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1. Introduction and Problem Statement
Driving behavior has been extensively studied using various data sources, ranging from 
loop detectors, bluetooth, to GPS trajectories and mobile traces. Characterizing driving 
behavior is crucial to human-aware and social-aware motion planning of autonomous 
vehicles. However, understanding human driving behavior is challenging due to the 
intrinsic randomness of human behavior.  

Risk assessment of roadways is usually practiced based on historical crash data, which 
ignores information of driver behaviors and real-time traffic situations. In this project, the 
Safe Route Mapping (SRM) model is extended by using both in-vehicle data and 
infrastructure-based data to predict safety index of the roadways. 

2. Literature Review

2.1 Uncertainty Quantification using Physics-informed Deep Learning (PIDL)
The most widely used UQ methods include Bayesian approximation [1-5], ensemble 
methods [6,7], and generative models like the variational autoencoder [9,10] and 
generative adversarial networks (GAN) [11,12]. There is a growing trend in applying PIDL 
to UQ. One branch of studies apply physics-informed GANs (PhysGAN) to approximate 
solutions of partial differential equations (PDE) [13-15]. However, all these methods 
assume that the randomness arises from initial conditions or inputs while neglecting 
stochasticity in parameters associated with inherent physics or behaviors.   

The other branch of studies apply PhysGAN to solve stochastic differential equations 
[16,17]. Although those studies assume that experimental data is generated from stochastic 
differential equations, they still use deterministic equations to calculate the physics 
discrepancy. Moreover, they demonstrate the results using only numerical data, and it 
remains a question whether those models can be applied to real-world cases. To this end, 
existing PhysGAN models may fail to capture the uncertainty arising from heterogeneity of 
drivers, which we believe is a major source of randomness when it comes to CF behavior 
prediction. 

2.2 Driving Safety Index Prediction using both in-vehicle and roadside data 
Safe Route Mapping (SRM) model was initially introduced by Jiang, etc.[18]. The Highway 
Safety Manual (HSM) published by the American Association of State Highway and 
Transportation Officials (AASHTO) outlines that developing Safety performance Functions 
(SPFs) can be used by jurisdictions to make better safety decisions [19]. The current 
practice of using SPF to predict average crash frequency suffers from a lack of sufficient 
data and model accuracy [20]. Naturalistic Driving Studies (NDS) reveals correlations 
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between driver behaviors, roadway segments in either crash/near or normal situations 
[21]. However, the measurement of driving performance lacks driver behavior data 
because the information is hard to capture in real-time or requires additional devices 
inside the vehicle 

In recent years, with the development of V2I technology and the lower cost of 
infrastructure sensing, collecting data inside a vehicle and from roadside infrastructure has 
become possible. Inside a vehicle, a driver concentration control system that monitors the 
driver's behavior mainly uses cameras, eye-trackers, or contactless sensors. [22] provides a 
solution that driver’s performance can be captured using a smartphone application, which 
is more affordable compared to adding additional devices inside a vehicle. On the roadside, 
computer vision sensors based on traffic surveillance systems and cloud computing 
provides new opportunities for enhancing traffic safety. [23] introduced a computer vision 
algorithm to obtain vehicle trajectories from high-angle traffic video. Their model combines 
scanline-based trajectory extraction and feature-matching coordinate transformation to 
detect vehicles and get their traces. Their method has been proven to be robust and 
accurate. 

3. Physics-informed Deep Learning For Car-following Modeling
(Columbia)

3.1 Uncertainty Quantification of Car-following Behavior using GAN 

UQ of CF behavior is illustrated in Figure 3.1. A red car is following a blue car along the 
horizontal axis, and the vertical axis is time. It is assumed that a driver obeys an underlying 
stochastic policy 𝜋𝜋(𝑎𝑎|𝑠𝑠) that maps from driving states 𝑠𝑠 ∈ 𝑆𝑆 to a distribution over actions 
𝑎𝑎 ∈ 𝐴𝐴. A CF model learns a surrogate policy 𝜋𝜋𝜃𝜃(𝑎𝑎|𝑠𝑠) that approximates the ground-truth 
policy 𝜋𝜋(𝑎𝑎|𝑠𝑠). At time step 𝑡𝑡, the red car samples its action 𝑎𝑎 given its current state 𝑠𝑠, which 
leads to the true position (solid red car) at time step 𝑡𝑡 + 𝛥𝛥𝑡𝑡. Meanwhile, a surrogate model 
𝜋𝜋𝜃𝜃 predicts the action distribution and sample an action 𝑎𝑎�, which leads to the estimated 
position (transparent red car) at time step 𝑡𝑡 + 𝛥𝛥𝑡𝑡. The key problem is to quantify the 
uncertainty of prediction 𝑎𝑎� and its discrepancy with regards to the true action 𝑎𝑎. 
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Figure 3.1: An illustration of UQ for CF behavior. 

The structure of the DoubleGAN is illustrated in Figure 3.2. It consists of two parts: the left 
half (blue) contains the primal GAN and relevant variables; the right half (red) contains the 
auxiliary GAN and relevant variables. We will explain the left part first and then the right 
part. The primal GAN consists of the generator 𝐺𝐺𝜃𝜃 and the primal discriminator 𝐷𝐷𝜙𝜙. Labeled 
states 𝑠𝑠𝑜𝑜 are fed into the generator together with random noise 𝑧𝑧. The predicted state-
action pairs (𝑠𝑠𝑜𝑜 ,𝑎𝑎�𝑜𝑜) and the labeled state-action pairs (𝑠𝑠𝑜𝑜,𝑎𝑎𝑜𝑜) are judged by the primal 
discriminator 𝐷𝐷𝜙𝜙, and the data loss is thus computed as 𝐿𝐿𝑜𝑜(𝜃𝜃) = 1

𝑁𝑁𝑜𝑜
∑𝑁𝑁𝑜𝑜
𝑖𝑖=1 𝐷𝐷𝜙𝜙(𝑠𝑠𝑜𝑜

(𝑖𝑖),𝑎𝑎�𝑜𝑜
(𝑖𝑖)).

The auxiliary GAN consists of the generator 𝐺𝐺𝜃𝜃 and the auxiliary discriminator 𝐷𝐷𝜂𝜂′ . On one 
hand, unlabeled states 𝑠𝑠𝑐𝑐 and random noise 𝑧𝑧 are fed into the physics equation to generate 
physics predictions 𝑎𝑎�𝑐𝑐. On the other hand, 𝑠𝑠𝑐𝑐 and 𝑧𝑧 are fed into the generator to get 
predictions 𝑎𝑎�𝑐𝑐. The auxiliary discriminator 𝐷𝐷𝜂𝜂′  is trained to distinguish the generator-
predicted state-action pairs (𝑠𝑠𝑐𝑐,𝑎𝑎�𝑐𝑐) from the physics-predicted state-action pairs (𝑠𝑠𝑐𝑐,𝑎𝑎�𝑐𝑐), 
from which we can define the physics loss as𝐿𝐿𝑐𝑐(𝜃𝜃, 𝜆𝜆) = 1

𝑁𝑁𝑐𝑐
∑𝑁𝑁𝑐𝑐
𝑗𝑗=1 𝐷𝐷𝜂𝜂′ (𝑠𝑠𝑐𝑐

(𝑗𝑗),𝑎𝑎�𝑐𝑐
(𝑗𝑗)).

L_c (θ,λ)=1/N_c  ∑_(j=1)^(N_c) D_η^' (s_c^((j)),a ̂_c^((j))). 

For simplicity, the loss functions of the discriminators 𝐷𝐷𝜙𝜙 and 𝐷𝐷𝜂𝜂′  are not shown in Fig. 2. 

Figure 3.2 Structure of the DoubleGAN. 

https://docs.google.com/document/d/1SI5gVHmfeLdCmotoDAfxsHJHEMk30kl3/edit#bookmark=id.4d34og8
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Although stochastic physics is encoded to better capture the real-world noise, an additional 
adversarial loss is included, which may hinder the model convergence. To tackle this 
problem, we propose to use the moment-matching technique to speed up the convergence 
of the DoubleGAN without incurring the model collapse. The moment-matching loss is 
depicted as: 

 𝐿𝐿𝑚𝑚(𝜃𝜃, 𝜆𝜆) =   𝜌𝜌𝐸𝐸𝑞𝑞(𝑠𝑠𝑐𝑐) �
𝜇𝜇(𝑎𝑎�𝑐𝑐) − 𝜇𝜇(𝑎𝑎�𝑐𝑐)

|𝜇𝜇(𝑎𝑎�𝑐𝑐)| + |𝜇𝜇(𝑎𝑎�𝑐𝑐)|
�
2

+ (1 − 𝜌𝜌)𝐸𝐸𝑞𝑞(𝑠𝑠𝑐𝑐) �
𝜎𝜎(𝑎𝑎�𝑐𝑐) − 𝜎𝜎(𝑎𝑎�𝑐𝑐)

|𝜎𝜎(𝑎𝑎�𝑐𝑐)| + |𝜎𝜎(𝑎𝑎�𝑐𝑐)|
�
2

, 

where the first and the second terms measure the discrepancies of the mean and the 
standard deviation between the neural network predictions and the physics predictions, 
respectively. 𝜇𝜇 is the operator for the mean, and 𝜎𝜎 is the operator for the standard 
deviation. To mitigate the effect of the scale difference between the first and the second 
moments, the sum of the absolute values of each moment is added as a normalization term. 
𝜌𝜌 ∈ [0,1] is the ratio of each constraint component. 

The physics model is jointly trained along with other networks by minimizing the physics 
loss 𝐿𝐿𝑐𝑐(𝜃𝜃, 𝜆𝜆) with regard to both generator parameters 𝜃𝜃 and physics parameters 𝜆𝜆 on the 
unlabeled data. We illustrate the joint estimation in Figure 3.3. The line colors are 
associated with different types of data: the blue for the labeled data and the red for the 
unlabeled data. The solid lines indicate how generator 𝐺𝐺𝜃𝜃 and physics 𝑓𝑓𝜆𝜆 are trained: the 
generator 𝐺𝐺𝜃𝜃 is trained by both the labeled data and the samples of the physics 𝑓𝑓𝜆𝜆, and the 
physics 𝑓𝑓𝜆𝜆 is trained by the samples of the generator 𝐺𝐺𝜃𝜃. The dashed line indicates that the 
physics could be pre-trained by the labeled data prior to the joint estimation. 

Figure 3.3: Joint estimation: training the physics model and the generator simutaneously. 

The real-world data is from the Next Generation SIMulation (NGSIM) dataset, which is an 
open dataset that collects vehicle trajectories every 0.1 second. We focus on the US 
Highway 101. 

We compare the prediction distribution of DoubleGAN with sample distribution at 4 
randomly samples data points in Figure 3.4 (𝑁𝑁𝑜𝑜 = 500). Most parts of the predicted and 
ground-truth distributions overlap with each other, which demonstrates that DoubleGAN 
can capture the CF uncertainty of the real-world data well. 
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Figure 3.4: Visualization of predictions of DoubleGAN for the NGSIM data. 

To evaluate the effectiveness of the moment-matching technique, we present the prediction 
results of the DoubleGAN− and DoubleGAN during the training process in Figure 3.5, which 
corresponds to the normal noise data case with the training size 𝑁𝑁𝑜𝑜 = 500. The x-axis is the 
index of the training data points, which is sorted by the value of the acceleration. The y-axis 
is the acceleration. The blue and green lines are the mean of the ground-truth and the 
prediction, respectively; the yellow band is the two-standard (2 − 𝜎𝜎 band) of the ground-
truth. We can see that, imposed with the moment-matching, DoubleGAN converges much 
faster than DoubleGAN−. The reason is that, the discriminators are not well-trained at the 
early-training stage and thus cannot supervise the generator very well. In comparison, 
moment-matching directly computes the moment discrepancy between the generator and 
the physics, which can assist with the training of the generator throughout the training 
process. 

(a) Predictions of DoubleGAN− during training

(b) Predictions of DoubleGAN during training
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Figure 3.5: Predictions of DoubleGAN− (top row) and DoubleGAN (bottom row) during the training 
process. The comparison between the model prediction and the ground-truth is presented at 
training epochs 0, 500, and 1000 

3.2 Sequential prediction using LSTM 

To validate the functionality of the PIDL method for other deep learning model, we changed 
the DL component of the PIDL from an ANN to a long short-term memory (LSTM) model. 
The LSTM model is one of the states-of-the-art DL model used in the car-following behavior 
modeling. Different from NNs, LSTM considers historic data when making a prediction. The 
PIDL-LSTM structure is shown in Figure 3.6. Figure 3.6 (a) introduces how to incorporate 
LSTM into the PIDL architecture, and Figure 3.6 (b) zooms into the LSTM component with 
the details of LSTM cells. In Figure 3.6 (a), 𝑠𝑠(𝑡𝑡) is the feature vector [ℎ(𝑡𝑡),𝛥𝛥𝛥𝛥(𝑡𝑡), 𝛥𝛥(𝑡𝑡)], 𝑛𝑛 is 
the gap length. Note that there is no historic component in the physics-based CFM, only the 
latest feature is used for the physics regardless of the gap length. In Figure 3.6 (b), each 
rectangle encloses an LSTM cell. The row element of the input data, which is a feature 
vector, �̂�𝑠(𝑡𝑡) as the observed feature and 𝑠𝑠(𝑡𝑡′) as the collocation feature, is fed into the LSTM 
cell sequentially. For each input feature 𝑠𝑠(𝑡𝑡), the LSTM cell outputs the cell state (𝑐𝑐(𝑡𝑡)) and 
hidden state (ℎ(𝑡𝑡)), which are also fed into the LSTM cell for the next time step. The 
hyperbolic tangent function, denoted as 𝑡𝑡𝑎𝑎𝑛𝑛ℎ(⋅), is a non-linear transform function, which 
adds non-linearity to the LSTM model. The sigmoid function, denoted as 𝜎𝜎(⋅), outputs a 
number between zero and one, which controls how much information can pass through. 
One means letting everything through and zero means letting nothing through.  

(a) Structure of PIDL-LSTM.
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(b) LSTM cells. ℎ and 𝑐𝑐 are hidden states and cell states. 𝜎𝜎(⋅) and 𝑡𝑡𝑎𝑎𝑛𝑛ℎ(⋅) denote the
sigmoid and hyperbolic tangent functions, respectively. 

Figure 3.6: PIDL-LSTM model. 

We apply the LSTM-based PIDL-IDM to NGSIM and present results in Figure 3.7. Figure 3.7 
(a) shows the test MSE on two LSTM-based PIDL-IDM models, one with a 1-second gap
length (indicated by dashed red line with squares) and the other with a 3-second gap
length (indicated by dashed black line with squares), against the training data size. Baseline
models include pure data-driven LSTM with gap lengths to be 1 second (dashed red line
with inverted triangles) and 3 seconds (dashed black line with inverted triangles), together
with an ANN based PIDL-IDM model (dashed blue line with stars). The x-axis the training
data size and the y-axis is the test MSE. When the length gap is 3 seconds, both the LSTM
and the LSTM-based PIDL model are worse than the ANN-based PIDL model. The LSTM-
based PIDL model achieves the best MSE when the gap length is 1 second, but it can only
outperform the ANN-based PIDL model when the training data size is more than 10. The
LSTM-based PIDL model show its advantage when the training data size is more than 25. It
is because the LSTM’s complex structure requires more training data but at the same time
is more capable of learning driver reaction. Figure 3.7 (b) shows the PIDL-LSTM results
across different gap lengths when the number of training data is fixed as 20. Note that
when the gap length equals to 0, it means that LSTM just uses data of time step 𝑡𝑡 as how the
NN does. We can see that the LSTM-based PIDL can only outperform the ANN-based PIDL
when the gap length equals to 1 second, this is partially because the LSTM-based PIDL
model of longer gap lengths demand more training data to achieve a similar performance
level as that of shorter gap lengths, and thus may not be amenable when we have sparse
observations. In conclusion, the PIDL with more complex NN architecture requires more
data to train and may not outperform those with simpler NN architecture, especially when
data is insufficient. When the training data grows, LSTM-PIDL is superior to the ANN-based
PIDL.
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(a) 

(b) 

Figure 3.7: Results of PIDL-IDM (LSTM) with varying numbers of training data (a) and varying gap 
lengths (b). 

4. Algorithm validation in a simulated environment (Columbia)

4.1 COSMOS Testbed

The COSMOS testbed is aimed at design, development, and deployment of a city-scale 
advanced wireless testbed in order to support real-world experimentation on next-
generation wireless technologies and applications. 

The COSMOS architecture has a particular focus on ultra-high bandwidth and low latency 
wireless communication tightly coupled with edge cloud computing. The COSMOS testbed 
will be deployed in upper Manhattan and will consist of 40-50 advanced software-defined 
radio nodes along with fiber-optic front-haul and back-haul networks and edge and core 
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cloud computing infrastructure. Researchers will be able to run experiments remotely on 
the COSMOS testbed by logging into a web-based portal which will provide various 
facilities for experiment execution, measurements, and data collection. 

Figure 4.1: Hardware and location for COSMOS testbed. 

4.2 Digital Twin 

Based on the COSMOS testbed, we build a digital twin to validate our algorithms. With the 
help of digital twin, we can control an individual vehicle or gather needed information from 
the world. It’s flexible to deploy our algorithms and do testing.    
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Figure 4.2: Structure of the digital twin. 

For the digital twin, we set up a simulation environment mainly using CARLA and SUMO, 
two popular open-source simulators.  CARLA has been developed from the ground up to 
support development, training, and validation of autonomous driving systems. And it 
supports a wide range of  specification of sensor suites, environmental conditions, full 
control of all actors and map generation. SUMO allows addressing a large set of traffic 
management topics. It is purely microscopic: each vehicle is modeled explicitly, has its own 
route, and moves individually through the network. And we use NS-3 to simulate the 
communication module in digital twin, which is a discrete-event network simulator for 
Internet systems. By setting up these environments, we are able to spawn an ego vehicle 
and deploy different algorithms  flexibly. 
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Figure 4.3: CARLA-SUMO co-simulation. 

By using digital twin, we could replicate a real car-following scenario. As the video shows, 
we first preprocess the real world data from the labeled lidar points from Waymo open 
dataset and replicate the scenario in CARLA simulator. Vehicles have exact relevant 
positions in the simulator environment, so it is convenient to regenerate the lidar points or 
camera images with the replicated scenario in CARLA. And it is possible to test our 
algorithms using exact real world data and even augment the data. 
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Figure 4.4: Comparing video generated in CARLA and real world. 

5. Driving Safety Index Prediction using both in-vehicle and roadside
data

5.1 Collecting driver’s information 

In order to capture real-time driver behaviors, an Android App is developed to gather 
information from the driver inside a vehicle and upload them to a server. An Android 
phone is placed on the dashboard inside a car and the driver’s face is captured using its 
front camera. Figure 5.1 illustrates the user interface of the APP. 
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Figure 5.1: User Interface of the APP. 

On the server, the driver’s video is processed using the OpenFace toolkit to recognize the 
face and extract the facial landmarks. OpenFace is an open-source facial behavior analysis 
toolkit that is capable of detecting facial landmarks, estimate head pose and eye-gaze 
directions as is shown in Figure 5.2. 

Figure 5.2: Facial recognition based on OpenFace toolkit. 

Using the facial landmarks around the driver’s eyes, Eye Aspect Ratio 𝑟𝑟𝑒𝑒 (EAR) can be 
calculated using equation below. EAR is commonly used for fatigue level classification. If 
eye-blinking frequency radically increases, we would observe continuous changes of EAR. 
The threshold of 𝑟𝑟𝑒𝑒 is set at 0.26 based on an experiment shown in Figure. 5.3. The eyes are 
considered closed when  is smaller than the threshold. 

𝑟𝑟𝑒𝑒 = �(𝑥𝑥2−𝑥𝑥6)2+(𝑦𝑦2−𝑦𝑦6)2+�(𝑥𝑥3−𝑥𝑥5)2+(𝑦𝑦3−𝑦𝑦5)2

2⋅�(𝑥𝑥4−𝑥𝑥1)2+(𝑦𝑦4−𝑦𝑦1)2
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Figure 5.3: EAR curve experiment results 

Figure 5.4:  Facial landmarks around the eyes 

Given the eye-gaze directions, K-Nearest Neighbors algorithm (k-NN) [24] is applied to 
cluster the points that represent where the driver is looking at using the focusing area 
coordinates . As is shown in Figure 5.4, the pre-collected focusing points are grouped into 3 
clusters. Based on where each point is locating at, we can approximately understand 
whether the driver is looking straight ahead or not. 
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Figure 5.5: The approximation of driver’s focusing area. 

Besides drivers’ focusing area and fatigue level, emotion also affects human performance 
through influencing individuals’ judgment and behavior. For example, stressed operators 
could not achieve their optimal performance in complex task environments. Facial Action 
Coding System (FACS) is applied to figure out the driver’s emotion. FACS refers to a set of 
facial muscle movements that correspond to a displayed emotion and can be recognized by 
the movement of facial landmark coordinates. The relation between driving performance 
and emotion can be found in [25]. 

5.2 Collecting vehicle information 

Meanwhile, dynamic traffic information is captured by a roadside camera and uploaded to 
the same server. A longitudinal-scanline-based arterial traffic video analytics is applied to 
recognize vehicles from the video to build the speed and trajectory profiles [23]. We use 
three commonly used traffic conflict indicators (TCIs) to represent near misses [26], which 
are: (i) time to collision (TTC), (ii) modified time to collision (MTTC), and (iii) deceleration 
rate to avoid a crash (DRAC). 

5.3 Driving risk score model and prediction results 

Based on these profiles and driver’s information, a LightGBM model is introduced to 
predict several traffic conflict indicators in the next one or two seconds. The structure of 
the model can be find in Figure 5.6. 
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Figure 5.6: Structure of the LGBM. 

Then, multiple data sources, including historical crash counts and predicted traffic conflict 
indicators of individual drivers, are combined using a fuzzy logic model to calculate risk 
scores for road segments as is shown in Figure 5.7. 

Figure 5.7: Structure of the Fuzzy Logic. 

The proposed SRM model is illustrated for New Brunswick Smart Intersection Mobility 
Testbed shown in Figure 5.8. Real traffic data is collected and Table x shows the confusion 
matrix for the risk score levels. 
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Figure 5.8: Illustration of road segments in  New Brunswick Smart Intersection Mobility Testbed. 

Table 5.1: Confusion Matrix for Risk Score Level (prediction for the next one second). 

Table 5.2: Confusion Matrix for Risk Score Level (prediction for the next two seconds). 

Finally, risk heat maps are generated for visualization purposes as is shown in Figure 5.9. 
The authorities can use the dynamic heat map to designate safe corridors and dispatch law 
enforcement and drivers for early warning and trip planning. 
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Figure 5.9: Risk heat map through time. 

6. Conclusions and Recommendations

We propose a novel method called DoubleGAN that quantifies the uncertainty in human 
driver car-following (CF) behavior. The model encodes the stochastic physics information 
into the physics-informed generative adversarial network (PhysGAN) without incurring 
mode collapse. Using numerical data, we evaluate the performance of DoubleGAN under 
different noise types and training sizes. We further investigate the performance of 
DoubleGAN on a real-world dataset, the NGSIM dataset, and demonstrate that it 
outperforms baseline methods under different training sizes. Through ablation studies, we 
confirm that the moment-matching technique can speed up the model convergence and 
thus achieve better performance. By comparing DoubleGAN-IDM to DoubleGAN-Helly, we 
show that the most suitable physics model for DoubleGAN may not necessarily be the one 
with the best performance. The simplicity of physics is also a consideration. This work can 
be further improved in two directions. First, apart from the weighted sum, other 
approaches to integrating the data loss, moment-matching loss, and reconstruction loss can 
be proposed. Second, this work can be extended to quantify the uncertainty in sequential 
behavior, e.g., uncertainty quantification of human driving trajectory prediction. 

We developed a method to collect real-time traffic data from roadside and driver’s 
behavior data inside a vehicle. The contribution is that this work brings multiple sources of 
data together, especially human factors, when predicting traffic conflicts for individual 
drivers and calculate safety scores for road segments. There are certain limitations that we 
can address in our future work. For instance, more data need to be collected to test the 
robustness of the model. Combine real-world data with simulation results might be an 
approach to solve the problem. 
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