliports, and landing sites using 

various databases, such as the FAA’s 5010 database. However, it is also well­known that the 5010 

database and similar databases contain multiple inaccuracies where some helipads in the database 

may no longer exist or their coordinates are imprecise, and other helipads are missing from the 

database. The unreliability of this database is a consequence of the fact that there is no system to 

verify that coordinates remain accurate, nor is there a system to search for unreported helipads. 
In this project, we propose a machine learning solution to identify helipads, heliports, and other 

landing sites, from aerial imagery using convolution neural networks or CNNs. We built a com­
prehensive database by manually checking the FAA and other databases with satellite images from 

Google Earth. We subsequently trained and validated different state­of­the­art CNN models to 

determine an appropriate machine learning model for this task. 
The proposed machine learning solution based on modern artificial intelligence (AI) techniques 

will allow the FAA and USDOT to automatically maintain an updated database of helipads, heli­
ports, and landing site infrastructure for the rotorcraft community. This work presents the first step 

towards autonomous identification of specialized heliport infrastructure and can be optimized with 

minimal cost using Google Earth API. The results of this project will help the FAA and USDOT 

achieve the first strategic goal of “Improving durability and extending the life of infrastructure” by 

providing an updated record of the infrastructure without committing additional resources for data 

collection and recording. 

1.2 Related Work 

We can group the literature of identifying helipads from satellite or aerial imagery into two main 

approaches. The first is a model­based approach, which relies on domain expert knowledge to ex­
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tract features that can be used to identify helipads from images. A common feature used to identify 

helipads is the “H” marking [Prakash and Saravanan, 2016, Patruno et al., 2017]. For vision­based 

autonomous landing systems, an improved version of the Scale Invariant Feature Transform (SIFT), 
called Speeded Up Robust Features (SURF), was used in [Prakash and Saravanan, 2016] to perform 

feature points matching and tracking. Features points are compared to points in an “H” template to 

determine the similarity of the template and the aerial image. 
In [Rungta et al., 2020], the detection process consists of finding candidate helipads based on 

the following four properties: (1) a bold circle surrounding the “H”, (2) presence of “H” in a bright 
color inside this circle against a dark background, (3) “H” is centered at the center of the circle, 
and (4) intersection of diagonals of “H” at the center of the circle. A Hough transforms was used 

to identify circles[Rungta et al., 2020]. Due to a large number of false positives, the authors used 

three tests to eliminate these false positives. None of these tests are precise and as a consequence, 
error ranges were added based on experiments. After a helipad has been detected, a Median Flow 

tracker [Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas, 2010] was used to track the region. 
A vision­based helipad detection algorithm based on curvature was proposed by Patruno et al. 

[Patruno et al., 2017]. The method creates blobs of connected pixels, and exploits some intrinsic 

properties of each blob, such as the location of its center of mass, the Euler number, the eccentricity, 
the perimeter, and the area, to identify the blobs which represent the helipad marks, namely the 

character “H” and the circumscribing circles. The Euler number is an integer value defined as 
the number of connected components minus the whole number. In particular, the Euler number 
is equal to zero for circle blobs and one for “H” blobs. A final classification level checks the 

ratios between the areas and perimeters of blobs against expected values. Following detection, an 

identification step checks if the Euclidean distance of the centroids of the detected blobs and the 

ratios of related areas and perimeters are still met [Patruno et al., 2017]. Once the helipad marks 
have been identified, the Canny edge detector is performed in order to extract the 12 corners of 
“H” edge. Instead of using feature extraction operators, such as the Hough transform and line 

following algorithms, the authors used a radius of curvature for every 2­D point of “H” edge to 

detect the corners of interest. A big radius value denotes that the point is far from a corner while a 

small value indicates that the point might be a possible candidate to be a corner. Three checks are 

performed for all the possible corner candidates, based on the knowledge of “H” size and exploiting 

the Euclidean distances between these points and the centroid of “H” contour. 
Although quite exhaustive, these model­based detection algorithms have many restrictions. 

First, they were shown to work only in simple simulated environments and may fail in more com­
plex environments. Secondly, these algorithms have limited effectiveness at further distances and 

angles. Some of these issues were addressed in [Pierre et al., 2018], where the authors mainly re­
lied on flat ellipse detection as it is the most visible feature of a helipad seen from long distances. 
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An adaption of the Hough transform was devised for the specific case of very flat ellipses. A vali­
dation step using many other properties and visual clues performs the verification of the presence 

of the helicopter landing platform in the research areas delimited by the obtained ellipses. 
The main advantage of the model­based approach is its explainability and its relatively good 

performance on small datasets with no prior labeling. However, while model­based methods can 

identify helipads that adhere to the recommended standard set in the FAA’s 150/5390­2C, neither the 

circle nor the “H” is required for building a helipad. Model­based methods will need to consider 
all possible features of all types of helipads/heliports, including those that do not adhere to the 

recommended standard, to generalize their performance [FAA, 2012]. 
Data­driven algorithms, on the other hand, involve the collection of large amounts of labeled 

data, autonomously learning salient features from the raw data, and identifying helipads based on 

learned features. As such, data­driven systems can identify complex patterns of helipads that may 

be hard to model. The price paid is the large data and computational resource requirements. To the 

best of our knowledge, data­driven approaches to identify helipads are under­explored, despite the 

growing prevalence of learning systems in real­world applications. Nonetheless, there are online 

systems available. 
HelloPad is a system that uses a machine learning algorithm to identify helipads within a spec­

ified region [Walker, 2019]. The system uses a sliding window and a trained neural network model 
(ResNet) to identify if a helipad exists at a given location. HelloPad reported 67.2% precision and 

90% recall in a Los Angeles downtown area. However, HelloPad collected negative (non­helipad) 
examples from urban settings, and will likely not transfer well to all areas of the U.S. 

2 Convolutional Neural Networks (CNNs) 

2.1 Learning Features with CNNs 

Object detection and identification requires considerable domain expertise to design features that 
transform the raw data (such as the pixel values of an image) into a lower­dimensional representa­
tion that is discriminatory for the input. Convolutional Neural Networks (CNNs) are designed to 

process multidimensional data arrays, such as images, by automatically discovering the representa­
tions needed for detection or classification. There are three types of layers in a CNN: convolutional 
layers, pooling layers, and fully connected layers. Each convolutional layer obtains, through con­
volutions followed by non­linear operators, representations that are important for the classification 

task. A hierarchical composition of these representations (starting with the raw input), where each 

representation is fed to the next convolutional layer, leads to learned features that are optimal for 
discrimination. The first (convolutional) layers typically learn low­level features, such as edges, 
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and later layers extract more complex semantic features. The key aspect of CNNs is that these 

layers of features are not designed by human engineers or domain experts: they are learned from 

data [LeCun et al., 2015]. 
A problem with the output feature maps is that they are sensitive to the precise location of the 

features in the input. This means that small variations in the position of the feature in the input image 

will result in a different feature map. One approach to address this sensitivity is to coarse­grain the 

position of each feature through down­sampling, referred to as “local translation invariance”. The 

role of pooling layers is to summarize the feature maps by down­sampling, i.e., discarding the finer 
details that may not be useful to the task, creating an invariance to small shifts, while maintaining 

important structural elements. A typical pooling unit computes the maximum value for each patch 

of the feature map. 
Layers of convolutions, non­linearities, and pooling are stacked to learn robust optimal features 

for the data, followed by fully­connected layers that form the classifier for the extracted features. 
Backpropagating gradients through a CNN is as simple as through a regular neural network, allow­
ing all the weights in all the filters to be trained. 

2.2 Interpreting and Explaining the Predictions of CNNs 

While CNNs have achieved higher­than­human accuracy in many computer vision tasks, they pro­
vide little insight into computations that they perform to make these decisions or predictions. With 

the composition of convolutions, non­lineariries, pooling and fully­connected layers, very complex 

functions can be learned, making deep learning models black boxes. This poor interpretability sig­
nificantly hinders the robustness evaluation of the network, its further optimization, as well as 
understanding the network adaptability and transferability to different datasets. In the case of he­
lipad detection, this question becomes “Does the network detect salient features of helipads in the 

image, or does it detect other features that typically correlate with the presence of a helipad?”. An 

understanding of the learning process will allow for the identification of cases where the algorithm 

might fail, and also build trust in learning systems to allow for their safe deployment. 
An intuitive approach to understand the inner workings of deep learning models (such as CNNs) 

is the gradient saliency map. This approach computes the gradient of the class score with respect 
to the input image; thus, highlighting the areas of the input image that are discriminative with 

respect to the predicted class [Simonyan et al., 2014]. A popular gradient saliency method is the 

Gradient­weighted Class Activation Mapping (Grad­CAM). Grad­CAM uses the gradient infor­
mation flowing into the last convolutional layer of the CNN to assign importance values to each 

neuron for a particular decision of interest [Selvaraju et al., 2019]. 
In this project, Grad­CAM provides a multifaceted advantage. First, the saliency map will be 
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Figure 1: Sampling images from Google Earth for building datasets of positive (helipad is present) 
and negative examples (no helipad is present). The dataset will be used to train machine learning 
and AI models. The sampled area is enclosed in the black box. There is no helipad inside the 
sampled area (negative example). However, a helipad is present just outside the sampled area. The 
area containing helipad can be also be sampled as a positive example. 

able to verify that the network classifies imagery as helipads because of the presence of helipads 
and not supporting facilities. Second, it can help with understanding and mitigating false positives, 
i.e., the non­helipad samples classified as a helipad. Lastly, the saliency map can help locate the 

helipad, which will allow for larger regions to be searched for helipads. 

3 Rotorcraft Landing Site Dataset 

We acquired three datasets through the FAA, one dataset from the Iowa DOT website and one 

dataset from ArcGIS. These five datasets provide the longitude and latitude of potential helipad 

landing locations. We used Google Earth’s API to extract the corresponding images as well as 
to sample negative helipad locations. We noticed some discrepancies in the FAA datasets and 

manually curated the coordinates to ensure accuracy for our use cases. In the following, we will 
elaborate on each dataset, data cleaning approach, and our method for collecting negative samples 
(satellite images with no designated helipads or landing sites present). Figure 1 shows the sampling 

process for image collection for positive examples (a helipad is present in the satellite image) and 

negative examples (helipad or landing site is not present in the image). 
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3.1 Google Static Maps API 

We used Google static maps API to collect satellite imagery of positive (helipad) and negative (non­
helipad) locations. The service is accessed by sending an HTTP request with a query containing the 

desired parameters. The Google server responds with an image based on the provided parameters. 
The parameters used here are: center, zoom, the size, and maptype. The center provides the coordi­
nates of the center of the image. Zoom determines the zoom level, which defines the resolution of 
the current view. Size determines the number of pixels in the image. Maptype determines the type 

of image to be retrieved (as Google maps contains road maps). For the purposes of this project, 
size was set to the maximum value of 640 × 640, and the maptype was always satellite. The center 
was set to the desired coordinates to be sampled for the image. The highest resolution images are 

available at a zoom of 20; however, a zoom of 18 was used instead. At zoom 20, some images did 

not include the designated helipads as shown in Figure 1. The difference between the two zoom 

levels can be seen in Figure 2. A lower zoom results in a larger area that will allow for sampling 

helipads using fewer API calls. There is a cost associated with making API calls beyond a certain 

limit, so efficiency of calls becomes important for scaling up the model to large areas. 

Figure 2: Zoom level in Google Map API. Left image is downloaded at the zoom level of 18 and 
the right image at the zoom level of 20. At a zoom of 18, numerous possible parking pads and a 
helipad are visible. The helipad is not visible at the zoom of 20. 

One major issue with the initial databases is the incorrect reporting of landing site coordinates. 
In our experiments, a coordinate was considered correct if there was a landing area present in the 

Google imagery taken of the area. This is to allow for a margin of error in the reported coordinates. 
The margin is considered acceptable as it is believed to be reasonable for a pilot to identify a helipad 
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within the given area. However, there are few cases where helipads would be within a reasonable 

range of the coordinates, yet not present within the imagery being sampled. Figure 1, shows a case 

where there is a helipad near the coordinates, however the helipad is outside the range that was 
annotated. A lower zoom could be used to sample a larger area, however while this may still be 

within an acceptable margin of error, the markings on helipads become less noticeable. 
Another known issue is the recency of Google’s satellite imagery. The images used in Google 

maps are not real­time images, but rather imagery taken during an area survey. This means that 
the overhead view that was sampled does not actually reflect the current state of the area. Google 

attempts to keep the images up to date such that the available imagery should be less than three 

years old; yet this may still lead to inaccuracies in landing site locations 
Google Maps maintain a database that covers most of the world; however, it does not contain 

high resolution imagery for every coordinate in the world. Typically, at higher levels of zoom, 
there are fewer coordinates with available imagery. Even when using a zoom of 18, there are a few 

coordinates that simply did not have the imagery available. If a zoom of 20 were used, there would 

likely be fewer locations from where images could be downloaded. 

3.2 Building the Dataset 

3.2.1 Positive Examples 

Areas with helipads are needed to create a positive dataset for the training of the machine learning 

model. While areas can be randomly sampled using Google Maps API and helipads in those areas 
labeled, this would be an incredibly inefficient process. There is an extremely low probability that 
a randomly sampled location would contain a helipad. We used the initial FAA, IOWA DOT, and 

ArcGIS helipad datasets to sample positive areas, The FAA’s 5010 was the largest database. To 

ensure accuracy, all coordinates were manually annotated so that only coordinates where a heli­
pad would be visible in the collected image was added to the training set. From an initial 6, 333 

coordinates in the dataset, only 3, 887 were manually annotated to be helipads. An additional 157 

positive coordinates were added from other databases provided by the FAA, including the Lifeflight 
of Maine dataset 

Two publicly available datasets were used. The first is a dataset found on ArcGIS containing 

the coordinates of hospital helipads found in California. This dataset contained 170 coordinates, 
and after annotation, 169 of these coordinates were used. The second is Iowa DOT’s dataset, which 

listed 126 locations, and 111 of these coordinates were considered to contain helipads. 
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3.2.2 Negative Examples 

A negative (non­helipad) set of images is also needed to train the machine learning model. The 

negative set was collected using random sampling of Google Maps. These random samples were 

manually checked to ensure that they did not contain any landing site. As the current goal is to 

identify helipads in the U.S., the sampling was limited to an area such that the sampling region 

includes most of the mainland U.S. However, most of these samples were of forested areas and 

farmlands and contained very few urban areas. This could bias the network to predict helipads 
mainly in urban areas It is therefore important to sample negative locations from urban areas as 
well. It is noted that urban areas will likely have a higher helipad density, and thus a helipad will 
be more likely to be found there. To lessen this risk, locations like Washington D.C. and New York 

City were chosen due to the lower density of helipads. In New York City, ownership of rooftop 

helipads became more restricted after the 1977 crash at the Pan Am building, along with noise 

complaints continuing to restrict helicopter flights. Washington D.C. is in restricted airspace and 

allows only a few helipads to operate. 

3.3 Final Benchmark Dataset for Training CNNs 

After careful data collection, labeling, and organization, a helipad identification benchmark dataset 
was created. The positive set contains 4, 324 samples. Some areas are more represented than others, 
as some of the datasets used were specific to certain regions. However, the largest dataset making 

up over 80% of the final dataset is the FAA’s dataset spread over the United States and its territories 
covering different types of landing areas, including helicopter parking pads, helidecks, Emergency 

Helicopter Landing Facilities (EHLFs), and heliports. 
The negative set was created by randomly sampling 5,000 coordinates. A total of 2,000 of 

these coordinates were from the mainland United States and contained woodland and other rural 
areas. The remaining 3,000 negative images were sampled from urban areas, such as San Jose, 
Washington D.C., New York City, and San Antonio. 

The final benchmark dataset has 9, 324 satellite images labeled as either helipad or non­helipad. 
Figure 3 shows some of the images in the dataset. On the left, we show some landing locations, 
including helistops, helidecks, and helicopter runways. On the right, we present some randomly 

sampled imagery including rural and urban areas. It is noteworthy to mention the variety of landing 

sites shown in Figure 3. In particular helipads have different sizes, as their minimum required 

lengths are decided by the rotor diameter of helicopters intended to land. This causes the areas they 

represent in squared meters to be different. Other factors, such as the zoom level which takes into 

account the distance from the satellite, the elevation, and the latitude add to the complexity of the 

landing sites imagery. 
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Figure 3: Sample aerial images from the dataset that we developed as a part of the project. While 
the term helipad is used for the positive set, the dataset also contains areas that helicopters are 
intended to land at, e.g., helicopter runways. 

4 Explainable Identification of Helipads 

4.1 Convolutional Neural Network Models 

We considered four different CNN models for the helipad detection task. These included ResNet101, 
Inception, Xception, and EfficienetNet­B0 [Tan and Le, 2019, He et al., 2016] [Szegedy et al., 2016, 
Chollet, 2017]. These models were chosen as they represent a variety of families of common CNN 

architectures. The details of the these models are presented in Table 1. All of these models served 

as feature extractors with additional layers for fine­tuning and classification as shown in Figure 4. 

Table 1: Comparison of selected CNN models 
Model Skip Inception Parameters (106) Image­net Top 5­accuracy 
ResNet101 yes no 44.71 92.8% 
Inception­V3 no yes 23.85 93.7% 
Xception yes no 22.91 94.5% 
EfficientNet­b0 yes no 5.33 97.1% 

4.1.1 ResNet101 

ResNet101, proposed in [He et al., 2016], is a residual network that contains skip connections. 
Residual networks were designed to mitigate the problem of accuracy degradation with network 

depth. With the network depth increasing, accuracy gets saturated and then degrades rapidly. Skip 

connections simply perform identity mapping, and their outputs are added to the outputs of the 

14 



stacked layers. It was experimentally shown that deep residual networks: 1) exhibit lower train­
ing error when the depth increases compared to their counterpart “plain” networks, and 2) enjoy 

accuracy gains from considerably increased depth, producing significantly better results than their 
counterpart “plain” networks. 

4.1.2 Inception­V3 

Inception­V3, proposed in [Szegedy et al., 2016], is part of the family of Inception networks. This 
family of networks uses the Inception module, which leverages multiple types of filter sizes in a 

convolutional layer instead of being restricted to single filter size. The motivation of Inception 

stems from the human visual cortex, which identifies patterns at different scales and then accumu­
lates them to form larger perceptions of objects. Therefore, Inception modules have the potential 
to improve optimal feature extraction, and hence improve learning. 

4.1.3 Xception 

Xception, proposed in [Chollet, 2017], improves upon the Inception family of architectures by 

replacing Inception modules with depth­wise separable convolutions. A depth­wise separable con­
volution is a spatial convolution performed independently over each channel of an input, followed 

by a point­wise convolution, i.e., a 1 × 1 convolution, projecting the channels output onto a new 

channel space. Xception is built by stacking depth­wise separable convolutions. This model also 

uses skip connections. 

4.1.4 EfficientNet­b0 

The EfficientNet family of architectures was proposed in [Tan and Le, 2019] to address the issue 

of scaling CNN models for better accuracy. Based on a compound scaling method that balances 
network width, depth, and resolution, eight different models (b0 ­ b7) were proposed, where higher 
values correspond to larger networks. The models are made up of sections of repeating layers that 
can be efficiently scaled to create a deeper model. 

5 Experimental Results 

We performed 10­fold validation for each network. The results from each of the 10 runs were 

averaged to produce the average performance of the model as shown in Figure 5. According to 

Figure 5, the EfficientNet­b0 model performed the best on our benchmark helipad dataset. 
Figure 6 shows the results from the grad­CAM implementation. This overlay shows a heat­map 

of the most salient pixels in the model’s prediction (EfficientNet­b0). Observe that the network 
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Figure 4: The layout of the proposed machine learning model is presented. The left image shows 
an overall structure of the CNN starting from the top where the satellite image is input to the CNN. 
The right side of the figure shows the inner structure of all tunable layers that make up the classifier 
part of the proposed CNN. 

relied on features of the helipad to make its prediction, as opposed to background features, such as 
nearby buildings. 

6 Helipad Search in Large Areas 

Using the CNN model validated in the previous section, it is now possible to identify imagery with 

helipads, which can be used to verify the accuracy of coordinates in helipad databases. This system 

can then be extended to be able to detect helipads within a designated region. In computer vision, 
the distinction between identification and detection is that identification can determine the presence 

of an object, while detection determines where in the image an object is. In this section, we extend 

the problem of helipad identification from aerial images to the detection of helipads from a larger 
area, e.g., downtown Los Angeles. To solve this new problem, without requiring new labeling, we 

use a sliding window approach to determine where in a larger image a helipad is. 
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Figure 5: Training (blue) and validation (orange) accuracy curves for ResNet101 (top left), 
Inception­V3 (top right), Xception (bottom left), and EfficientNet­b0 (bottom right). 

6.1 Searching for Helipads in Large Areas 

Sampling a larger Google Earth area can be done using a lower value zoom, dividing it into sections, 
then upsampling the images. This approach would minimize the number of API calls; However, 
the images retrieved will be of lower resolution. The second approach would be to sample using 

a higher zoom for higher resolution imagery, then combine the samples to form a larger image 

referred to as a collage. This collage can then be searched for helipads with an overlapping sliding 

window. A mapping between the latitude/longitude coordinates and pixel values must be derived. 
Google has provided the following relationship: 

cos(latitude × π )meter 180 = 156543.03392 × (1)
2zoompixel 

The distance represented by a pixel decreases as we sample further from the equator. Equation (1) 
does not factor in elevation, and may cause issues at different elevations. 
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Figure 6: Grad­CAM heat­maps showing the importance of pixels in the CNN model (EfficientNet­
b0) prediction. Aerial images (left column) and their corresponding Grad­CAM heat­maps (right 
column). The red area refers to the part of the model where the network attention is strong, and the 
blue part refers to the part that does not influence the prediction. 
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Figure 7: Searching helipads in large ares. The area scanned in a 5 × 5 collage settings vs. a single 
API call. 

Assuming that the circumference of the earth is 40.075 million meters and taking elevation into 

account, we can derive the following mapping from pixels to change in latitude/longitude. 

∆ latitude cos(latitude × π ) 
= 156543.03392 × 180 (2)

pixel 2zoom × 111320 
∆ longitude 1 

= 156543.03392 × (3)
pixel 2zoom × 111320 

An example of the created collage can be seen in Figure 7. This collage is created from a 5 × 5 

sliding window, and shows an area about 25 times larger than the initial aerial images, while still 
keeping the level of detail at a higher zoom. Sub­images can then be extracted from this area to 

search for helipads. 
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6.2 Searching for Helipads in Los Angeles 

We applied this collage technique to create a Los Angeles (LA) region. LA makes for an interesting 

testing area, as it has a high helipad density, so there will be many helipads to detect in a small 
region. However, the LA region is notably different than the other cityscapes in the dataset. To 

fix this data imbalance, some of the data from LA was used to supplement the benchmark dataset. 
Figure 8 shows the LA area under study. It was formed via an 11×11 collage, and will be broken up 

using a 20 × 20 sliding window producing 400 smaller images. The 200 images making up the top 

half of the image will be part of the supplemental training set, and the 200 images in the bottom half 
of the image will make up the testing case. The test achieved the following performance measures: 
Accuracy = 76.0%, Precision = 61.6%, and Recall = 97.4%. 

7 Conclusion 

We developed a deep learning model for helipad identification and detection from aerial Google 

Earth imagery. We also devised a framework to begin searching for helipads in designated areas. 
We achieved good performance in detecting helipads in the LA region; Nonetheless, more exper­
imentation is needed before this approach is ready for more widespread testing. Notably a larger 
variety of data should be considered, and a wide variety of locations should be incorporated for 
testing to ensure that the algorithm will perform in these different locations. 

Although the study was limited to the US, this approach is readily extendable to helipad identifi­
cation and detection across the globe. Future work includes leveraging Grad­CAM interpretability 

maps to estimate the location of the helipads after their identification. 
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Figure 8: Los Angeles (LA) region to be sampled. As the network was not trained on a similar 
cityscape, the top half of the area was used to supplement the training dataset and the model was 
tested on the lower half. 

Figure 9: Large Area Helipad Search with the Sliding Window Approach. (Left) The test region 
consists of the lower half of the LA area in Figure 8. (Center) Ground Truth helipad locations. 
(Right) Model prediction of helipad locations. 
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A Sample Results 

A.1 True Positive Cases 

True Positives (TP) are samples where there is a helipad present in the image, and the AI system 

predicts that there is a helipad in the image. This is the case where the CNN is capable of correctly 

identifying a helipad. For an AI system to be considered 100% accurate, then all images containing 

helipads should be this case, and all images without helipads should be in the True Negative (TN) 
case. The accuracy of the CNN can be expressed using these terms and total samples in the equation 

shown below. 

TP + TN 
Accuracy = (4)

T otal Samples 

Figure 10: A true positive example from the test dataset, i.e., the AI system identified the helipad 
correctly. (Left panel): Original image. (Right panel): Explainability map showing parts of the 
input image used by the AI system to decide about the helipad’s presence. Red color shows stronger 
contribution and blue color weaker. 
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Figure 11: A true positive example from the test dataset. 

Figure 12: A true positive example from the test dataset. 
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Figure 13: A true positive example from the test dataset. 

Figure 14: A true positive example from the test dataset. 
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Figure 15: A true positive example from the test dataset. 

Figure 16: A true positive example from the test dataset. 
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Figure 17: A true positive example from the test dataset. 

Figure 18: A true positive example from the test dataset. 
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Figure 19: A true positive example from the test dataset. 
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A.2 False Positive Cases 

False positive (FP), also known as type 1 error, is the case where the sample contains no helipad, 
however the AI system predicts there to be a helipad. The FPs are the cases where the CNN failed, 
and insights for the reasons the CNN failed can be found from inspecting these cases. FP along with 

the TP can be used to determine the precision of the system using the equation below. Precision 

represents the accuracy of the system’s predictions when a helipad is present in the given image. 

P recision = 
TP 

(5)
TP + FP 

Figure 20: A false positive example from the test dataset, i.e., the AI system identified the helipad, 
however there was not helipad in the original input image. (Left panel): Original image. (Right 
panel): Explainability map showing parts of the input image used by the AI system to decide about 
the helipad’s presence. Red color shows stronger contribution and blue color weaker. 
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Figure 21: A false positive example from the test dataset. 

Figure 22: A false positive example from the test dataset. 
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Figure 23: A false positive example from the test dataset. 

Figure 24: A false positive example from the test dataset. 
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Figure 25: A false positive example from the test dataset. 

Figure 26: A false positive example from the test dataset. 
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Figure 27: A false positive example from the test dataset. 

Figure 28: A false positive example from the test dataset. 
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Figure 29: A false positive example from the test dataset. 
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A.3 False Negatives Cases 

False negative (FN), also known as type 2 error, is the case where the sample does contain a helipad, 
however the system predicts no helipad. The FNs are cases where the CNN failed, and insights for 
the reasons the CNN failed can be found from inspecting these cases. This case along with the TP 

case can be used to determine the recall of the system using the equation below. Recall represents 
the percent of times the system correctly classified images with a helipad. 

Recall = 
TP 

(6)
TP + FN 

Figure 30: A false negative example from the test dataset. 

Figure 31: A false negative example from the test dataset. 
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Figure 32: A false negative example from the test dataset. 

Figure 33: A false negative example from the test dataset. 
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Figure 34: A false negative example from the test dataset. 

Figure 35: A false negative example from the test dataset. 
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Figure 36: A false negative example from the test dataset. 

Figure 37: A false negative example from the test dataset. 
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