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EXECUTIVE SUMMARY 

In recent years, traffic congestion and motor vehicle crashes have become major concerns that are 
particularly difficult to manage in high-density urban areas. Thus, mitigating traffic congestion 
and improving user safety on roadways are top priorities of the United States Department of 
Transportation (USDOT). American Dream Complex, located outside New York City, is an 
entertainment and retail center located within the Meadowlands Sports Complex in East 
Rutherford, New Jersey. With a building footprint exceeding 3 million square feet, it is the second-
largest retail and entertainment complex in the nation, and it is located within five miles of New 
York City. The complex officially opened in October 2019 and is expected to attract over 40 
million annual visitors once fully operational. This will potentially result in substantial mobility 
and safety issues for pedestrians and motorists in the area. The main objective of this study is to 
evaluate the mobility and safety concerns of the transportation network in the vicinity of this 
complex due to its partial official opening. To achieve the study objectives in terms of mobility, 
firstly, the performance of four surrounding corridors was explored by incorporating travel time 
inflation (TI) and its counterpart, the Corridor Travel Time Inflation (CTI), as performance 
measures. Then, TI for each corridor on a monthly basis was provided to explore the impact of the 
partial opening of the American Dream Complex on the surrounding corridors using probe data. 
Moreover, for a better visualization of the congestion, day-by-day Corridor Increase in Mean 
Travel Time (CIMTT) heatmaps were developed.  

Based on the results obtained from monthly based TI, Interstate 95, NJ Route 3, and NJ Route 120 
experienced an increase in TI due to the partial opening of the American Dream Complex during 
both non-peak and peak hours. However, results from the CIMTT heatmaps showed that no 
considerable congestion was observed on the opening day of the American Dream Complex on 
surrounding corridors. Average speed heatmaps also showed a decreased pattern for some cases 
and an increased pattern for some other cases due to the opening of the complex.  

Similarly, StreetLight data was also explored for Interstate 95, NJ Route 3, and NJ Route 120 for 
a period of 120 days before and 120 days after the opening of the American Dream Complex. To 
investigate the impact of the complex opening on the roadways, changes in the travel duration of 
trips were examined. Findings showed an increase in the trips made after the opening; however, 
the travel duration was not significantly impacted due to the opening.  

To achieve the second goal of this study, the research team developed an innovative artificial 
intelligence (AI)-based video analytic tool to assess intersection safety using Surrogate Safety 
Measures(SSM). Surrogate safety measures (e.g., Post-encroachment Time and Time to Collision) 
are extensively used to identify future threats, such as rear-end collisions due to vehicle and road 
users' interactions. To extract the trajectory data, the proposed work integrates a real-time AI 
detection algorithm, YOLO-V5, with tracking using the Deep SORT algorithm. 180-minutes of 
high-resolution video data were collected from two intersections near the American dream 
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complex. Non-compliance behaviors, such as red-light running and pedestrian jaywalking, are 
captured to better understand the risky behaviors at intersections. The proposed approach achieved 
a relative accuracy between 95 and 98 percent in detecting and tracking vehicle trajectories. Also, 
results demonstrated that the developed tool could be used to assess the safety of a signalized and 
non-signalized intersection. 
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CHAPTER 1. INTRODUCTION AND THE PROBLEM STATEMENT  

Traffic congestion and motor vehicle crashes are major global challenges being faced every day. 
This is especially problematic in urban areas, where infill development will increase traffic volume 
in the region, thus impacting both congestion and crash frequency. Even as new developments are 
being constructed, reducing congestion and enhancing traffic safety on America's transportation 
roads are top priorities of the United States Department of Transportation (USDOT). According 
to the American Transportation Research Institute (ATRI), New Jersey has the worst traffic 
bottleneck in the country (Truckinginfo, 2019). Moreover, the state of New Jersey ranked second 
in the nation with respect to the ratio of pedestrian fatalities to the total number of motor vehicle 
deaths (NHTSA, 2018), necessitating further investigations. Therefore, it is especially important 
to understand on a quantitative level how major commercial development will impact the densely 
populated, highly congested region. 

The American Dream Complex is an entertainment and retail center located within the 
Meadowlands Sports Complex in East Rutherford, New Jersey. With a building footprint 
exceeding 3 million square feet, once complete, American Dream Complex will be the second-
largest retail and entertainment complex in the nation. The ongoing commercial development is 
located within 10 miles of New York City, NY. The American Dream Project (initially known as 
the Meadowlands Xanadu) was proposed by Mills Corporation in 2003, and the project 
construction began in 2004. However, in 2007, due to the Mills Corporation's bankruptcy, Colony 
Capital took over the project. Eventually, in July 2013, Triple Five Group, the owners of the two 
largest malls in North America, officially took control of the project. Despite the delays and 
obstacles, the American dream complex officially opened at about 10% capacity to the public on 
October 25, 2019 (Wikipedia, 2021). The American Dream Complex consists of four phases: 

Phase 1: Phase 1 of the American Dream Complex is the Nickelodeon Universe and Theme Park 
opened on October 25, 2019. The Park is located on the Westernmost section of the American 
Dream Complex and houses many attractions packed within its 8.5-acre facility. The facility is 
accessible either by car or through mass transit. Additionally, The Rink, an NHL regulation ice-
rink, was also opened on October 25, which features various family activities, including both open 
and figure skating, as well as hockey tournaments and other events.  

Phase 2: The second phase of the American Dream complex is the Dreamworks Water Park, which 
was initially planned to open on March 19, 2020. The water park is located South of the 
Nickelodeon Universe Theme Park. This park was opened on October 1, 2020. According to 
American Dream's website, the park is home to over 40 waterslides and 15 attractions, including 
SurfRiders and a lazy river. American Dream also states that the facility will house the world's 
largest wave pool of 1.5 acres and the tallest indoor body slide of 142 feet.  

Phase 3: This phase of the American Dream complex is the Big Snow Indoor Snow Park, a facility 
that was opened on December 5, 2019. The Big Snow Indoor facility is located in the North Wing 
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of the American Dream Complex. The Big Snow Indoor facility holds the honor of being North 
America's first indoor real-snow, snowboard, and ski center.  

Phase 4: The fourth phase of the American Dream Complex is the final phase of the American 
Dream's grand opening, which involves the grand opening of the rest of the complex. This phase 
is set to include the debut of over 350 retail stores and additional entertainment facilities. 
Entertainment facilities include the LEGOLAND Discovery Center, SEA LIFE Aquarium, Angry 
Birds MiniGolf, and CXM Luxury Theatres. The opening of this section of the complex was 
delayed due to the COVID-19 pandemic, but it was finally opened on October 1, 2020.  This phase 
marks the completion of the majority of American Dream facilities outlined in the phase planning 
model. On the map of the American Dream Complex, the location slated for retail stores is located 
at the heart of the complex as it will take up a majority of the facility. 

Once fully open, American Dream Complex is expected to attract over 40 million visitors annually. 
This will potentially result in substantial mobility and safety issues for pedestrians and motorists 
in the area, which need to be further studied.  

In order to assess the mobility issues, probe vehicle data can be used to evaluate the congestion 
performance of roadways going to and coming from the American Dream Complex. This type of 
data is being used as a common data source for measuring the regional performance of roadway 
networks. By developing a performance evaluation method based on these data, the health of the 
roadway system can be monitored, and future improvement plans can be established. Probe data 
is a valuable source of speed information in terms of temporal and spatial coverage (Brennan et 
al., 2019). This type of data is increasingly incorporated in transportation analytics. 

There are a number of situations that can have an immediate impact on the prevailing traffic 
conditions. Crash incidents, weather events, construction, and congestion, all impact a roadway 
network almost daily (Brennan et al., 2015). Reliable traffic information obtained from probe 
vehicles has been used to assess travel time variation resulting from these daily traffic fluctuations 
due to specific conditions. Traditionally, a trip generation model is produced when specific land 
use is designated to ascertain the traffic impact in the immediate area. With the advent of probe 
vehicle telematics, these normally modeled impacts can now be measured. It is understood that the 
opening of a large commercial complex will affect the traffic conditions of the adjacent roadways, 
which is supported by the ITE Trip Generation manual. What is not known is how much of an 
impact this type of opening will have on a complex this large, whose retail and entertainment 
construction is being phased. Investigating the changes in traffic conditions of adjacent roadway 
networks due to the opening of a major development provides a means to proactively manage 
traffic congestion and improve users' safety on roadways. Therefore, it is especially important to 
understand on a quantitative level how major commercial development will impact densely 
populated, highly congested regions. 
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In terms of accomplishing a successful design, plan, and management of a safe traffic system, it is 
essential to have a broad understanding of road user behavior and its effect on the safety of traffic 
flow. In order to do that, several studies have been researched for identifying diverse Surrogate 
Safety Measures (SSM) using micro stimulations and video processing techniques. Generally, 
SSM can be characterized as either time-based or non-time-based (Gettman and Head, 2003). SSM 
is an extensively used method for recognizing future threats that may arise due to conflict among 
road users (Tak et al., 2018).  Perkins and Harris first proposed the procedure for recording and 
identifying the traffic conflicts at an intersection and also defined traffic conflict as all possible 
accident condition that leads to the elusive action like swerving or braking (Perkins and Harris, 
1967). Later, Amundson and Hyden (1977) revised the definition and is recognized by FHWA and 
other international agencies as “an observable situation in which two or more road users approach 
each other in time and space to such an extent that there is a risk of collision if their movements 
remain unchanged” (Gettman et al., 2008). There are a long history and current research work that 
ample efforts have been put into the improvement of methodology, connecting the conflicts and 
crashes to the design and expansion of surrogate measures (Gettman et al., 2008). In context to the 
study, this section will provide an overview of the traffic confits and an understanding of the 
surrogate conflict measures, including Time to Collision (TTC), Post-Encroachment Time (PET), 
etc. Moreover, this section will also deliver an overview of the existing studies that have tried to 
examine the surrogate conflict measures using the video analysis technique.  

Research Goals and Objectives: 

This project mainly focused on identifying the traffic and safety issues associated with the 
American Dream complex. The main objectives of this study can be summarized as follows: 

• to conduct a feasibility study by evaluating the traffic operations and safety concerns of the 
transportation network in the vicinity of this complex 

• to collect relevant data representing existing issues over a period of time to compare to the 
first benchmark phase of data collection since the opening of the complex 

• to conduct initial analytics to assess mobility and safety issues, and 

• to develop a video analytics framework to identify the conflicts between different road user 
groups, such as drivers and pedestrians, by using Artificial Intelligence (AI) tools 
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CHAPTER 2. LITERATURE REVIEW 

In this chapter, a comprehensive literature review is provided to synthesize existing information 
on the American Dream Complex, traffic and safety data collection/analysis methods, video 
analytics, and strategies to alleviate congestion and safety issues specific to the American Dream 
Complex. The summary of previous studies herein is divided into two sections, mobility and 
safety.   

2.1 Mobility 

The application of probe vehicle data in performance evaluation of highways and arterial roads 
has drawn considerable research interest over the last decades. A summary of previous studies on 
the application of probe vehicle data is provided as follows: 

Dynamic Freeway Travel-Time Prediction with Probe Vehicle Data: Link Based Versus Path 
Based 

(Mei Chen and Steven I. J. Chien) 

Proposing a path-based travel time model using probe vehicle data is the main objective of this 
study. To do so, the Kaman filtering technique was employed to develop the model. This technique 
is based on the real-time records obtained from probe vehicles. Then, the performance of the 
proposed model was compared with the conventional link-based travel time estimation models. It 
was shown that the proposed path-based model in this study outperformed normal traffic flow. It 
was also concluded that the variance of the reports obtained from probe vehicles increased when 
road traffic volume was near its capacity. This condition led to more errors in travel time 
estimation. This study also showed that increasing probe vehicle percentage can slightly result in 
more accurate travel time estimations for path- and link-based approaches (e. g., 3% improved 
accuracy for increasing probe vehicle percentage from 1% to 3%) (Chen and Chien, 2001).  

Application of Probe-Vehicle Data for Real-Time Traffic-State Estimation and Short-Term 
Travel-Time Prediction on a Freeway 

(Chumchoke Nanthawichit, Takashi Nakatsuji, and Hironori Suzuki) 

This study suggests a new model for traffic state estimation by using probe vehicle data and 
detector data. The proposed model is based on the Kalman filtering technique. In this technique, 
"a microscopic traffic flow model" served as state equations. Various traffic conditions were 
considered for testing the proposed approach. This approach is able to conduct state estimation 
even if some probe data is missing for a specific segment. Results showed that the proposed 
approach could lead to state estimations with smaller errors (70% to 85% reduction error).  
Moreover, the proposed model was implemented to estimate short-term travel time by converting 
the estimated speeds. Afterward, the results were compared with the estimations obtained from 
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three conventional approaches. It was found that the proposed method in this study outperformed 
by decreasing the estimation error (MARE < 0.04) (Nanthawichit et al., 2003). 

Variability of Travel Time Estimates using Probe Vehicle Data 

(Toshiyuki Yamamoto, Kai Liu, and Taka Morikawa) 

This study focuses on how reliable travel time can be estimated for roadways or links using probe 
vehicle data with different frequencies. An urban route located in Japan was selected as the case 
study, and a six-month probe vehicle data was collected for this arterial. By deleting probe data 
with higher frequency, probe data with lower frequency was incorporated to conduct simulations 
for probe data variability assessment. Results indicated that using probe data with lower frequency 
can result in smaller variance for links exactly before the signalized intersections. Results also 
showed that using probe data with lower frequency, the accuracy level of predicting the travel time 
for roadway segments is almost the same as those predicted by using probe data with higher 
frequency (Yamamoto et al., 2006). 

Estimating Delay Time at Signalized Intersections by Probe Vehicles 

(Kai Liu, Toshiyuki Yamamoto, and Taka Morikawa) 

The main objective of this study is to conduct a sensitivity analysis of delay measurement by using 
probe vehicle data with different transmission intervals at an intersection. A total of six-month 
probe vehicle data with high frequency (five-second intervals) from ten probe taxis in Japan was 
obtained. By deleting some parts of the data, lower-frequency data (from 10 s to 60 s intervals) 
was also obtained for further analysis. Then, two algorithms were developed to calculate the travel 
time delay for both high-frequency and low-frequency data. It was found that the dataset with 10 
s transmission intervals is capable of estimating travel time 74% correct with an average error of 
12%. However, the dataset with 60 s intervals predicted delays 37% correct with an average error 
of 47%. These findings proved that as the transmission interval increases, the accuracy level of 
delay time estimation decreases (Liu et al., 2006).  

Bayesian Mixture Model for Estimating Freeway Travel Time Distributions from Small 
Probe Samples from Multiple Days 

(Klayut Jintanakul, Lianyu Chu, and R. Jayakrishnan) 

The main objective of this study is to propose a new hierarchical Bayesian model to predict the 
distribution of freeway travel time from small samples of probe data. In order to address the 
heterogeneous nature of the travel time and its skewed or multimodal distribution, two normal 
components were considered in this study. An initial dataset consisting of a small sample of travel 
time from probe data (gathered for 20 days over a specific time duration) was utilized prior to 
determining the model parameters. A simulation was also conducted to verify the results. Six mi 
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of I-405, located in Orange County, California, was simulated using PARAMICS. Results 
indicated that the proposed model is capable of predicting the distribution of travel time for each 
interval (Jintanakul et al., 2009). 

Monitoring travel times in an urban network using video, GPS, and Bluetooth 

(Li Jie, Henk van Zuylenb, Liu Chunhua, and Lu Shoufeng) 

In this study, the performance of different methods for estimating travel time in urban networks in 
Changsha, China, was explored. Travel time distributions were measured by incorporating 
different methods, and the results were compared. In this study, considered methods include 
Bluetooth scanners, video observations, GPS devices in 6000 taxis, private cars, busses (with 30 s 
polling interval), and GPS devices installed in a few probe cars (with 3 Hz measuring frequency). 
Results revealed that the quality of estimated travel time from Bluetooth scanners is not acceptable 
due to two main reasons, the existence of outliers that cannot be deleted easily and the difficulty 
in distinguishing Bluetooth devices belonging to different passenger groups. Results also indicated 
that standard GPS devices are effective tools for estimating link travel times. It was found that the 
average speed data obtained from GPS can be effectively utilized to measure the average travel 
time for a link. Traffic counts obtained from video recordings were found to be more accurate 
compared to ones obtained from loop detectors. The cumulative count method was applied to 
evaluate the accuracy of GPS devices installed in a few probe vehicles. It was concluded that the 
travel times measured with GPS devices are in agreement with those measured by the suggested 
method (Jie et al., 2011).  

Probe Vehicle Data for Characterizing Road Conditions Associated with Inclement Weather 
to Improve Road Maintenance Decisions 

(Alexander M. Hainen, Stephen M. Remias, Thomas M. Brennan, Christopher M. Day, and Darcy 
M. Bullock) 

This paper discusses the feasibility of using probe vehicle data in characterizing roadway 
conditions impacted by inclement weather along a segment. In this study, eight portable devices 
for data collection were installed with about ten miles spacing along the I-65 in Indiana to collect 
Bluetooth MAC Addresses. The selected stations are located within the boundaries of ice and snow 
maintenance units. In order to collect the data from vehicles traveling both Southbound and 
Northbound of the I-65, the data collection devices were installed in the median. Data were 
collected in 2011 during two storm events. Since the travel time is dependent on segment length, 
space means speed (SMS) was considered as the performance measure of road segments in this 
paper. Afterward, the statistical distribution of SMS for the selected segment was plotted, which 
are "intellectually sound but visually intuitive graphs." Results showed that during the storm, SMS 
experienced a 20 mph decrease, and the interquartile experienced a four mph increase. This paper 
proved the applicability of emerging probe vehicle data in determining the effect of a weather 



 

14 
 

condition on the roadway and providing alternative strategies for the roadway condition (Hainen 
et al., 2012). 

Probe Vehicle-Based Statewide Mobility Performance Measures for Decision Makers 

(Thomas M. Brennan, Jr., Stephan M. Remias, Gannon M. Grimmer, Deborah K. Horton, Edward 
D. Cox, and Darcy M. Bullock) 

This paper proposes several techniques to create performance measures of current freeway 
conditions. These performance measures can be used at a state agency level for decisions such as 
the arrangement of capital program investments, the scheduling of lane closures, and the 
management of snow removal.  This paper discusses techniques for the use of commercial probe 
data in the assessment of congestion of seven Indiana Interstate highways for a total of 1,866 lane 
miles. In this paper, three congestion performance measures, including "congestion hours," 
"distance-weighted congestion hours," and "the congestion index" was employed to assess 
congestion and evaluate the performance of roadway systems. The probe data was also utilized to 
determine the user delay and its related costs. It was shown that the delay cost for some portion of 
I-65 (7.4 miles) during an 18-month period was $32 million (Brennan et al., 2013). 

Travel time estimation for urban road networks using low frequency probe vehicle data 

(Erik Jenelius, and Haris N. Koutsopoulos) 

A statistical model was suggested in this study in order to predict network travel time by 
incorporating low-frequency probe data. In this study, a multivariate normal distribution was 
presumed for link travel time. The suggested network model was capable of modeling the trip 
travel times as "link travel time" and "intersection delays." The proposed model considered a 
spatial moving average (SMA) structure basis for the associations between travel times of various 
links. The proposed model was then, employed for an arterial network located in Stockholm as the 
case study. It was shown that the probe vehicle data with low frequency could be utilized for 
performance evaluation and monitoring of urban transport systems. It was also concluded that one 
could monitor very small variations of travel times on a daily, seasonally, and also yearly basis 
(Jenelius and Koutsopoulos, 2013).  

Performance Characterization of Arterial Traffic Flow with Probe Vehicle Data 

(Stephen M. Remias, Alexander M. Hainen, Christopher M. Day, Thomas M. Brennan, Jr., Howell 
Li, Erick Rivera-Hernandez, James R. Sturdevant, Stanley E. Young, and Darcy M. Bullock) 

This study focuses on the application of probe data in determining the most applicable adaptive 
control objectives and evaluating their effectiveness. To do so, four case studies were considered, 
and their proposed techniques of data collection for performance evaluation of adaptive control 
systems were reviewed. The proposed techniques in these case studies include "reidentification 
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with pavement sensors," "reidentification with Metropolitan Affairs Coalition address matching," 
and "crowd-sourced data." The study also addressed the weaknesses and the strengths of each 
implemented technique. As a result, it was suggested that the commercial data providers supply 
more useful probe data information by providing detailed base maps. It was also found that the 
probe data provides the richest information under the condition that the distributions are performed 
for links determining control or approach delay of every signalized intersection. This study proved 
the idea that the probe data distribution can be utilized to determine the appropriate control 
objectives for a corridor (Remias et al., 2013).  

Urban link travel time estimation based on sparse probe vehicle data 

(Fangfang Zheng and Henk Van Zuylen) 

This paper attempts to estimate travel time by using probe vehicle data having a low polling 
frequency of 1 min or 5 min. Since this kind of low-frequency probe data results in estimating 
partial travel time for a link, this study aims to overcome this issue and estimate the complete 
travel time. To achieve this goal, an artificial neural network-based model with three layers was 
developed for each probe vehicle using the probe data. Link IDs, time stamps, speeds, and probe 
positions were considered as input data for the neural network model. Then, an analytical model 
proposed by Hellinga et al. (2008) was selected as the comparative study. Moreover, VISSIM 
simulation software was implemented to conduct the performance evaluation of the proposed 
model and the analytical model suggested by Hellinga et al. (2008). Results indicated that the 
proposed neural network-based model had better performance than the proposed model by 
Hellinga et al. (2008). This result can be explained by the higher number of parameters, which the 
neural network-based model applies as inputs. Results also revealed that the position parameter is 
the underlying input for the neural network-based model, and the model's accuracy directly relies 
on this parameter (Zheng and Zuylen, 2013).  

Spatially Referenced Probe Data Performance Measures for Infrastructure Investment 
Decision Makers 

(Stephen M. Remias, Thomas M. Brennan, Christopher M. Day, Hayley T. Summers, Deborah K. 
Horton, Edward D. Cox, and Darcy M. Bullock) 

The main objective of this study is to assess the application of crowdsourced probe vehicle data 
and its performance measures in developing and visualizing the congestion from the spatial and 
temporal perspectives so that decision-makers can take benefit of them in order to perform an 
evaluation study of past and potential future investments. To achieve this goal, I-80-I-90 corridor 
located in Northwest Indiana was considered, and the congestion changes during a bridge 
construction over this corridor in 2011 and 2012 were accessed by developing three performance 
measures. Developed performance measures include travel time (TT), segment speed, and travel 
time deficit (TTD). Estimated costs caused by congestion were also calculated in this study by 
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adding the costs for passenger cars, and truck and commercial vehicles, and the costs related to 
carbon dioxide emissions. Consequently, the TTD was developed for I-80 for 2012 at a national 
level, and the congestion distribution for different states along this corridor was discussed (Remias 
et al., 2014). 

Performance Measures to Characterize Corridor Travel Time Delay Based on Probe Vehicle 
Data 

(Thomas M. Brennan, Jr., Stephen M. Remias, and Lucas Manili) 

This study aims to develop a visualization-based methodology in order to characterize congestion 
along a corridor. To this end, I-80 Located in Northern New Jersey, was considered a case study, 
and over 90 million speed records for 2013 were gathered for further analysis. In this study, a 
variable speed threshold was considered for each traffic message channel (TMC). According to 
this approach, the threshold was calculated by considering the 70th percentile of the 15-min average 
speeds. Congestion hours (VCH) corresponding to TMCs that are below the congestion threshold 
were also calculated. Furthermore, travel time inflation (TI) was employed as the performance 
measure to perform the analysis. Then, due to the deficiency of TI in showing the time of the day, 
corridor travel time inflation (CTI) was calculated and visualized for I-80 corridor. The authors 
suggested that the visualization techniques that they developed by using crowdsourced probe 
vehicle data provide the decision-makers with a useful tool for roadway management-related tasks 
(Brennan et al., 2015).  

Characterizing Bridge Functional Obsolescence Using Congestion Performance Measures 
Determined from Anonymous Probe-Vehicle Data 

(Andrew J. Bechtel, Thomas M. Brennan Jr., and Jhenifer Mesquita de Araujo) 

The main purpose of this study is to evaluate the congestion condition along obsolete bridges by 
using anonymous probe data. 37 bridges located in Burlington County, New Jersey, were selected 
for further analysis. The selected bridges had poor deck geometry ratings based on the rating 
system defined by the National Bridge Inventory (NBI). In order to determine congestion 
measures, the authors analyzed about 35 million speed records obtained for selected bridges and 
calculated congestion hours with the speed threshold of 70th percentile space mean speed (SMS). 
Then, the results were compared to NBI ratings. The study concluded that out of the 37 bridges 
that were expected to have a high degree of congestion, 28 bridges had congestion of less than 100 
hours, 2 had more than 100 hours of congestion, and 7 had no congestion hours. These results 
proved the fact that the rating system suggested by NBI cannot be a representative indicator for 
congestion. The proposed methodology, as well as the NBI rating, were then employed to illustrate 
the capability of congestion analysis as a useful tool for bridge management purposes (Bechtel et 
al. 2016). 
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Probe data-driven travel time forecasting for urban expressways by matching similar 
spatiotemporal traffic patterns 

(Zhihao Zhang, Yunpeng Wang, Peng Chen, Zhengbing He, and Guizhen Yu) 

This study suggests a pattern-matching approach for estimating travel time. This method consisted 
of multiple steps for estimating travel time which benefits from a matching process of 
spatiotemporal traffic patterns on a large scale. In the first step, the method applied the Gray-Level 
Co-occurrence Matrix (GLCM) to obtain the spatiotemporal features of traffic. Secondly, the 
distance of similar traffic patterns was measured using the Normalized Square Distance (NSD). 
Thereafter, patterns matching the best were selected using a screening process. Consequently, the 
travel times were predicted by implementing a negative exponential weight for each selected 
pattern. This method, finally, was applied to a 32-km expressway located in China by matching 
the speed patterns. Results proved the applicability of the suggested method in predicting travel 
times for different traffic conditions. This method had better performance compared with other 
conventional methods such as Naïve KNN and Historical Average (Zhang et al., 2017). 

Multiple Factor Based Sparse Urban Travel Time Predictions 

(Xinyan Zhu, Yaxin Fan, Faming Zhang, Xinyue Ye, Chen Chen, and Han Yue) 

This study suggests a new multi-factor-based methodology by incorporating a neural network with 
three layers in order to predict travel time. The proposed methodology consisted of three steps. In 
the first step, the probe data for a traveling taxi was collected during the business days for a targeted 
link. Then, the feature associations between the target link and the adjacent ones were explored 
during 30 min intervals. In this step, approximately 225 thousand records were collected. As the 
second step, an artificial neural network with three layers was developed by considering eight 
neurons in the input layer and one neuron in the output layer. The impact of different factors such 
as speed expectation, link length, time instant, and weather information was also explored in this 
step. In the third and final step, the travel time for the target link was estimated using the trained 
neural network. For results verification, the authors incorporated the probe vehicle data for Wuhan, 
China, gathered from May to July 2014. It was concluded that recommended methodology in this 
study could perform well under the condition of having sparse data. It was also found that the 
factors, including the 30 min interval selected for a day, the day of the week, and the expected 
speed for adjacent links, are the most influential factors in the estimation of travel time for the 
target link (Zhu et al., 2018). 
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Performance Measures for Characterizing Regional Congestion using Aggregated Multi-
Year Probe Vehicle Data 

(Thomas M. Brennan Jr., Mohan M. Venigalla, Ashley Hyde, and Anthony LaRegina) 

This study details the regional congestion assessment by using aggregated probe speed data during 
an extreme condition, Hurricane Sandy. To this goal, probe speed data obtained for 10 miles of 
coastline covering five counties in New Jersey in 2012 (including 614 TMCs and 90 million speed 
records) was analyzed in this study. The results, afterward, were compared with the congestion 
data for 2013, 2014, and 2016. The speed threshold considered in this study was 70% of the base 
free-flow speed (BFFS). Regional travel time inflation (RTI), showing the spatial congestion 
distribution on a regional level, was taken into account as the performance measure and was 
calculated by adding all travel time inflation (TI) of each TMC. The study proved the applicability 
of RTI and TI as performance measures in determining the congestion of roadway systems. 
Subsequently, the regional increase in mean travel time (RIMTT) was proposed to perform the 
congestion on a yearly basis for 2016. The study showed that RIMTT is a useful visualization tool 
that can characterize and indicate congestion changes throughout the day or the year (Brennan et 
al., 2018).  

Exploring Travel Time Distribution and Variability Patterns Using Probe Vehicle Data: 
Case Study in Beijing 

(Peng Chen, Rui Tong, Guangquan Lu, and Yunpeng Wang) 

The main contribution of this study is to prove the usefulness of probe vehicle data in investigating 
"travel time distribution and variability patterns." To this goal, 200 links in China covering major 
roads, secondary roads, urban expressways, and auxiliary urban expressways were selected as case 
studies, and probe vehicle data were obtained for them. Different distributions, then, were 
developed for unit distance travel time. Among all the developed distributions, the lognormal 
distribution was selected by conducting three different goodness-of-fit tests (chi-squared test, 
Anderson-Darling test, and Kolmogorov-Smirnov test). Moreover, in order to examine "the day-
of-week travel time variability pattern," four reliability measures (including punctuality rate (PR), 
buffer time index (BTI), coefficient of variation (CV), and unit distance travel time) were 
employed in this study. It was indicated that major roads and auxiliary roads of urban expressways 
have the same reliable travel time variability patterns in the daytime. However, at nighttime, urban 
expressways showed the most reliable pattern. It was also concluded that all types of roads except 
for secondary roads experience distinguishable morning and afternoon peaks (Chen et al., 2018). 
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Assessing Highway Travel Time Reliability using Probe Vehicle Data 

(Piotr Olszewski, Tomasz Dybicz, Kazimierz Jamroz, Wojciech Kustra, and Aleksandra 
Romanowska) 

This article attempts to apply probe vehicle data to identify the performance measure for examining 
the frequency and severity of traffic congestion that occurs along a roadway. To do so, firstly, a 
pilot survey was carried out on an A2 motorway located in Poland in order to confirm the 
reasonable accuracy of probe vehicle data as well as its applicability for examining traffic 
conditions. Expressway S6 located in Poland was, then selected as a case study, and a new method 
was proposed to calculate free-flow speed (FFS) in the off-peak period (FFS) by utilizing traffic 
counts and probe vehicle data. To find the segments having higher delay and lower reliability, the 
authors determined the travel time indexes and reliability rates in 2016. It was found that only two 
segments of Expressway S6 had a reliability rating under 90%, indicating that this roadway has a 
good travel time reliability. Consequently, a new reliability indicator named delay index was 
introduced, and the delay map graphs illustrating the special and temporal distribution of 
congestion were suggested in this study (Olszewski et al., 2018).  

Using anonymous probe-vehicle data for a performance indicator of bridge service 

(Andrew J Bechtel, Thomas M Brennan, Kevin Gurski, and Jessica Ansley) 

This study aims to propose a congestion metric as a performance indicator for bridges by 
employing anonymous probe vehicle data. To this goal, 2211 bridges located in New Jersey were 
selected, and the congestion metrics were calculated for them. In this study, any drop in speed that 
was below a threshold (70th percentile of space mean speed) was considered as a congestion 
occurrence. The US National Bridge Inventory (NBI) defines a performance indicator for bridges, 
namely functionally obsolete (FO) designation. The authors, as the next step, compared the 
proposed congestion metric with FO designation. Results obtained from comparison indicated that 
only a few FO bridges (4%) had congestion metrics exceeding 200h in 2014. Moreover, only 55% 
of FO or structurally deficient (SD) bridges had congestion metrics exceeding 2500h. It was also 
concluded that bridges located closer to large cities in New Jersey experienced higher congestion 
metrics. This study finally suggested that the congestion metrics can appropriately serve as 
performance indicators (Bechtel et al., 2018). 

Use of Multi-sensor Data in Modeling Freeway Travel Time: Variability Analysis and 
Prediction 

(Zhen Chen) 

The aims of this study are as follows: finding the most suitable travel time reliability (TTR) 
measure, investigating the pattern of travel time variability by taking into account different factors, 
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and finally proposing a new machine learning-based methodology, namely XGBoost model, to 
predict the distribution of travel time. Different factors, including "weather condition," "time of 
the day," and "day of the week" were considered in the model. Eight segments of I-77 located in 
Charlotte, North Carolina, were selected as a case study, and travel time data of this corridor was 
obtained from the Regional Integrated Transportation Information System (RITIS) website. The 
planning time index (PTI) was considered as the travel time reliability measure in the travel time 
variability analysis. Results obtained from the variability analysis showed that the travel time 
variability for weekends is lower compared to weekdays for the segments of the corridor having a 
considerable peak hour pattern. Finally, results obtained from travel time prediction analysis 
showed that the efficiency and accuracy of the computation for travel time estimation could be 
improved by using XGBoost model (Chen, 2019). 

Probe vehicle performance measures for assessing travel time reliability 

(Kyle Robert Thompson) 

This study aims to propose different metrics for assessing travel time reliability by utilizing probe 
vehicle data obtained from INRIX. To this end, by reviewing previous studies and FHWA 
rulemaking, ten various reliability metrics for travel time were obtained and calculated for 
interstate segments located in Iowa. Results then, were compared, and three similar reliability 
metrics were determined. The three selected metrics include "buffer time index,” "the standard 
deviation of segment travel time index (TTI)," and "the 15th-85th percentile range of TTI". 
Afterward, the three selected metrics and two metrics from FHWA ("the level of travel time 
reliability and peak over travel time reliability") were incorporated to conduct a reliability analysis 
of an interstate network in Iowa by determining the most unreliable segment and developing 
choropleth maps. Results showed that unreliable segments determined by each metric are not 
consistent. This can be attributed to the sensitivity of considered metrics to TTI distribution 
characteristics. Moreover, by combining three selected metrics in different groups as composite 
metrics, a new method was proposed to assess the reliability of travel time. Results revealed that 
the combination of "the 15th-85th percentile range of TTI" and "standard deviation of TTI" can 
serve as useful metrics for travel time reliability assessment (Thompson, 2019).  

Visualizing and Evaluating Interdependent Regional Traffic Congestion and System 
Resiliency, a Case Study Using Big Data from Probe Vehicles 

(Thomas M. Brennan Jr., Ryan A. Gurriell, Andrew J. Bechtel, and Mohan M. Venigalla) 

This study applied aggregated probe data in order to conduct traffic congestion analysis under the 
condition that a traffic-related event occurred on the roadway network. The sites where the study 
was conducted spanned across the Mercer, Burlington, and Camden Counties in New Jersey. The 
reason these counties were specifically chosen is that they are in close proximity to I-276, a bridge 
that had been closed for a period of time. The data collection for this experiment was performed 
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between January 1 and March 31 of 2017, leading to the data yielding over 90 million unique 
speed records. Mean Percent Increase in TMC Travel Time (MTT) was used as a traffic congestion 
measure in this study. Heat maps showing the bridge closure were obtained using probe vehicle 
data and were illustrated for three counties. It was found that for Mercer County, the bridge closure 
resulted in a considerable increase in MTT (Brennan et al., 2019). Table 1 tabulates a summary of 
conducted studies on the application of probe vehicle data for performance evaluation. 

Table 1 Summary of studies on probe vehicle data application. 
Studies Year Variables Analyzed 

Chen and Chien  2001 Real-Time Estimation of Travel Time 

Nanthawichit et al.  2003 Travel-Time Prediction, Traffic-State Estimation 

Yamamoto et al.  2006 Variability of Link Travel Time Estimates 

Liu et al.  2006 Travel Time Delay 

Jintanakul et al.  2009 Travel Time Distribution Prediction 

Jie et al.  2011 Travel Time Distribution Prediction 

Hainen et al.  2012 Space mean Speed, Temporal Variation Impact 

Brennan Jr. et al.  2013 Congestion Hours, Distance-Weighted Congestion Hours, 
Congestion Index, User Delay, and Cost 

Jenelius and Koutsopoulos  2013 Link Travel Time Prediction 

Remias et al. 2013 Travel Time, Travel Time Reliability 

Zheng and Zuylen 2013 Travel Time Prediction 

Remias et al.  2014 
Travel Time (TT), Segment Speed, Travel Time Deficit (TTD), 
Cost 

Brennan Jr. et al.  2015 Congestion Hours; Travel Time; Travel Time Inflation (TI) 

Bechtel et al. 2016 Congestion Hours, Deficiency Score, Travel Time 

Zhang et al.  2017 Future Travel Time Prediction 

Zhu et al.  2018 
Segment length, Standard Deviation of Speed, Travel Time 
Prediction 

Brennan Jr. et al.  2018 Base Free Flow Speed, Base Free Flow Travel Time, Total Travel 
Time Inflation (TI), Regional Travel time Inflation 

Chen et al.  2018 
Day-of-Week Travel Time, Buffer Time Index (BTI), Unit 
Distance Travel Time, Punctuality Rate (PR), Coefficient of 
Variation (CV) 

Olszewski et al. 2018 Traffic Speed, Travel Time Reliability, Free Flow Speed 
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Bechtel et al. 2018 Travel Time Reliability Rate, Delay Index,  

Chen 2018 
Travel Time Distribution, Time of Day, Day of Week, Year, 
Weather Condition 

Thompson  2019 
11 Travel Time Reliability Metrics (such as Buffer Time Index 
(BTI), the Standard Deviation of Segment Travel Time Index 
(TTI), the 15th-85th Percentile Range of TTI) 

Brennan Jr. et al.  2019 
Base Free Flow Speed, Travel Time, Travel Time Inflation, 
Regional Increase in Mean Travel Time (MTT) 

2.2 Safety  

Examining intersection safety using Surrogate Safety Measures has been implemented in many 
studies over recent years. A summary of previous studies that evaluated SSM’s using video data 
is provided as follows: 

Large-scale automated proactive road safety analysis using video data 

(Paul St-Aubin, Nicolas Saunier, and Luis Miranda-Moreno) 

This study demonstrates a real-world outline for the application of an automated, high-resolution, 
video-based traffic-analysis system. This is predominantly focused on researchers for behavioral 
studies and road safety analysis. The study collects massive amounts of microscopic traffic flow 
data from ordinary traffic using CCTV and consumer-grade video cameras and offers the tools for 
showing basic traffic flow studies as well as more advanced, pro-active safety and behavior 
studies. This study developed a methodology to evaluate a large and detailed study of roundabouts. 
Results demonstrated an 85-95 percent of tracking accuracy (St-Aubin et al., 2015). 

Safety evaluation of unconventional outside left-turn lane using automated traffic conflict 
techniques 

(Yanyong Guo, Tarek Sayed, Mohamed Zaki, and Pan Liu) 

This article focuses on the evaluation of the safety impacts of unconventional outside left-turn 
lanes at signalized intersections. The assessment is shown using an automatic video-based traffic 
conflict technique. Video data are collected from a signalized intersection, where both old inside 
and alternative outside left-turn lanes are installed on two intersection approaches. The article 
compared the frequency and severity of conflict for left-turning vehicles as well as the proportion 
of vehicles involved in conflicts from the inside and outside left-turn lanes. The results showed 
that the intersection approaches with outside left-turn lanes had noticeably more conflicts 
compared to approaches without outside left-turn lanes. The approaches with outside left-turn 
lanes had a much higher conflict. The trade-off between the improved mobility and the negative 
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safety impact of outside left-turn lanes should be considered before future installations (Guo. et 
al., 2016). 

Calibration and validation of a new time-based surrogate safety measure using fuzzy 
inference system 

(Navid Nadimi, Hamid Behbahani, and HamidReza Shahbazi.) 

This article focused on Post-Encroachment Time (PET) and Time-to-collision (TTC), the two 
important time-based SSM’s classifying the probability of a rear-end collision, head-on, and right-
angle collisions. The study showed that the indicators could be used as a warning strategy in 
collision avoidance systems. It can be developed using a new index that combines the properties 
of both TTC and PET. Multiple variables were considered in this article, including DRAC, PSD, 
and CPI. Results showed that evasive maneuvers due to the driver errors of the following car 
(clearance, relative speed, and vehicle speed) could be detected by collision avoidance systems 
(Nadimi et al., 2016). 

Measuring Crosswalk Safety at Non-signalized Crossings During Nighttime Based on 
Surrogate Measures of Safety: A Case Study in Montreal, Canada 

(Ting Fu, Luis Miranda-Moreno, and Nicolas Saunier) 

This paper evaluates the safety method of crosswalks at nighttime by using thermal video sensors 
in downtown Montreal, Quebec. Thermal video data was collected in both daytime and nighttime 
conditions for a total number of 16.8 hours, and video data processing was carried out using the 
tracker, then road user trajectories were obtained. Vehicle speed within the marked crosswalk area 
was calculated. Results showed that the proposed thermal-video-based surrogate safety 
methodology is effective in collecting and analyzing pedestrian-vehicle interactions at night, 
regardless of lighting conditions. Also, evaluated that the average vehicle speed and percentage of 
dangerous conflicts were higher during nighttime compared to daytime, indicating that pedestrians 
were at higher risk during nighttime (Fu et al., 2016). 

Surrogate Safety Analysis of Pedestrian-Vehicle Conflict at Intersections Using Unmanned 
Aerial Vehicle Videos 

(Peng Chen, Weiliang Zeng, Guizhen Yu, and Yunpeng Wang) 

This study examines the practicability of considering the Unmanned Aerial Vehicle video for the 
surrogate safety analysis at an urban intersection in Beijing, China. The study team collected an 
Arial video roughly 100 m from the ground for 60 minutes. GoPro Hero Black Edition:3 camera 
with a 1920 x 1080 resolution was attached to a Phantom 2 UAV for a video recording. The 
frequency, location, and severity of the pedestrian-vehicle conflicts are determined by calculating 
two surrogate safety measures, Post-Encroachment Time (PET) and Relative Time to collision 
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(RTTC). Results showed relatively risky behavior of right-turn vehicles around the corner and high 
exposure of pedestrians to traffic conflict both outside and inside the crosswalk. Additionally, 
findings also depicted that UAV can support the assessment of an intersection's safety in an 
accurate and cost-effective way (Chen et al., 2017). 

Automatic Traffic Data Collection under Varying Lighting and Temperature Conditions in 
Multimodal Environments: Thermal versus Visible Spectrum Video-Based Systems 

(Ting Fu, Joshua Stipancic, Sohail Zangenehpour, Luis Miranda-Moreno, and Nicolas Saunier) 

The purpose of this article is to compare existing computer vision methods to the performance of 
thermal video sensors under different lighting and temperature conditions. Thermal and regular 
video data was collected at the same time under different conditions across different places. The 
regular video sensor did slightly better than the thermal sensor during the day. The performance 
of the thermal sensor is much better for low visibility and shadow conditions, mainly for 
pedestrians and cyclists. Thermal speed measurements were constantly more accurate than for the 
regular video, regardless of light exposure. Thermal video is not affected by lighting and pavement 
temperature. Thermal sensors may help solve issues associated with visible light cameras for 
traffic data collection and offer other benefits, such as insensitivity to glare, privacy, storage space, 
and lower processing requirements (Fu et al., 2017). 

A Comparison Analysis of Surrogate Safety Measures with Car-Following Perspectives for 
Advanced Driver Assistance System 

(Sehyun Tak, Sunghoom Kim, Donghoun Lee, and Hwasoo Yeo) 

This study performs an analysis using three different surrogate safety measures to determine the 
relationship between human driving behavior and collision risk. Wherein, collision risk is 
calculated by Time to Collision (TTC), Deceleration-based Surrogate Safety Measure, and 
Stopping Headway Distance (SHD) based on two different car-following theories, such as the 
action point model and asymmetric driving behavior model. To do so, the study team used the 
Next Generation Simulation (NGSIM) trajectory dataset, which was obtained from a segment of 
U.S. Highway 101 in Los Angeles, California, for 65 minutes. The segment length is 640 m with 
five lanes. Data comprises microscopic traffic information on individual vehicular movements’ 
trajectories, including speed, position, space headway, vehicle type and acceleration/deceleration, 
and at 0.1 sec time intervals. The results show that the estimated collision risks of the TTC and 
SHD only partially match the pattern of human driving behavior. Additionally, the SHD and TTC 
overemphasize the collision risk in the deceleration process, predominantly when the focus vehicle 
is faster than its preceding vehicle. While the DSSM shows well-matched results to the pattern of 
human driving behavior (Tak et al., 2018). 
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Can post encroachment time substitute intersection characteristics in crash prediction 
models? 

(Lakshmi Peesapati, Michael P. Hunter, and Michael O. Rodgers) 

This research looks at the effectiveness of Post-Encroachment Time (PET) as an SSM for possible 
left-turn to opposing through vehicle conflicts. This article compares the use of PET both as the 
only forecaster of crashes and with a mixture of other characteristics of an intersection. PET data 
for this study was composed of videos that were recorded using high-definition cameras and from 
a higher viewpoint. Video data collected at the intersections were analyzed in a lab using a 
traditional frame-by-frame video reduction software program. The article concluded that models 
merging PET and traffic volume characteristic data have improved predictive power than the 
models containing only PET (Peesapati et al., 2018). 

 A Surrogate Video-Based Safety Methodology for Diagnosis and Evaluation of Low-Cost 
Pedestrian-Safety Countermeasures: The Case of Cochabamba, Bolivia 

(Lynn Scholl, Mohamed Elagaty, Bismarck Ledezma-Navarro, Edgar Zamora, and Luis Miranda-
Moreno) 

In this article, researchers use an automated video analytics tool to investigate surrogate traffic 
safety measures and assess the usefulness of inexpensive countermeasures at selected pedestrian 
crossings at risky intersections. BriskLUMINA, a computer vision software, is used to process 
countless hours of video information and generate data on road users’ speed and trajectories. It 
was found that motorcycles, turning movements, and roundabouts are the key issues related to 
pedestrian crash risk. The applied treatments were effective at four-legged intersections but not at 
traditional-design roundabouts. This study shows the applicability of the surrogate methodology 
based on automated video analytics in the Latin American context, where traditional methods are 
challenging to implement. The methodology could help to quickly understand short-term 
treatments before they are applied (Scholl et al., 2019). 

Surrogate safety indicator for unsignalized pedestrian crossings 

(Piotr Olszewski, Paweł Da˛bkowski, Piotr Szagała, Witold Czajewski, and Ilona Buttler) 

In this article, pedestrian and vehicle traffic was filmed at two unsignalized pedestrian crossings. 
The path of vehicles and pedestrians was found based on video processing. Many variables 
describing pedestrian-vehicle conflicts were calculated, such as speed, post-encroachment time, 
the distance between the participants, decelerations, etc. Identification of encounters was based on 
interactions of pedestrians and vehicles, drivers yielding to pedestrians, and vehicles passing near 
pedestrians. Criteria for determining unsafe encounters were considered with the assumption that 
it should be possible to automate the calculation process. The selected variables were pedestrian-
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vehicle passing distance and the vehicle speed at that moment. Other criteria were used in cases of 
abrupt braking. A Dangerous Encounter Index was proposed as a surrogate safety indicator for 
pedestrian crossings. It relates the occurrence of dangerous events to exposure, defined as the 
number of pedestrian-vehicle encounters (Olszewski. et al., 2020). 

Analysis of the transition condition of rear-end collisions using time-to-collision index and 
vehicle trajectory data 

(Ye Lia, Dan Wua, Jaeyoung Leea, Min Yangb, and Yuntao Shia) 

The purpose of this paper is to look at transition conditions like driver behaviors of either the lead 
driver or the following driver and to figure out how they contribute to the risk. It also investigates 
how the time to collision (TTC) changes during these times, as well as which factors change the 
TTC the most. Video data were collected from tall buildings and was extracted automatically by 
specialized software. 13 types of transition conditions were categorized based on the speed of the 
front vehicle, the speed of the following vehicle as well as speed difference. Two parameters were 
employed for selecting data. The first was that neither car should switch lanes, and the second was 
that a vehicle must be following for at least 10 seconds. The article provided an understanding of 
minimizing rear-end collision risks. In the past, TTC index was used for possible risk analysis. 
With one TTC value, it was only capable of determining safeness at one specific time point, but 
with the transition conditions analyzed in this study, more factors became available (Lia et al., 
2020). 

A Modified Post Encroachment Time Model of Urban Road Merging Area Based on Lane-
Change Characteristics 

(Weiwei Qi, Wei Wang, Bin Shen, and Jiabin Wu) 

This article is about a Traffic Conflict Technology (TCT) method used to estimate the safety level 
of the merging areas on urban roads. It mainly focuses on lane-change characteristics. A modified 
Post Encroachment Time (PET) model is proposed to reveal the relationship between time, speed, 
and distance in the process of traffic conflict in order to figure out lane-change characteristics as 
well as accurately forecast traffic safety in the merging area. The traffic data of Guangyuan Road 
in Guangzhou were collected by cameras at peak hours (Qi et al., 2020) 

2.3 Findings  

According to the literature review conducted over the past years, the following findings were obtained: 
 
Mobility: 

• Probe vehicle data is one of the reliable data sources for evaluating the performance of 
highways and arterials. 
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• Many performance measures can be defined for developing performance evaluation. 
• Travel time is one of the widely used performance measures suggested by many previous 

studies.  

Safety: 

• Surrogate measures have been extensively used for evaluating the safety of a road 
segment. 

• Post-Encroachment Time (PET) could be a very useful method to identify the safety 
effect of an intersection design.   
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CHAPTER 3. METHODOLOGY 

3.1 Mobility Analysis 

3.1.1 Data 

3.1.1.1 Probe Vehicle Data 

Probe vehicle data requires both a spatial component and a temporal component.  The spatial 
attributes are defined by Traffic Message Channels (TMCs), which are pre-defined locations along 
roadways (Table 2).  As a telematics device traverses a TMC, the vehicle speed is captured along 
with a number of other attributes, including TMC code, vehicle speeds, date-time stamp, c-value, 
and confidence score (Table 2). In this study, four major routes consisting of state routes, interstate 
highway/turnpike, and major arterials were selected. Then, probe vehicle data for the selected 
roadways was obtained from the Regional Integrated Transportation Information System (RITIS) 
database (RITIS, 2020). The probe data analytic suite on the RITIS website provides various 
attribute selection choices and formats for downloading the raw probe data. For the purpose of this 
study, a total of 60 TMCs were selected surrounding the American Dream Complex. Figure 1 
presents selected TMCs in the study area for four roadways. All the TMC segments have 
continuous coverage of RITIS data for 24-hours a day from September 1, 2019, to January 31, 
2021. 

Table 2 Example of obtained TMCs attributes for Interstate 95 
TMC 
Code Road Direction State Start 

Latitude 
Start 

Longitude 
End 

Latitude 
End 

Longitude 
Length 
(miles) 

120+04603 I-95 NORTHBOUND NJ 40.75777 -74.1166 40.79844 -74.0774 3.488163 

120-04603 I-95 SOUTHBOUND NJ 40.80966 -74.0634 40.802 -74.0733 0.741292 

120-04604 I-95 SOUTHBOUND NJ 40.81378 -74.056 40.81363 -74.0563 0.021945 

120-04605 I-95 SOUTHBOUND NJ 40.82479 -74.0324 40.81465 -74.0534 1.325885 
 

Table 3 Example of TMCs recorded speed data for Interstate 95 
TMC 
Code Date Time Stamp Speed Average 

Speed 
Confidence 

Score C Value 

120+04603 9/1/2019 0:00 65.99 60 30 100 
120-04603 9/1/2019 0:00 61.28 57 30 100 
120-04604 9/1/2019 0:00 60.9 58 30 100 
120-04604 9/1/2019 0:00 60.9 58 30 100 
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Figure 1 Study area around the American Dream Complex with 60 TMC segments 
 

Based on previous studies (Brennan et al., 2015; Brennan et al., 2018), only speed data with a 
confidence score value of 30 and a c-value of 100 were considered. The values mentioned above 
for confidence score and c-value can be attributed to the condition where the recorded speed is in 
accordance with the probe measurements with high confidence. Considering high confidence 
indicates the real conditions of the roadway network. 

3.1.1.2 Streetlight Data 

To identify the possible changes in the trip attributes and travelers’ attributes after the opening of 
the American Dream Complex, we accessed the Street light’s insight database and compared the 
before and after opening data. Streetlight insight database uses cell phones and other driving 
devices to obtain the data point and transfers them to trips using proprietary algorithms (Streetlight 
Inc.). As a part of this study, trip data was extracted for 120 days before and after the opening of 
the complex to evaluate the difference in trip attributes due to the opening of the American Dream 
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Complex. To extract the data from the Streetlight Inc database, the predefined origin/pass-through 
gates were created near the major road segment that leads up to American Dream Complex. As 
shown in Figure 2, gates were created considering the road width, distance to exit or entry ramp, 
and the traffic flow direction. Trip and traveler data from June 27th, 2019 to February 22nd, 2020 
was extracted from the database for each day and each road segment, as shown in Table 4.  
 

 
Figure 2 Representation of origin/pass through gates and the destination region 

 
Table 4 Description of the predefined Origin/Pass-Through Gates  

Origin/Pass-Through 
Gates 

Distance to 
American Dream 
Complex (Miles) 

Based Travel Time 
to American Dream 
Complex (Minutes) 

Location 
Latitude 

Location 
Longitude 

NJ Route 3 EB 1.9  4 -74.089846 40.810985 
NJ Route 3 WB 1.8 3 -74.056994 40.793400 

NJ Turnpike I-95 NB 2.5 5 -74.080427 40796014 
NJ Turnpike I-95 SB 1.3 2 -74.044698 40.817563 

NJ Route 120 SB 1.2 4 -74.069022 40.820275 
Washington Ave SB 1.3 3 -74.065079 40.818628 

Meadowlands Parkway 1.9 4 -74.068910 40.795005 
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3.1.2 Traffic Performance Measures using Probe Data 

The main focus of this section is to assess the performance of corridors located near the American 
Dream Complex. Generally, congestion for a TMC can be defined as "70% of the average segment 
speed during periods where congestion is unlikely" (Brennnan et al., 2015). According to previous 
studies, a congested TMC can be referred to as a TMC that experiences space mean speed below 
a pre-defined value (45 mph for major highways) during a period. This value agrees with the 
general definition of congestion (70% of 65 mph). However, by considering a constant threshold, 
the variety of different factors, including spatial location, roadway type, and geometry, is ignored. 
Hence, to overcome this issue, a variable speed threshold is considered. This threshold can be 
calculated as 70% of the base free-flow speed (BFFS). BFFS can be determined using the 
following equation (Brennan et al., 2018): 

 

𝑣𝑣𝑖𝑖𝑖𝑖 = 0.7
1
𝑛𝑛𝑗𝑗
�𝑣𝑣𝑖𝑖𝑗𝑗
𝑗𝑗∈𝐹𝐹

 (1) 

𝑣𝑣𝑖𝑖𝑖𝑖: Variable speed threshold for TMC i  
𝑛𝑛𝑗𝑗: Total number of 15-intervals within free-flow time F  
𝑣𝑣𝑖𝑖𝑗𝑗: Recorded speed for each TMC i  

 
As part of this study, instead of using a benchmark base free-flow time, this research calculated a 
variable speed threshold for each corridor by considering the whole study period.  A base travel 
time (BTT), then, was calculated for each TMC. BTT can be a proportion of variable speed 
threshold and each TMC's length. BTT was calculated using the following equation (Brennan et 
al., 2018): 

 

𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖 =
𝑥𝑥𝑖𝑖
𝑣𝑣𝑖𝑖𝑖𝑖

 (2) 

𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖: Base travel time for each TMC i (hours)  
𝑥𝑥𝑖𝑖: Length of each TMC i (miles)  

Travel time for each TMC can be determined as follows (Brennan et al., 2018): 

𝐵𝐵𝐵𝐵𝑖𝑖𝑗𝑗 = �
𝑥𝑥𝑖𝑖
𝑣𝑣𝑖𝑖𝑗𝑗

,    𝑣𝑣𝑖𝑖𝑗𝑗 < 𝑣𝑣𝑖𝑖𝑖𝑖  

0,    𝑣𝑣𝑖𝑖𝑗𝑗 ≥ 𝑣𝑣𝑖𝑖𝑖𝑖
 (3) 

𝐵𝐵𝐵𝐵𝑖𝑖𝑗𝑗: Travel time for each TMC i (hours) during the time period j  

In this study, travel time inflation (TI) was selected as a performance measure. TI can be defined 
as the difference between the TT and the BTT. TI can be calculated as follows (Brennan et al., 
2018): 
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𝐵𝐵𝑇𝑇𝑖𝑖 = �(𝐵𝐵𝐵𝐵𝑖𝑖𝑗𝑗 −
𝑗𝑗∈𝐾𝐾

𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖);     𝑓𝑓𝑓𝑓𝑓𝑓 𝐵𝐵𝐵𝐵𝑖𝑖𝑗𝑗 > 0 (4) 

𝐵𝐵𝑇𝑇𝑖𝑖: The total travel time inflation for each TMC i (hours) for all the 15-min time period j during the 
analysis period K 

Equation 4 calculates TI for each TMC i. For determining TI for the whole corridor, the 
following equation can be applied (Brennan et al., 2018): 

 

𝐶𝐶𝐵𝐵𝑇𝑇 = �𝐵𝐵𝑇𝑇𝑖𝑖
𝑖𝑖∈𝐶𝐶

 (5) 

𝐶𝐶𝐵𝐵𝑇𝑇: The total travel time inflation for all TMCs (hours) for a corridor during the analysis period K 

In order to have a better view of congestion day by day during the entire study period, a normalized 
form of the TI named the Corridor Increase in Mean Travel Time (CIMTT) is considered. To do 
so, the TI is divided by the travel time calculated for each TMC. Given this information, CIMTT 
can be determined using the following equation (Brennan et al., 2018): 

𝐶𝐶𝑇𝑇𝐶𝐶𝐵𝐵𝐵𝐵𝑖𝑖𝑗𝑗 = �
𝐵𝐵𝑇𝑇𝑖𝑖
𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖𝑛𝑛

 (6) 

𝐶𝐶𝑇𝑇𝐶𝐶𝐵𝐵𝐵𝐵𝑖𝑖𝑗𝑗: The corridor increase in mean travel time for all TMCs (min) for a corridor 
 

3.2 Safety Analysis  

3.2.1 Video Data 

In terms of testing the developed safety analysis tool, video data was collected at two intersections 
near the American Dream Complex. First, Hampton Inn at Paterson Plank Rd. is a 4 leg signalized 
intersection located on NJ Route 120/Paterson Plank Rd with no left turn. Paterson Plank Rd. is a 
two-way road with two moving lanes in the North and South directions. There is a dedicated 
divergent that provides a left-turning facility for moving vehicles. The second intersection, Murray 
Hill Pkwy and Paterson Plank Rd., is also a 4 leg signalized intersection with no left turn. At the 
intersection of Paterson Plank Rd. has 3 moving lanes in the north and south directions and a 
dedicated right-turning divergent. At the same time, Murray Hill Pkwy has one moving lane, one 
right-turning lane, and one left-turning lane for East and West directions.  
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Figure 3 Study Intersection  

Figure 3 shows the camera position and its vision coverage. The camera was set up on the pole 
near the intersection, as shown in Figure 3. A high-resolution (2704 X 1520) video for 180 minutes 
was recorded by a Go Pro Hero 9 at 30 FPS. The video was recorded between 2:40 PM to 5:40 
PM  

3.2.2 Detection & Tracking 

Real-time object detection and tracking algorithms have been widely used to achieve traffic 
management objectives and evaluate traffic safety. This algorithms' main goal is to locate the 
positions (i.e., X, Y coordinates) and the moving object's size in a video or an image. Detecting an 
object is an initial step in all detection and tracking methodology. As part of this study, the Yolo-
V5 (You Only Look Once) Algorithm was used to detect road users in the video (Jocher et al., 
2021). 

YOLO algorithm is a deep learning network for real-time detection that performs its main two 
tasks in a series pattern. The algorithm first identifies the location of the object pixels, and then 
based on the pre-trained weights, it classifies the object. YOLO considers the image pixel values 
as the inputs and predicts the bounding boxes and class probability of the object as an output result. 
The algorithm uses only a single neural network to perform the tasks at a high processing speed. 
YOLO-V5 is built on a PyTorch framework instead of the original Darknet framework used in the 
previous version (Redmon et al., 2016; Redmon et al., 2018; Jocher et al., 2021).  
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Figure 4 YOLO Algorithm process flow chart 

Figure 4 shows the process principle of the YOLO algorithm. First, Algorithm takes a frame/image 
as an input and divides it into NxN grids. Each cell in the grid is processed to predict the bounding 
box for all the objects in a frame. Simultaneously, it also looks for the class probabilities for the 
identified bounding boxes. Lastly, each bounding box provides X & Y coordinates, height & 
width, confidence score, and the class value. As a part of this study, we have considered the 
detection confidence score threshold to be 80 percent.  

In terms of processing speed, YOLO-V5 archives the inference time as fast as 0.007 seconds per 
image for 140 Frame Per Second (FPS) video while upholding detection accuracy like previous 
versions. YOLO-V5 has a weight file of 27 MB, which is 90 percent smaller in size compared to 
previous versions. Optimized YOLO-V5 is based on PyTorch and can easily be compiled to 
ONNX and CoreML to make mobile deployment easy. Overall, using YOLO-V5, detection can 
be carried out in a wider area with fewer space constraints (Wang et al., 2020). 

Object tracking has been recognized as the most critical task in all computer vision projects. There 
has been extensive research work being conducted for visual object tracking; however, there has 
been a lot of difficulty in handling changes in tracking the detected object. For instance, the 
occurrence of occlusion, changes in bounding box dimension, variation in illuminations, camera 
motion, etc., cause a lot of errors in tracking. As part of this study, DeepSORT, a Simple Online 
and Real-time Tracking (SORT) algorithm, is used for tracking multiple objects frame by frame. 
DeepSORT uses the Hungarian and Kalman filter algorithm to track a detected object (Bewley et 
al., 2016). The baseline process flow of the DeepSORT algorithm is as follows (Hou et al., 2019): 

• Track Estimation: A DeepSORT algorithm uses the Kalman Filter method to predict the 
position of the object bounding box in the current frame. Additionally, DeepSORT uses a 
standard version of the Kalman Filter that considers the constant velocity and linear 



 

35 
 

regression. Spatial information is only used by the track estimation, i.e., the X and Y 
coordinates of the bounding box. 

• Appearance Descriptor: To attain the detection and tracks appearance details, an 
appearance descriptor is used. It is a pre-trained Convolutional Neural Network of a 
massive scale of re-identification dataset. Wherein, the network is able to identify the 
features identifies that are similar to previously detected objects and/or far away from each 
other.   

• Data Association: Further, based on the results from the track estimation and appearance 
descriptors, it is possible to see the correlation between the old and newly detected objects' 
current frames. Remarkably, DeepSORT algorithm uses a detection confidence threshold 
to filter out all detection. Additionally, the Algorithm uses the cost matrix to represent 
spatial and appearance similarities between each existing and new detection track. As a 
focus of this study, IOU_machting, NN_matching, class, and average detection confidence 
threshold functions were used to improve the accuracy of the tracking algorithm. 

• Track Handling: Object's tracked from the data association are taken care of during the 
track handling. For instance, if the newly tracked object is not associated with the old 
tracks, then the track will be tentatively held until it does not satisfy all the conditions for 
getting a new track id. Once it satisfies all the requirements, then a new track id is updated. 
Otherwise, the tentative track will be removed. 

3.2.3 Traffic Count 

As the scope of this study, a system to predict the traffic flow that counts and classifies the vehicle 
base on the direction flow was developed. As discussed previously, detection and tracking of the 
vehicle were extracted using YOLO-V5 and DeepSORT algorithm. Furthermore, to obtain the 
flow direction of the vehicles, a predefined zone is created. Wherein each unique pixel value from 
the zone was extracted and matched with the complete trajectories extracted from the algorithm. 
Figure 5. represents the zones that are created using the OpenCV library and polygon plotting 
method. The flow direction of the tracked objects was determined based on the start and endpoints 
of each track id.  
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(Location: Hampton Inn at Paterson Plank Road) 

(Location: Murray Hill Pkwy & Paterson Plank Road) 
Figure 5 Predefined zones at the study intersection 

3.2.4 Traffic Violation 

As a part of safety analysis, traffic violations such as a vehicle running red lights and pedestrian 
jaywalking events are crucial concerns at an intersection. A system was developed to achieve the 
study objectives wherein one of the traffic lights was detected, and the condition was implemented 
for the violation bars based on the traffic signal phases. During the signal's red phase, vehicles 
passing the Northbound violation bar or the Southbound violation bar are considered vehicles 
running red light events. While during the signal's green phase, vehicles passing the Eastbound 
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violation bar and the Westbound violation bar are considered as vehicles running red light events. 
Figure 6 shows the violation bars' position and the detected traffic light for the two study locations.  

 
(Location: Hampton Inn at Pateson Plank Road) 

 

 
(Location: Murray Hill Pkwy & Paterson Plank Road) 

Figure 6 Positions of violation bars and the detected traffic light 

For evaluating pedestrian jaywalking events, a system using the OpenCV library and polygon 
plotting function was developed. A predefined region was created on the frame that covered all 
the crosswalks and the sidewalk area. Then a condition algorithm was implemented to the extracted 
trajectory data of the pedestrians. Coordinate values, i.e., the position of pedestrians obtained from 
the YOLO-V5 and DeepSORT were checked if they were inside or outside the predefined region. 
For instance, if any of the coordinate values were observed outside the region, it was considered a 
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jaywalking event. Figure 7 shows the predefined polygon region created on the frame for the two 
intersections.  

 
(Location: Hampton Inn at Paterson Plank Road) 

 

 
(Location: Murray Hill Pkwy & Paterson Plank Road) 

Figure 7 Polygon region created for identifying the Jaywalking event 

3.2.5 Surrogate Safety Measures 

Surrogate Safety Measure (SSM) is one of the widely used approaches for identifying future 
threats and evaluating safety. Each SSM is calculated based on the occurrence of conflict events 
between two road users. Conflict is defined as an observable point, line, or area where two or more 
road users intersect each other in time and space with a possibility of colliding with each other if 
the speed and direction of both road users remain unchanged (Amundsen and Hyden, 1977). SSMs 
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are considered as the best safety evaluation methods that help identify the near-miss conflict events 
at the study location and compare the results with the historical crash data for recommending 
countermeasures. There are several SSMs that are used for evaluation, including Time to Collision, 
Post-Encroachment Time, Maximum Speed, Speed difference, and deceleration rate.  

As a purpose of this study, Post-Encroachment Time (PET) was formulated for accessing the 
vehicle-to-vehicle conflict events and their severity at the test location. PET is defined as the time 
difference between a departing vehicle and the arriving vehicle following or intersecting in the 
conflict area. In terms of processing the trajectory data, PET is calculated as a function of the 
paired vehicles. A time-space diagram to calculate the PET for vehicle-to-vehicle conflict is 
represented in Figure 8.  

 
Figure 8 Time-space diagram to identify the Post-Encroachment Time (PET)  

 

PET for paired vehicles at conflict area is obtained as:  

PET = t5 - t3                                                                                        (7) 

Note for calculating the PET from the obtained trajectory and bounding box centroid data, the front 
and the back (i.e., the front and the rear of the vehicle) points of the bounding box were calculated 
and considered for paired vehicles. Similar to the previous studies, PETs with less than 5 seconds 
counted as a conflict, and PETs with less than 1.5 seconds were considered as dangerous conflict 
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(Fu. et al., 2016; Zangenehpour et al., 2015). Additionally, the study also considered the 20 seconds 
as the arbitrary threshold for identifying all potential risks for vehicle-to-vehicle collisions at the 
intersection.   
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CHAPTER 4. RESULTS AND DISCUSSION 

4.1 Mobility Analysis 

Developing a performance evaluation of a roadway system during the occurrence of a specific 
event can provide useful information about the effect of the event on the congestion condition of 
the roadway. In this study, travel time inflation (TI) was selected as a performance measure in the 
analysis. By considering variable threshold speed for each TMC, TI was calculated for the entire 
four corridors each month during both non-peak and peak hours. The hours for Am peak are 06:00 
to 09:00 am and for pm peak 16:00 to 19:00. CTI was determined for a month before the October 
25, 2019 opening and three months after the opening. Calculated monthly CTIs for four selected 
roadways are presented in Figures 9, 10, 11, and 12. 

 

a) Northbound 
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b) Southbound 

 
c) Both North & Southbound 

Figure 9 Monthly CTI for Interstate 95 

As shown in Figure 10, CTI for both Northbound and Southbound of Interstate 95 experienced an 
increase after the opening of the American Dream Complex for both non-peak and peak hours. 
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From December to January, a sharp decrease was observed in CTI for both Northbound and 
Southbound as well as the entire corridor. This can be explained by the new year's holidays.  

After the opening of the American Dream Complex, CTI for Northbound of Meadowlands Pkwy 
decreased slightly during non-peak hours (from 4.22 to 4.02 hours), as illustrated in Figure 10. 
However, this value increased slightly during peak hours for Southbound after the official opening. 
Considering the entire corridor, CTI remained almost the same during non-peak hours and 
increased slightly from 3.36 to 3.54 hours after the official opening. A decreasing pattern was also 
observed in CTI of the entire corridor from December to January. 

 

a) Northbound 
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b) Southbound 

 
c) Both North & Southbound 

Figure 10 Monthly CTI for Meadowlands Pkwy 

From October to November, CTI followed an increasing pattern for both Eastbound and 
Westbound of NJ Route 3 as well as the entire corridor (both non-peak and peak hours). A 
decreasing pattern was also observed for NJ Route 3, with the beginning of holidays during non-
peak and peak hours (shown in Figure 11). 
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a) Eastbound 

 

b) Westbound 
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c) Both East & Westbound 

Figure 11 Monthly CTI for NJ Route 3 

In Figure 12, the same increasing pattern was observed for NJ Route 120 after the official opening 
of the American Dream Complex. The same decreasing pattern was also observed in CTI due to 
the holidays. 
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a) Northbound 

 

b) Southbound 
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c) Both North & Southbound 

Figure 12 Monthly CTI for NJ Route 120 

The individual TI was also calculated for all 60 TMCs of four corridors during the entire study 
period (Sep. 2019 to Jan. 2020) and indicated in Figures 13 and 14 for non-peak and peak hours, 
respectively. These figures, as an illustration of TI distribution, can provide useful information on 
the exact location of congestions in the study areas. Based on this figure, some TMCs along the 
NJ Route 3 and Interstate 95 experienced high values of TI during both non-peak and peak hours. 
On the other hand, most of the TMCs along the Meadowlands Pkwy and NJ Route 120 experienced 
low values of TI. 
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a) Non-peak Hours 

 

 
b) Peak Hours 

Figure 13 TI for all 60 TMCs during the entire study period 
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In order to have a better visualization of congestion and compare it day by day during the entire 
study period for the selected sites, travel time was normalized and divided by the calculated base 
travel time of each TMC. This performance measure for each corridor is visualized using the 
heatmaps shown in Figures 14, 15, 16, and, 17. It is noted that no reliable speed data were obtained 
from 10 pm to 6 am, as represented by the blank spaces. In these heatmaps, y-axis represents the 
hour of the day (15-min bin), and x-axis represents the day of the week. Generally, it is expected 
to observe an increase in congestion due to the opening of any new development. Based on the 
ITE Trip Generation Manual, an equivalent land use (LU-820 'Shopping Center') would generate 
about 46.12 and 21.10 trips on Saturday and Sunday, respectively, for every 1,000 Square feet of 
retail space.  For this case, the increase will be phased, which offers a unique perspective on the 
gradual opening of a major development that impacts the surrounding area.  

As illustrated in Figure 14, for both Northbound and Southbound Interstate 95, major congestions 
occurred during pm peak hours. No considerable congestion was observed during the am peak 
hours for the entire study period. Furthermore, based on the CIMTT graphs, the partial opening of 
the complex did not have an immediate, major, impact on the congestion of this corridor despite 
the granular increase found in the T.I. calculations. However, congestion during the pm peak hours 
decreased due to the new year’s holidays (December 24 to January 1) for both bounds of Interstate 
95.  

Based on Figure 15, there is not a considerable congestion pattern for the northbound of 
Meadowlands Pkwy during am peak hours; however, a steady pattern of congestion was observed 
for the pm peak hours of this bound. For the Southbound, interestingly, no considerable congestion 
was observed for both am and pm peak hours. The partial opening of the complex did not have a 
considerable effect on the congestion pattern for both am and pm peak hours. On the other hand, 
the new year's holidays decreased the congestion. The congestion pattern after the holidays is the 
same as before the holidays for both bounds of this corridor.  

According to Figure 16, NJ Route 3, Eastbound, experienced only some minor congestions on 
some specific days. A steady pattern of very high congestion was recorded during the pm peak 
hours for NJ Route 3, Westbound. Similar to the other corridors, the partial opening did not affect 
the congestion pattern at NJ Route 3. The new year's holidays considerably decreased the 
congestion at this route, as they did at other corridors. 

And finally, as shown in Figure 17, a steady pattern of congestion was only observed for pm peak 
hours of NJ Route 120, Northbound. For the Southbound of this route, almost no congestion were 
observed. The same as the other corridors, NJ Route 120's congestion was not affected by the 
partial opening of the complex. Eventually, the new year's holidays only decreased the congestion 
during pm peak hours of NJ Route 120, Northbound.  

Data loss from about 10 pm at night to 6 am in the morning for all corridors was another notable 
observation from these heatmaps. 
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Figure 14 Daily CIMTT for Interstate 95 in 15-min bin 
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Figure 15 Daily CIMTT for Meadowlands Pkwy in 15-min bin 
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Figure 16 Daily CIMTT for NJ Route 3 in 15-min bin 
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Figure 17 Daily CIMTT for NJ Route 120 in 15-min bin 

In addition to CIMTT heatmaps, the speed heatmaps were also developed for better analyzing the 
congestion condition of the surrounding corridors. To do so, only the TMCs with the same speed 
limits within each corridor was considered and averaged. Hence, each cell represents the average 
speed for their bin. Illustrations of the considered TMCs for each corridor are shown in Figures 18 
to 21. The average speed records were then visualized as the heatmaps shown in Figures 22 to 25. 
Moreover, in order to have a better insight into the comparison of the opening day speeds with 
other days, the speed records cells during am peak, pm peak, and mid-day hours for seven Fridays 
before (September and October) and nine Fridays (November and December) after the opening 
Friday (October 25) were extracted from the heatmaps and averaged. Then the values were 
compared with each other to investigate how the traffic speed changed due to the opening of the 
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complex. Tables 5 to 12 tabulate the average speed records for different Fridays before and after 
opening day for all selected corridors. Finally, the average speeds during the entire peak hours 
(both am and pm peak hours) for the selected routes were also extracted from the heatmaps. Tables 
13 to 16 summarise the average speeds during the am and pm peak hours.  

 
Figure 18 Considered TMCs for speed heatmaps for Interstate 95 
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Figure 19 Considered TMCs for speed heatmaps for Meadowlands Pkwy 

 

 
Figure 20 Considered TMCs for speed heatmaps for NJ Route 3 
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Figure 21 Considered TMCs for speed heatmaps for NJ Route 120 

 

As can be seen in Figure 22, for Northbound Interstate 95, low traffic speeds were only observed 
on some specific days. However, for the Southbound of this corridor, low values of speed were 
only observed during the pm peak hours showing the traffic congestion during this time. For both 
bounds, after the new year’s holidays, the traffic congestion decreased, having high values of 
average speed records.  

Based on Tables 5 and 6, for the Eastbound of Interstate 95, the average speeds of all Fridays 
during September had values of greater than 60 mph, with an average of 61.29 mph for the entire 
September. Then in October, they decreased to the average of 59.22 mph and 59.87 on the opening 
Friday. After the opening, the speeds increased to an average of 61.91 mph on Fridays during both 
November and December. However, during the mid-day and pm hour peak hours, the opening 
Fridays recorded the highest average speed compared to other Fridays. For the Westbound of this 
corridor, opening Friday had the highest average speed during am peak and mid-day hours in 
comparison with other Fridays. For pm peak hours, on the other hand, averagely, the opening 
Friday speed was almost equal to the average speed of both September and October. 

According to Figure 23, some data loss was observed during the entire study period for the selected 
TMCs for speed heatmaps of both Northbound and Southbound.  Moreover, almost no abrupt and 
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considerable congestion of the traffic was recorded for this corridor. Also, from the heatmaps, the 
opening did not have a notable effect on the traffic condition of this corridor.  

As provided in Tables 7 and 8, when the average Fridays of September and October were compared 
to the opening Friday, the am and pm peak hours of both Northbound and Southbound of 
Meadowlands Pkwy experienced a decrease. However, the mid-day of this corridor recorded an 
increase in average speeds. Moreover, the am peak hours of both bounds had an increase, while 
the mid-day and the pm peak hours experienced a decrease in average speed after the opening.  

As shown in Figure 24, the pattern of traffic was the same as the pattern observed in CIMTT 
heatmaps for both Eastbound and Southbound. In terms of the statistics and according to Tables 9 
and 10, the average speed of opening Friday was increased for am peak and mid-day hours of the 
Eastbound in comparison with the Fridays before opening. After the opening, the average speed 
records were increased again, after the opening for both am peak and mid-day hours of this bound.  
For the Westbound, however, these two periods of the day experienced a decrease on the opening 
Friday, and this decrease pattern continued after the opening Friday too. For the pm peak hours, 
the same increase pattern was recorded for this bound.  

As illustrated in Figure 25, the low-speed records of NJ Route 3 were confined majorly during the 
pm periods of Northbound and distributed almost during the entire day for Southbound.  

For NJ Route 120, as summarized in Tables 11 and 12, the average speed records recorded an 
increase during mid-day and pm peak hours on the opening Friday for both Northbound and 
Southbound in comparison with the previous Fridays. However, the am peak hours showed a 
decrease for this corridor on the opening Friday. After the opening, the am peak hours of the 
Northbound and the am and pm peak hours of the Southbound experienced an increase when 
compared to the opening Friday. Other day periods recorded a decreasing pattern after the opening 
of the complex.  

Similar to the CIMTT heatmaps, data loss was observed from 10 pm to 6 am for all average speed 
heatmaps. Also, some data loss during the entire day was observed for Meadowlands Pkwy 
specifically.  

According to Table 13, Interstate 95 experienced a decrease in speeds from September to October 
for all peak hours in both Northbound and Southbound. However, from October to November, 
average speeds increased for both am, and pm peak jours of Southbound and the am peak hours of 
Northbound.  

As shown in Table 14 for Meadowlands Pkwy, average speeds during am peak hours of 
Northbound and pm peak hours of Southbound increased from September to November. The 
average speeds during om peak hours of Northbound and the am peak hours of the Southbound 
decreased from September to October and then increased from October to November. 
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As presented in Table 15, the entire NJ Route 3 experienced an increasing pattern in average speeds 
from September to October during both am and pm peak hours. However, during the pm peak 
hours of Northbound and am peak hours of Southbound, a decreasing pattern was observed from 
October to November. 

For NJ Route 120, the average speeds of the entire Northbound experienced a decreasing pattern 
during both am and pm peak hours. At the same time, the Southbound corridor increased average 
speed from September to October. From October to November, the entire NJ Route 120 
experienced a decreasing pattern during both am and pm peak hours (shown in Table 16).  
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Figure 22 Daily average speed heatmap for Interstate 95 in 15-min bin 
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Figure 23 Daily average speed heatmap for Meadowlands Pkwy in 15-min bin 
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Figure 24 Daily average speed heatmap for NJ Route 3 in 15-min bin 



 

63 
 

 

 
Figure 25 Daily average speed heatmap for NJ Route 120 in 15-min bin 
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Table 5 Average speed records for all Fridays from September to December for Interstate 95  
  September, Fridays October, Fridays November, Fridays December, Fridays 

Bound Day 
Time 1st 2nd 3rd 4th 1st 2nd 3rd Opening 

Friday 1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 

NB 

AM 61.97 60.66 61.30 61.23 57.59 60.21 59.87 59.87 61.23 61.36 60.48 61.66 66.75 60.78 60.37 59.06 65.51 
Mid-
Day 61.77 63.45 63.37 63.57 61.64 62.02 62.06 63.30 62.42 62.32 62.51 60.36 65.02 63.51 61.25 61.11 62.42 

PM 46.82 62.34 50.97 50.95 56.93 54.07 52.91 60.94 61.52 60.05 60.09 59.46 61.47 62.14 53.97 60.70 60.70 

SB 

AM 58.65 58.50 57.45 57.41 57.36 58.08 55.37 55.62 57.68 59.05 59.34 58.69 61.60 57.30 57.53 56.86 56.90 
Mid-
Day 54.27 52.66 50.57 52.25 48.16 50.85 48.64 52.52 45.41 52.28 46.63 44.71 54.81 52.77 49.14 50.19 54.20 

PM 15.36 13.11 13.71 18.75 13.39 14.56 11.60 14.62 11.85 17.41 18.88 11.94 45.70 19.94 12.26 14.00 40.92 
 
Table 6 Average of all Fridays for each month for Interstate 95  

Bound Day 
Time Ave Sep. Ave Oct. Ave. Sep. 

& Oct. 
Opening 
Friday Ave Nov. Ave Dec. Ave Nov. 

& Dec. 

NB 
AM 61.29 59.22 60.40 59.87 62.30 61.43 61.91 

Mid-Day 63.04 61.91 62.56 63.30 62.53 62.07 62.32 
PM 52.77 54.64 53.57 60.94 60.52 59.38 60.01 

SB 
AM 58.00 56.94 57.55 55.62 59.27 57.15 58.33 

Mid-Day 52.44 49.22 51.06 52.52 48.77 51.57 50.01 
PM 15.23 13.18 14.35 14.62 21.16 21.78 21.43 

 
Table 7 Average speed records for all Fridays from September to December for Meadowlands Pkwy 

  September, Fridays October, Fridays November, Fridays December, Fridays 

Bound Day 
Time 1st 2nd 3rd 4th 1st 2nd 3rd Opening 

Friday 1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 

NB 

AM 28.01 27.71 27.64 29.59 26.14 29.23 25.61 26.98 27.56 30.37 23.86 28.06 29.07 28.05 26.76 31.98 29.24 
Mid-
Day 24.12 25.28 26.93 27.23 25.11 28.46 27.87 28.29 27.75 28.37 27.38 26.53 30.93 28.10 27.30 26.94 30.31 

PM 27.04 25.02 28.08 30.79 25.60 24.02 27.56 26.48 23.02 25.15 24.74 26.10 28.84 28.85 20.23 27.68 27.90 

SB 

AM 28.61 29.19 29.09 30.93 26.09 30.36 30.97 28.14 32.31 29.97 29.68 30.23 33.34 30.69 31.58 30.65 32.78 
Mid-
Day 31.20 27.89 30.49 28.61 30.86 30.92 31.23 31.68 28.99 29.68 29.15 31.35 31.11 30.58 30.74 31.61 31.56 

PM 30.20 26.67 29.58 27.70 29.50 31.59 27.05 28.23 25.28 30.40 26.17 26.36 32.24 26.49 25.74 26.94 30.69 
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Table 8 Average of all Fridays for each month for Meadowlands Pkwy 
Bound Day 

Time Ave Sep. Ave Oct. Ave. Sep. 
& Oct. 

Opening 
Friday Ave Nov. Ave Dec. Ave Nov. 

& Dec. 

NB 
AM 28.24 26.99 27.71 26.98 27.78 29.01 28.33 

Mid-Day 25.89 27.15 26.43 28.29 28.19 28.16 28.18 
PM 27.73 25.73 26.87 26.48 25.57 26.16 25.83 

SB 
AM 29.46 29.14 29.32 28.14 31.11 31.42 31.25 

Mid-Day 29.55 31.00 30.17 31.68 30.06 31.12 30.53 
PM 28.54 29.38 28.90 28.23 28.09 27.47 27.81 

 
Table 9 Average speed records for all Fridays from September to December for NJ Route 3 

  September, Fridays October, Fridays November, Fridays December, Fridays 

Bound Day 
Time 1st 2nd 3rd 4th 1st 2nd 3rd Opening 

Friday 1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 

EB 

AM 48.89 44.08 44.85 43.81 44.96 46.39 46.22 46.88 47.52 47.86 47.05 46.84 54.20 44.00 48.57 46.36 52.69 
Mid-
Day 49.22 49.79 50.02 48.64 50.20 50.31 49.35 49.95 50.78 49.57 50.53 50.30 49.94 50.35 51.31 48.81 48.77 

PM 49.86 49.21 51.35 50.18 48.89 51.87 47.39 49.67 51.25 50.98 49.71 51.63 49.59 50.73 43.83 49.64 48.80 

WB 

AM 58.99 59.29 58.96 58.45 58.08 58.67 57.25 57.81 56.78 58.16 58.93 53.92 59.70 53.41 57.85 56.98 58.72 
Mid-
Day 55.45 54.43 53.62 55.12 52.53 55.36 52.90 52.32 53.17 51.12 52.11 48.89 58.41 52.04 47.85 50.05 53.83 

PM 15.97 16.59 15.26 19.12 13.47 16.00 14.48 15.93 13.77 18.79 15.63 13.54 55.27 13.14 13.00 16.08 39.78 
 
Table 10 Average of all Fridays for each month for NJ Route 3 

Bound Day 
Time Ave Sep. Ave Oct. Ave. Sep. 

& Oct. 
Opening 
Friday Ave Nov. Ave Dec. Ave Nov. 

& Dec. 

EB 
AM 45.41 45.86 45.60 46.88 48.69 47.91 48.34 

Mid-Day 49.42 49.95 49.65 49.95 50.22 49.81 50.04 
PM 50.15 49.38 49.82 49.67 50.63 48.25 49.57 

WB 
AM 58.92 58.00 58.53 57.81 57.50 56.74 57.16 

Mid-Day 54.65 53.60 54.20 52.32 52.74 50.94 51.94 
PM 16.74 14.65 15.84 15.93 23.40 20.50 22.11 
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Table 11 Average speed records for all Fridays from September to December for NJ Route 120 
  September, Fridays October, Fridays November, Fridays December, Fridays 

Bound Day 
Time 1st 2nd 3rd 4th 1st 2nd 3rd Opening 

Friday 1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 

NB 

AM 42.72 42.45 42.61 41.63 40.73 46.22 41.10 41.85 43.04 46.92 44.32 37.63 30.04 42.82 44.81 44.10 43.74 
Mid-
Day 37.42 38.77 41.93 36.88 40.66 37.63 37.31 39.70 40.42 39.66 38.84 38.18 36.13 38.35 35.59 39.30 39.46 

PM 33.25 32.48 30.67 34.93 32.02 34.84 28.55 33.52 31.67 29.43 32.54 31.18 35.16 31.85 28.86 29.19 36.07 

SB 

AM 37.47 37.54 36.59 37.34 37.88 37.53 38.06 36.73 37.55 37.77 38.48 38.03 33.03 38.23 37.56 37.48 34.94 
Mid-
Day 34.09 33.83 33.23 34.96 35.79 33.14 35.25 36.24 35.29 35.58 35.40 35.99 35.98 35.69 34.13 38.72 35.50 

PM 34.98 34.45 36.11 36.40 35.31 35.43 36.03 36.91 37.69 39.27 34.36 37.61 36.12 36.96 36.68 39.91 36.23 
 
Table 12 Average of all Fridays for each month for NJ Route 120 

Bound Day 
Time Ave Sep. Ave Oct. Ave. Sep. 

& Oct. 
Opening 
Friday Ave Nov. Ave Dec. Ave Nov. 

& Dec. 

NB 
AM 42.35 42.68 42.49 41.85 40.39 43.87 41.94 

Mid-Day 38.75 38.53 38.66 39.70 38.65 38.18 38.44 
PM 32.83 31.80 32.39 33.52 32.00 31.49 31.77 

SB 
AM 37.23 37.82 37.49 36.73 36.97 37.05 37.01 

Mid-Day 34.03 34.73 34.33 36.24 35.65 36.01 35.81 
PM 35.48 35.59 35.53 36.91 37.01 37.45 37.20 
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Table 13 Average of speed during entire peak hours for each month for Interstate 95 

Direction AM/PM Peak Sep. Oct. Nov. Dec. Jan. 

Northbound 
AM 62.98 61.22 61.70 60.16 62.85 
PM 61.08 60.86 60.47 60.22 63.13 

Southbound 
AM 59.15 57.22 59.24 58.20 59.04 
PM 37.26 32.77 34.75 34.45 49.78 

 
Table 14 Average of speed during entire peak hours for each month for Meadowlands Pkwy 

Direction AM/PM Peak Sep. Oct. Nov. Dec. Jan. 

Northbound 
AM 27.57 28.48 28.85 27.90 28.30 
PM 29.25 27.38 27.78 28.08 27.53 

Southbound 
AM 30.52 30.49 31.15 31.07 30.35 
PM 29.22 29.94 30.06 29.21 30.82 

 
Table 15 Average of speed during entire peak hours for each month for NJ Route 3 

Direction AM/PM Peak Sep. Oct. Nov. Dec. Jan. 

Eastbound 
AM 49.26 47.41 49.31 48.64 49.31 
PM 51.05 49.83 49.52 48.66 49.91 

Westbound 
AM 59.28 58.73 58.59 57.17 58.11 
PM 30.01 26.32 30.18 31.64 32.86 

 
Table 16 Average of speed during entire peak hours for each month for NJ Route 120 

Direction AM/PM Peak Sep. Oct. Nov. Dec. Jan. 

Northbound 
AM 43.77 43.34 42.50 42.38 43.59 
PM 36.10 34.74 34.56 34.05 36.35 

Southbound 
AM 37.97 38.16 38.07 37.68 38.88 
PM 36.86 37.51 37.18 37.30 37.69 

4.2 StreetLight Data  

In terms of evaluating a roadway system's performance measure using StreetLight Inc. data, origin 
or pass-through gates were created on all routes leading to American Dream Complex. In this 
study, StreetLight volume trip data was extracted for 120 days before and 120 days after the 
complex's opening. Figure 26 represents the total number of StreetLight volume trips for all days 
between June, 27th 2019, and February, 22nd 2020. Wherein the data showed an increase in the 
Street Light Volume trips after the opening. 
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Figure 26 StreetLight volume trips for before and after opening 

As shown in Figure 26, StreetLight volume trips during the weekends were low. After the complex 
opening, the weekend StreetLight Volume trips had increased, and showed many of the weekends 
had above 2000 StreetLight vehicle volume trips. Detailed information about the daily trip counts 
is attached in Appendix A.  

Further, to understand the StreetLight Inc. data in detail, the StreetLight vehicle volume trips were 
grouped into 30 days. As shown in Figure 27, groups 1, 2, 3, and 4 represent data for before the 
opening, groups 5 show the data for the day of opening, and groups 6, 7, 8, and 9 demonstrate data 
for after the opening.  
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Figure 27 StreetLight volume trips 30 days distribution groups 

Based on the average StreetLight volume trips data, groups 1, 2, 3, and 4 showed a gradual increase 
in the trip that ended at American Dream Complex. On the other hand, groups 6, 7, 8, and 9 did 
not increase after the opening but had more average StreetLight volume trips than groups 1, 2, 3, 
and 4. It is important to note that the days clustered for group 8 had many holidays included, due 
to which the average StreetLight volume trips have been recorded as the highest.  

In addition to the trip counts, the trips' purpose was also explored to distinguish the visitors and 
work-based trips. As seen in Figure 28, home-based work trips account for more than 20 percent 
of the groups represented before the complex's opening. While after the complex opening, the 
home-based work trips were reduced to below 15 percent of the average trips, demonstrating an 
increase in the trips that were not related to work purposes. In terms of the home-based other trips, 
which can be considered a trip made as a visitor, are gradually increasing. This pattern shows that 
there has been an increase in the portion of visitors after the opening of the complex. It should be 
noted that the portion of the non-home-based trip is the maximum because its home or work 
locations are not identifiable for those trips. However, those trips did end at the American Dream 
Complex.  
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Figure 28  StreetLight volume trips purpose 

 

Besides visualizing trip volume from the Streetlight Inc. database, a change in the travel duration 
was also accessed. To do so, major routes were chosen based on the trip volume. Only weekday 
data was considered for performing a normalized statistical analysis and identifying the significant 
changes. Based on the distribution of travel duration bin, it can be observed that the majority of 
the trips took 0-10 minutes of travel time from the origin or pass through gates. It should be noted 
that, as discussed previously in Table 4, the base travel time from all the origin or passthrough 
grates to the complex is less than 5 minutes. 

For the travel duration of 0-10 minutes, results showed a significant increase in the StreetLight 
volume trips for Interstate 95, whereas a significant reduction in StreetLight volume trips after the 
opening of the complex was observed on NJ Route 3. Based on the result, it can be determined 
that after the opening of the complex, an increase in the trips may have caused an increase in travel 
time on NJ Route 3. For NJ Route 120, there was a reduction in the trip proportion after the opening 
of the complex, but it did not show a significant difference. 

Results of travel duration of 10-20 minutes showed a significant reduction in StreetLight volume 
trips at Interstate 95. As can be seen in Table 13, the proposition of the trips has moved to 0-10 
minutes so resulting in reduced travel time. For NJ Route 3 and NJ Route 120, no significant 
changes in the StreetLight volume trips were observed.  

For the travel duration of 20-30 minutes, NJ Route 120 showed a significant increase in the 
StreetLight volume trips. Based on the finding, it can be stated that after the opening of the 
complex, NJ Route 120 has experienced a reduction in the proportion of StreetLight volume trips 
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in 0.-10 and 10-20 minutes travel duration bin. Changes observed in the proportion of StreetLight 
volume trips in relation to travel duration are summarized in Table 13. 

Table 13 Changes in the proportion of the StreetLight volume trips based on the travel durations 
Note: StL Trips = StreetLight volume trips 

 
Other than the trip attribute, Streetlight Inc. database also provided traveler attributes, including 
the level of income, level of education, and trips involving kids or not. Based on the level of 
income, results demonstrated that 16.3 percent of travelers had an income between 50K to 75K, 
13.5 percent of travelers had income less the 20K, 12.5 percent of travelers had an income between 
75K and 100K, 12.1 percent of travelers had an income between 20K and 35K, 11.4 percent of 
travelers had an income between 35K and 50K, 10.4 percent of travelers had an income between 
100K and 125K, travelers having income between 125K to 150K,150K to 200K, and more than 
200K accounted to be 23.8 percent. Figure 29 shows a detailed distribution of travelers' level of 
income.  

Routes 
Travel 

Duration 
(mins) 

Average StL Trip Change 
Before 

Opening 
After 

Opening Difference P-Value Signification Test 

Interstate 
95 

0-10 36.84% 45.77% 8.93% 0.00 Significant Increase 
10-20 46.76% 36.87% -9.89% 0.00 Significant Reduction 
20-30 10.20% 10.88% 0.68% 0.29 Insignificant Increase 
30-40 3.60% 3.03% -0.57% 0.34 Insignificant Reduction 
40-50 0.69% 1.29% 0.59% 0.22 Insignificant Increase 

50-60 0.42% 0.94% 0.52% 0.27 Insignificant Increase 

NJ Route 
3 

0-10 52.71% 48.57% -4.14% 0.03 Significant Reduction 
10-20 30.97% 32.17% 1.20% 0.26 Insignificant Increase 
20-30 8.44% 10.67% 2.23% 0.07 Insignificant Increase 
30-40 4.89% 2.97% -1.92% 0.06 Insignificant Reduction 
40-50 0.76% 1.39% 0.63% 0.16 Insignificant Increase 

50-60 1.55% 1.89% 0.34% 0.37 Insignificant Increase 

NJ Route 
120 

0-10 57.99% 54.69% -3.29% 0.15 Insignificant Reduction 
10-20 29.41% 28.62% -0.79% 0.40 Insignificant Reduction 
20-30 7.02% 11.65% 4.63% 0.01 Significant Increase 
30-40 2.99% 3.82% 0.83% 0.29 Insignificant Increase 
40-50 1.38% 0.46% -0.92% 0.18 Insignificant Reduction 

50-60 0.18% 0.62% 0.44% 0.22 Insignificant Increase 
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Figure 29 Traveler Attribute: Level of Income 

 
In terms of the level of education of the travelers, the majority of the travelers had high school 
diplomas (28.4 percent), followed by bachelor's degree (22.7 percent), some college (21.6 percent), 
No high school diploma (13.7 percent),  and graduate degree (13.5 percent). For the trips that 
involved kids/no kids showed that 37.9 percent of the trips involved kids. Figure 30 and 31 shows 
a detailed distribution of the level of education and involvement of kids. 
 
 

 
Figure 30 Traveler Attribute: Level of Education 
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Figure 31 Traveler Attribute: Trips involving kids 

 

4.3 Safety Analysis  

The developed safety analysis methodology was applied to a video data collection from two 
intersections near the American dream complex. Results from a 180-minute video detected and 
tracked 7195 vehicles and 7 pedestrian trajectories at Hampton Inn at Paterson Plank Rd. and 8901 
vehicles and 99 pedestrian trajectories at Murray Hill Pkwy and Paterson Plank Rd.  in daytime 
conditions. Trajectories were extracted with the detection confidence threshold of 0.80 for vehicles 
and 0.6 for pedestrians. It is recommended that detection thresholds be modified depending on the 
camera's position and height. Based on the data obtained from the trajectories, data was validated, 
and relative accuracy was calculated to gauge the algorithm's performance. 

Detection and tracking were validated for 60 minutes of video for both intersections. Table 14 
shows the relative accuracy and error by comparing the values of detected counts and manual 
counts for the Hampton Inn at Paterson Plank Rd. Intersection. Based on the result, the vehicles 
initially tracked in the South and North showed fewer cars than the manual count, demonstrating 
an error of 0.02 and 0.03, respectively.  However, the East and West start directions detected more 
cars compared to the manual count, showing an error of 0.11 and 0.08, respectively. Overall, it 
was observed that the detection and tracking algorithm showed an accuracy of 98 percent.  
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Table 14 Detection and tracking accuracy results (Location: Hampton Inn at Pateson Plank 
Road) 
 

Start Direction Detected 
Counts 

Manual 
Count  Accuracy  Error 

North  865 892 0.97 0.03 

South 1262 1265 0.98 0.02 

East 51 46 1.11 0.11 

West 103 95 1.08 0.08 

Total 2263 2298 0.98 0.02 

For the Murray Hill Pkwy. and Paterson Plank Rd., only North showed fewer vehicle detection 
counts compared to a manual count, showing an error of 0.02. While start direction from South, 
East, and West showed more vehicle detection counts than manual counts, representing an error 
of 0.05, 0.04, and 0.19, respectively. Inclusive, it was observed that the detection and tracking 
algorithm exhibited an error of 0.04, i.e., an accuracy of 96 percent. Table 15 shows the relative 
accuracy and the error by comparing the values of detected counts and manual counts for the 
Murray Hill Pkwy. and Paterson Plank Rd.  

Table 15 Detection and tracking accuracy results (Location: Murray Hill Pkwy & Paterson Plank 
Road) 

Start Direction Detected 
Counts 

Manual 
Count  Accuracy  Error 

North  864 886 0.98 0.02 

South 965 923 1.05 0.05 

East 198 191 1.04 0.04 

West 418 351 1.19 0.19 

Total 2245 2351 1.04 0.04 

Further, based on the objective of this study, firstly, a directional-based traffic count was extracted 
by defining the zone parameters during the analysis. Tables 16 and 17 demonstrate the directional 
traffic count by identifying the starting and ending points of the detected trajectories for Hampton 
Inn at Paterson Plank Rd. and Murry hill Pkwy and Paterson Plank Rd., respectively. Start and 
endpoints for each completely tracked road user are extracted and matched with the zone parameter 
to determine the direction flow. The result showed that most vehicles entered the intersections 
from the southbound zone and exited from the northbound zone at both intersections. In 
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comparison, start and endpoints for the vehicles in eastbound and westbound were reported to be 
less. Note that both locations do not permit left turning at the intersections, and also Paterson Plank 
Rd. has divergent or a dedicated right turning lane, which may cause the following results. For 
instance, to interpret the result, the value 3973 in table 16 demonstrates that 3973 vehicles entered 
the intersection from the southbound and exited the intersection from northbound.  

Table 16 Detection results: direction-based traffic count (Location: Hampton Inn at Pateson 
Plank Road) 

Direction North South East West Total 

North 0 2734 0 0 2734 

South 3973 0 0 0 3973 

East 144 18 0 0 163 

West 310 0 15 0 325 

Total 4445 2753 15 0 7195 

 
Table 17 Detection results: direction-based traffic count (Location: Murray Hill Pkwy & 
Paterson Plank Road) 

Direction North South East West Total 

North 0 2323 0 436 2759 

South 3871 0 0 0 3871 

East 108 300 0 408 816 

West 483 713 258 0 1455 

Total 4462 3336 258 845 8901 

Secondly, the non-compliance behavior of road users has been calculated and validated. To 
calculate the vehicle-based non-compliance events, running red light vehicles where events were 
counted. To do so, the traffic signal phase was detected based on one of the traffic lights at the 
intersection, and an associated condition algorithm was implemented to extract red light running 
events. Table 18 and 19 shows the recorded red light running events every 60 minutes for both 
locations. Figure 32 shows an illustration of the detected vehicle non-compliance event.  
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Table 18 Detection results: vehicle non-compliance counts (Location: Hampton Inn at Paterson 
Plank Road)  

 
Table 19 Detection results: vehicle non-compliance counts (Location: Murray Hill Pkwy & 
Paterson Plank Road) 

 

 
Figure 32 An illustration of the detected vehicle non-compliance event 

Time Total Vehicle Counts Vehicle Non-
Compliance Counts  

2:40 PM – 3:40 PM 2263 14 

3:40 PM – 4:40 PM 2145 11 

4:40 PM – 5:40 PM 2787 31 

Total  2263 56 

Time Total Vehicle Counts Vehicle Non-
Compliance Counts  

2:40 PM – 3:40 PM 2713 19 

3:40 PM – 4:40 PM 3121 34 

4:40 PM – 5:40 PM 3067 28 

7195Total  8901 81 
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Regarding the pedestrian’s non-compliance counts, pedestrians not using the crosswalk or 
jaywalking are considered non-compliance events. Based on the analysis, it was observed that all 
the pedestrians at the Hampton Inn at Paterson Plank Rd did jaywalks, and  46.6 percent of the 
pedestrian at the Murray Hill Pkwy and Patterson Plank Rd. Intersection did not comply. Table 20 
and 21 shows the recorded jaywalking or non-compliance behavior of pedestrians every 60 
minutes. Figure 33 shows an illustration of the detected pedestrian non-compliance events. 

Table 20 Detection results: pedestrian non-compliance counts (Location: Hampton Inn at 
Paterson Plank Road) 

Time Total Pedestrian Counts Pedestrian Non-
compliance Counts  

2:40 PM – 3:40 PM 1 1 

3:40 PM – 4:40 PM 2 2 

4:40 PM – 5:40 PM 4 4 

Total  7 7 
 
Table 21 Detection results: pedestrian non-compliance counts (Location: Murray Hill Pkwy & 
Paterson Plank Road) 

Time Total Pedestrian Counts Pedestrian Non-
compliance Counts  

2:40 PM – 3:40 PM 21 8 

3:40 PM – 4:40 PM 38 10 

4:40 PM – 5:40 PM 40 28 

Total  99 46 
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Figure 33 An illustration of the detected pedestrian non-compliance event 

Lastly, vehicle-to-vehicle traffic conflict exposure was identified using the Surrogate Safety 
Measure, Post-Encroachment time (PET) based on the extracted trajectory data. As the scope of 
this study, conflict analysis intends to determine the conflict frequency and severity at a defined 
conflict region. PET less than 1.5 seconds demonstrates a higher probability of a crash occurring 
and a dangerous conflict. While a PET event with less than 5 seconds is a possible conflict. Based 
on the results from the test video, the intersection at Hampton Inn at Paterson Plank Rd. had 39 
possible PET vehicle-to-vehicle conflict events and 8 dangerous conflict events. On the other hand, 
Murray Hill Pkwy. And Paterson Plank Rd. reported 283 possible conflicts and 94 dangerous 
conflicts. The intersection at Murray Hill Pkwy and Paterson Plank Rd. showed more conflicts 
compared to the intersection at the Hampton Inn at Paterson Plank Rd. which may be due to several 
reasons, including traffic volume and intersection geometry. Table 22 provides a summary of the 
PET event counts based on the severity.  

Table 22 Analysis result: Post-Encroachment Time (PET)  

PET Threshold 
(Seconds) 

PET Event Count 
(Hampton Inn at 
Paterson Plank 

Road) 

PET Event Count 
(Location: Murray Hill 
Pkwy & Paterson Plank 

Road) 

Description 

PET Events < 20 106 451 Arbitrary Count  

PET Events < 5 39 283 Possible Conflict 

PET Events < 1.5 8 94 Dangerous 
Conflict 
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CHAPTER 5. CONCLUSIONS 

The main objective of this research is to evaluate the mobility and safety impacts of the 
transportation network in the vicinity of the partial opening of the 3-Million Square Foot American 
Dream Complex. For this goal, initially, the performance of four surrounding corridors was 
explored by incorporating travel time inflation (TI) and it counterpart, the Corridor Travel Time 
Inflation (CTI), as performance measures using probe vehicle data. Then, the changes in the trip 
duration were also evaluated using Streetlight data with different visualizations of the congestion 
based on a monthly, and daily basis was provided. Thereafter, safety video analysis was developed 
to evaluate the intersection safety based on Surrogate Safety Measures (SSM).  

Based on the results obtained on a monthly basis CTI, Interstate 95, NJ Route 3, and NJ Route 120 
were found to experience 42%, 24%, and 42% increase during non-peak hours and 21%, 27%, and 
22% during peak hours in CTI from October to November, respectively.. However, Meadowlands 
Pkwy, Northbound, followed a slightly decreasing pattern during non-peak hours and an increasing 
pattern during peak hours. CTI for the entire corridor (Meadowlands Pkwy) remained almost the 
same (a minor increase of 0.05 hours) during non-peak hours and increased slightly during peak 
hours. CTI for all corridors dropped with the beginning of the new year's holidays during both 
non-peak and peak hours, except for the Meadowlands Pkwy Southbound during non-peak hours. 
TI distributions for all corridors' TMCs during the entire study period were also calculated. It was 
concluded that only TI of some TMCs along the NJ Route 3 and Interstate 95 experienced high 
values. 

Moreover, results obtained from developed CIMTT heatmaps showed that the partial opening of 
the complex did not considerably affect the congestion of the surrounding corridors since no 
obvious decrease or increase in congestion was recorded following the opening of the complex. 
This result can be attributed to the fact that the complex was only partially opened and was not 
operated in full capacity. Also, there were many delays in the complex's opening, and it could have 
been a reason why there was not any considerable change in congestion in terms of visitors coming 
to the complex. It is noted that the complex was also shut down in March due to COVID-19 
pandemic, and during that time, there was a dramatic decrease in congestion in the region 
(Remache-Patino, and Brennan, 2020). New year's holidays, on the other, majorly affected all the 
surrounding corridors by decreasing their congestion. This decrease can be explained by the fact 
that during holidays usually no specific congestion is experienced on the roadways.  

The speed heatmaps did not show any considerable pattern of increase or decrease for the opening 
day too. The comparisons of the Fridays before and after the opening Fridays did not show a 
consistent pattern. For some cases, the average speed records decreased on the opening Friday, 
and some others increased.  

Based on the StreetLight volume trip data, an increase in the StreetLight volume trips was observed 
after the complex's opening. Further, based on the statistical analysis results, NJ Route 3 showed 



 

80 
 

a significant reduction in the StreetLight volume trips for the travel duration of 0 -10 minutes after 
the opening of the complex. While, NJ Route 120 showed an insignificant reduction in the 
StreetLight volume trips for the travel duration 0-10 minutes and 10-20 minutes. NJ Route 120 
showed a significant increase in the StreetLight volume trips for the travel duration of 20-30 
minutes. This shift in the StreetLight volume trips demonstrates that NJ Route 3 and NJ Route 120 
had an increase in travel time after the opening of the complex. However, Interstate 95 had a 
significant increase in the StreetLight volume trips for the travel duration of 0-10 minutes, showing 
no impact on the travel time after the opening.  

In terms of the safety analysis, this study developed an automated video-based methodology to 
detect, track, count, evaluate non-compliance behavior, and identify vehicle-to-vehicle conflicts 
and conflict severity. The proposed work can be implemented at the intersection to evaluate safety. 
Based on the validation result of the safety analysis, the detection and tracking algorithm, i.e., 
YOLO-V5 and DeepSORT, showed an accuracy between 95 and 98 percent. Further, based on the 
developed automated non-compliance evaluation methodology (i.e., pedestrian jaywalking and 
vehicles running a red light) provides a detailed understanding of road users' non-compliance 
behavior. Lastly, the Post-Encroachment Time (PET) helps to identify the conflict events and 
severity based on the PET thresholds. The proposed work and the safety measure developed in this 
study could be adapted to analyze a signalized intersection.  
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Appendix: A (Average daily O-D StreetLight volume trips for each month) 
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