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Chapter 1: Introduction 

 

The 2021 Report Card for America’s Infrastructure identified that 42% of the nation’s 

bridges are more than 50 years old, and 7.5% are considered to have “poor” conditions (ASCE 

2021). If appropriately designed, Machine Learning (ML) models can provide valuable 

information for stakeholders and decision-makers regarding civil infrastructure repair, 

maintenance, and safety assessments. They can ultimately contribute to saving millions of dollars 

in infrastructure maintenance and repair costs by providing timely condition assessments. 

Structural health monitoring (SHM), especially vibration-based damage diagnosis, is one of the 

areas where ML can be a powerful tool. Moreover, federal programs such as the USGS’s National 

Strong Motion Project (NSMP) imply that the number of instrumented structures is rising, and 

ground motion data is available within minutes following seismic events (CESMD 2021; Haddadi 

et al. 2012).  

 

Processing sensor data in (near) real-time is essential for rapid structural assessments after 

extreme events. Nevertheless, this task is associated with several challenges, especially for ML 

models. Time series associated with ground motions (GM) events have different durations and are 

not often recorded with unique sampling rates. Most classical ML algorithms cannot adapt to these 

data sizes and resolution variabilities as they accept fixed-size inputs. How raw signals can be used 

in model training is one of the most significant design challenges in data-driven SHM.  

 

Xu et al. (2021) have attempted feeding raw ground motions (GMs) to long short-term 

memory (LSTM) neural networks for regional seismic assessments by preprocessing the data to 
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match sampling rates and window durations. The one and two-dimensional convolutional neural 

networks are also utilized by reshaping vibration records into one or two-dimensional 

representations (Abdeljaber et al. 2018; Khodabandehlou et al. 2019; Eltouny and Liang 2022). 

However, the data for both cases were obtained under controlled laboratory experiments without 

variabilities that are often observed when using existing ground motion datasets.   

 

Acceleration records are often recorded in thousands of time steps, making training robust 

ML models computationally demanding. Manual feature engineering is another area where some 

studies have focused on finding damage-sensitive features from vibration records. Many of these 

works rely on the rich history of structural and earthquake engineering research for feature 

extraction (Avci et al. 2021; Guan et al. 2021). A review of the latest work in this domain is 

provided in what follows. Muin et al. (2020) investigated several manual features, including peak 

acceleration, cumulative absolute velocity (CAV), and spectral accelerations (Sa), as the input to 

their novelty detection model. Liang et al. (2018), Sajedi and Liang (2020), and Eltouny and Liang 

(2021) extended the definition of CAV to 𝐼𝜂 and constructed a vector of 𝐼𝜂 scalers for both the 

ground motion and the building response. Furthermore, it was shown that these compressed 

representations could be used in larger sensor arrays where features are fed as a tensor with 

multiple channels to a fully convolutional neural network (Sajedi and Liang 2020b). Mangalathu 

and Jeon (2020) utilized the continuous wavelet transform of ground motions. To classify 

earthquake damage, they treated processed vibration data like images and fine-tuned computer 

vision models such as ResNet and VGG-16. Azimi and Pekcan (2020) preprocessed the time series 

by data compression in the form of histograms and further extracted the mean, standard deviation, 

and scale parameters to represent a signal. While manually engineered features can be indicators 
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of structural damage, some information is inevitably lost due to signal preprocessing 

transformations, especially when time series are compressed into a scalar representative.  

 

Inspired by human speech recognition technology, this report investigates deep vibration-

based damage detection utilizing Mel Filter Banks (MFB). Human speech (e.g., pronouncing a 

word or a sentence) is often recorded as a time series. Both representations contain thousands of 

time steps despite the inherent physical differences between structural vibrations and human 

speech signals (e.g., accelerations vs. acoustics). Audio signals are often recorded with resolutions 

in kHz, while the existing ground motion records often used in structural response history analyses 

rarely exceed 1 kHz. With that said, a similar approach that can deal with lengthy and high-

resolution audio signals can also benefit vibration-based seismic damage diagnosis systems. 

Moreover, representing signals in the frequency domain has been a powerful tool in earthquake 

engineering for applications such as conditional ground motion generation (Tamhidi et al. 2021), 

which is also conceptually implemented in MFBs.   

 

Automatic speech recognition (ASR) is one of the areas where the latest advances of AI 

and deep learning have played a pivotal role. In addition to sophisticated deep learning architecture 

designs, utilizing MFBs is critical in successful ASR frameworks (Chan et al. 2016). The early 

works of Davis and Mermelstein (1980) built the foundation of signal preprocessing by proposing 

Mel Frequency Cepstral Coefficients (MFCC). Interestingly, the word cepstrum (the spectrum of 

the log of the spectrum of a time waveform) was initially used by Bogert et al. (1963) to identify 

echoes in seismic signals (Oppenheim and Schafer 2004).  
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Few studies in the literature have investigated the application of such features for structural 

and earthquake engineering. For example, algorithms based on Squared Mahalanobis Distance 

(SMD) have been used for anomaly detection by comparing the MFCC representation of damaged 

and undamaged structures (Balsamo et al. 2014; Civera et al. 2019; Ferraris et al. 2020). Mei et al. 

(2019) performed principal component analysis on MFCCs. They compared the features in 

different damage states, and Dackermann et al. (2014) utilized cepstral analysis for damage 

detection in an ensemble of neural networks on a laboratory scale test specimen.  

 

This report investigates the original Mel scale and filter banks and customizes this 

formulation for optimal performance in ML models for earthquake and structural engineering 

applications. While MFBs are a rich source of information for vibration-based SHM, manually 

engineered features from other signal processing techniques can also benefit prediction accuracy. 

Hybrid Deep learning models for Rapid Assessments (HyDRA) are introduced in this report as a 

type of deep learning algorithm that can integrate different sources of processed seismic data in a 

single neural network architecture with end-to-end training. Finally, the original performance-

based earthquake engineering (PBEE) equation is modified to integrate the deep learning model’s 

uncertainty.    
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Chapter 2: Filter Banks 

 

Due to variations in the human ear’s critical bandwidth, lower frequencies often contain 

more important information about phonetically important speech characteristics (Davis and 

Mermelstein 1980). For this reason, the Mel scale is formulated to discretize the frequency range 

into increments that are closely spaced increments at lower frequencies. Arguably, the same logic 

may not apply to seismic signals. To better investigate the differences between different frequency 

scales, the original equation that relates Hz and Mel is generalized as follows: 

log(1 )c

f
m 


= +                                                        (1) 

/
(10 1)cm

f
= −                                                         (2)  

where f and mc respectively correspond to frequencies in Hz and the custom Mel scale. By 

substituting 2595 = , and 700 = , the original Mel scale can be obtained from Hz and vice 

versa. These two constants are based on studies on frequency ranges that the human ear can 

perceive. For the applications proposed in this report,   has no significance and will be eliminated 

in the calculation explained later. For simplicity, the following equations will assume 1 = . 

Nonetheless, the appropriate selection of α is crucial, and its significance is better understood by 

examining how filters are built. Note that from this point forward, when referring to MFB or 

MFCC, it will be implied that custom scaling is used rather than the original implementation.  

The signal sampling rate (SR) must be determined to acquire the filters. The frequency 

range for the signals is then considered as the range between 0lf =  and uf  where the upper 
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bound 
hf  is often set to SR/2 Hz based on the Nyquist theorem. With that said, the bounds of the 

frequency range can be converted to the corresponding custom Mel frequencies where 0l

cm =  and:  

log(1 )
2

u

c

SR
m


= +                                                       (3) 

The next step in obtaining the filters is uniformly discretizing the frequency range [ , ]l u

c cm m  

into the desired number of filters ( fN ). After obtaining each frequency increment, they are 

converted back to Hz. Given that the selected bounds of frequency in Hz are not a function of  , 

as stated earlier, its value does not affect the filters. Davis and Mermelstein (1980) initially 

proposed 20 triangular bandpass filters used in deep learning ASR models. For a variety of reasons, 

the same filter design may not be adequate for assessing structural vibrations. The spacing of filters 

is not only affected by   but also SR. Audio signals are often recorded in sampling rates of 44.1 

kHz and above (AES 2018). Our initial inspection of 180 ground motion records indicated that the 

strong ground motion records commonly used in seismic response history analyses rarely exceed 

1kHz (0.001s time steps). As a result, the nonlinearly spaced filters for audio signal processing 

will be approximately equally spaced, assuming 700 =  and 1 kHzSR  . Figures 1.a and 1.b 

help illustrate these differences.  

Moreover, a different choice of filter shape might yield better results for seismic 

applications. To further investigate the proper design of filters, a new hyperparameter 0 1   is 

introduced in this report. β is the y-intercept of the line that passes through (SR/4, 1) as shown in 

Figure 1.c. Increasing β from a default of 0 will put more emphasis on higher frequencies. 

Moreover, a rectangular filter shape will be investigated as an alternative.   
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Figure 1. Variation in filter designs for earthquake engineering vs. human speech recognition 

Once the filters are constructed, MFBs can be calculated. The objective of filter banks is 

to indicate how much energy is stored in different frequency bins. Therefore, the waveform is 

transformed into a periodogram using the Fast Fourier Transform (FFT). Element-wise 

multiplication of each filter to the periodogram results in a vector with values that indicate the 

amount of energy stored in each frequency bin. It is theoretically possible to calculate filter banks 

on a complete signal. However, the waveform is evaluated individually by a series of shorter and 

overlapping windows with a size of  wt , which helps to monitor the temporal variations of the 

signal as well as frequency. By doing so, a single-channel vibration record will be preprocessed 

into a 2D tensor denoted as MFB.  

When constructing the filters, the selection of hyperparameters should not result in 

computationally invalid filters. These issues can appear when the frequency resolution of a signal’s 

periodogram is lower than the filters. Hence, some filters will contain zero information while 

occupying memory (Figure 2). The first frequency increment after the lower bound, 1f , should be 

less than or equal to the frequency increment of the periodogram ( pf ) to avoid this conflict. The 

two can be expressed as follows: 

1 (10 1)dmf = −                                                           (4) 
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2

p

FFT

SR
f

N
=                                                                (5)  

where 
FFTN  is the number of FFT points and dm is the constant distance between frequency 

increments in custom Mel scale and can be obtained by Eq. 6: 

 

log 1
2

2 2

u l

c c

f f

SR

m m
dm

N N



 
+ −  = =

+ +
                                          (6) 

To satisfy 1pf f  and by replacing dm in Eq. 4, the minimum value of FFTN  to avoid this 

numerical issue can be obtained by satisfying: 

22 1 1
2

f

FFT

N

SR
N

SR



+


 

+ − 
 

                                             (7) 

The maximum value of FFTN  should be selected concerning the number of time steps in 

each time window.   

Since time windows are often highly correlated in speech signals, another step is often 

taken by performing a discrete cosine transform in the time dimension. This new feature is known 

as MFCC. MFB and MFCC for a 2D representation have identical tensor shapes. Later in the study, 

we will examine whether MFCCs outperform MFBs in seismic damage detection, just as they do 

in human speech recognition. Additionally, some insights will be provided on the selection of   , 

 , fN , FFTN , and wt .  
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Figure 2. Extraction of MFB and MFCC for different values of α. The solid bands in the left 

MFB tensor contain empty filter banks caused by inappropriate hyperparameter selection.    
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Chapter 3: Hybrid Deep Learning 

 

Deep learning algorithms are capable of constructing highly nonlinear relationships between input-

output pairs in noisy real-world observations. Regardless of the learning capacity of these 

advanced and trending models, one should be aware of their limitations. While ML models can 

automatically learn abstract features from data, the learning algorithm has not yet evolved to the 

extent of eliminating the need for domain expertise in feature extraction. Note that this limitation 

is different from the computational demands of training ML models for raw signals. Even with 

hypothetically unlimited computational resources, the existing neural network models cannot 

ideally learn the physical concepts as the human brain does. Given these limitations in the learning 

algorithm, neural network models are often prone to overfitting or cannot provide perfect 

predictions without integrating domain expertise from structural engineering. In this case, one can 

hypothesize that an ML model will be more robust if trained with several diverse sources of 

processed information in an end-to-end fashion. To better understand this versatility in input 

information, one might consider the following example. One can hypothesize that an ML model 

for seismic damage detection can be more robust if, in addition to feature extraction from raw 

signals, it is also equipped with earthquake engineering metrics that are correlated with structural 

damage.  

     

We propose Hybrid Deep learning models for Rapid Assessments (HyDRA) to show that 

it is possible to combine different sources of information such as sequential MFB representations 

and more conventional earthquake engineering indices like PGA, CAV, 𝐼𝜂. HyDRA begins with 

different branches. Each branch has a network head comprised of a neural network architecture 
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designed for appropriate feature extraction of its corresponding engineered features (EF). For 

example, MFBs include temporal variations of a signal, and a recurrent neural network (RNN) 

head might suit this branch. Moreover, RNNs can process and learn from variable-length input 

sequences, which is a great advantage for this data type. Each network head will output a set of 

abstract learned features (ALF) concatenated with other ALFs from different network heads. 

Simpler EFs such as single scalar indexes (e.g., PGA) can be directly concatenated with other 

ALFs without requiring a network head. After concatenation, the combined features are passed to 

a bottleneck for a final prediction. Figure 1 illustrates a generic HyDRA model that is enabled for 

end-to-end training.  

 

 

Figure 3. HyDRA model description 

 

The above description of HyDRA implies how flexible and generalized this architecture 

can be. This flexibility can be approached from different perspectives. Different network heads 

can each be designed with a customized architecture depending on the application and data 

availability. It is recommended to use a neural network bottleneck for initial training and 

calibrating the network heads to generate damage-sensitive ALFs. A typical HyDRA model will 

automatically learn to construct mappings between different sources of input (EFs), and optimizing 

the learnable parameters in network heads is part of this process. Once this task is complete, it is 
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possible to discard the bottleneck portion of HyDRA and use it as a feature extractor instead of a 

regression/classification model. As a result, ALFs can be used as the input of other types of ML 

algorithms, such as XGBoost (Chen and Guestrin 2016), for regression/classification tasks. This 

report will utilize the neural network bottleneck because the model uncertainty can be effectively 

quantified with Monte Carlo dropout sampling (Gal and Ghahramani 2016). In the case study 

section of this report, we will discuss and compare several possible HyDRA configurations for 

seismic damage assessments.  
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Chapter 4: Performance-based Assessments 

 

The performance-based earthquake engineering (PBEE) philosophy divides seismic loss 

assessments into logical steps where different uncertainties can be studied and taken into account. 

With that said, the following equation initially presented by Cornell and Krawinkler (2000) is 

probably the basis of modern PBEE (Hamburger et al. 2012): 

( ) ( | ) ( | ) ( | ) ( )
DM EDP IM

DV G DV DM dG DM EDP dG EDP IM d IM =            (8) 

where DV, DM, EDP, and IM are the decision variable (e.g., earthquake loss), damage measure 

(e.g., collapse), engineering demand parameter, and intensity measure. Note that ( )x  

corresponds to the mean annual rate of exceeding an event and ( )G x  is the complementary 

cumulative probability distribution function. The proposed methodology in this report is intended 

to be used for rapid seismic damage assessments and health monitoring. It is safe to assume that 

uncertainties in vibration records from a seismic event that has already happened can be ignored. 

In particular circumstances, one might consider factors related to instrumentation like sensors 

generating corrupted data, noise, etc., in uncertainty quantification of seismic signal.  

 

Variations in ML model prediction are an additional source of uncertainty that is not 

present in conventional vibration-based assessments. Deep learning models include a substantial 

number of learnable parameters (W) that are calibrated by training sensor data (S). Therefore, the 

predicted output, EDP, can be treated as non-deterministic by quantifying ( | , )G EDP W S . 

Interested readers may refer to Sajedi and Liang (2021) for further details on the model uncertainty 

in deep vibration-based SHM. Eq. 8 can be adjusted as follows to integrate the fundamental 

concepts of PBEE in ML-based SHM: 
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  ( ) ( | ) ( | ) ( | , )
DM EDP IM

E DV G DV DM dG DM EDP dG EDP d=    W S W         (9) 

where ( )E DV  is the expected value of the decision variable based on vibration input S due to a 

seismic event. The calculations regarding ( | )G DV DM  in Eq. 9 may require insights from 

stakeholders and domain expertise in PBEE. Details of such calculations are not within the scope 

of this study. Documents and resources from FEMA-58 provide insights for the evaluation of loss 

(ATC 2012). Regarding ( | , )G EDP W S  and ( | )G DM EDP , the case studies will be presented in 

the next section with details on how to quantify the HyDRA’s EDP output uncertainty and 

subsequently use that information for fragility-based labeling.   
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Chapter 5: Case Study 

 

5.1 Finite Element Model 

 

A single pier reinforced concrete bridge in Ripon, California, is adopted to validate the 

proposed concepts in this report. The bridge has two spans of approximately 33 m and was built 

in 2001. The finite element (FE) modeling and seismic performance of this bridge are thoroughly 

studied by Kaviani et al. (2014). The backfill joints and shear key behaviors are modeled with 

nonlinear springs. Moreover, the bridge pier utilizes a nonlinear fiber section model. The bridge 

column drifts are considered as the EDP and to construct the probability distribution corresponding 

to ( | )G DM EDP . We utilize the strain-based limit states proposed by Caltrans, also used by Muin 

et al. (2020) for ML-based damage diagnosis. The bridge column’s fiber section is clustered into 

different regions, and seven strain-based limit states (LS 1-7) are considered, as shown in Fig 4.   

 

 

Figure 4.  Strain-based limit states and fiber clusters 
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5.2 Ground Motion Selection 

 

180 bidirectional GMs are selected from the PEER NGA-West2 online database by 

considering an M7 earthquake scenario (Ancheta et al. 2014). Specific details regarding the size 

hazard characteristics are similar to Sajedi and Liang (2020a). GMs are highly variable in terms of 

recorded duration and sampling rates. These variations are demonstrated in Figure 5. Signal 

sampling rates range from 50-416.7 Hz, corresponding to 0.02-0.0024s record time steps.  

 

 

Figure 5.  GM duration and sampling rate variations   

 

Several studies have shown that peak ground velocity (PGV) correlates well with seismic 

structural damage (Akkar and Özen 2005; Küçükdogan 2007; Riddell 2007), and therefore, 30 

different intensity measures are considered for each ground motion record. The scaling factors are 

sampled from the PGV probability distribution using the CB-2014 GM attenuation model 

(Campbell and Bozorgnia 2014) with a similar approach suggested by Liang and Mosalam (2020). 

Furthermore, six different intercept angles with 30° increments are considered. The dataset is 

generated by performing 32,400 nonlinear response history analyses (Liang et al. 2016) using 

OpenSees and considering all possible combinations (McKenna et al. 2010). The observations with 
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transient peak column drift greater than 7.5% are later removed, resulting in 32,209 data points. 

We select this drift limit based on the experimental work conducted by Dutta (1999) to ensure the 

deformations from FE analyses are in acceptable ranges. 

The raw input vibration data for the proposed models in this report is obtained from 

accelerations in two horizontal directions for the base (GM) and top of the bridge column 

(structural response) for the duration of an event (tg). All signals are artificially distorted with 

white Gaussian noise and consider a noise to signal variance ratio of 20%. Time series are 

subsequently transformed into the MFB or MFCC representation. The 2D processed feature 

tensors in the two horizontal directions at the top column node are subtracted from the 

corresponding features in the base column node. The subtracted features in each direction are 

vertically stacked, forming a single sequence of filter banks with twice the filter banks of an MFB 

or MFCC obtained from each sensor channel. This process is illustrated in Figure 6.  
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Figure 6. Description of the FEM model and vibration signal processing 
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Chapter 6: Feature Selection and Filter Design 

 

6.1 Experiment Design  

 

It was previously mentioned that obtaining MFB and MFCC is associated with several 

hyperparameters optimized for human speech recognition rather than seismic damage diagnosis. 

The numerical experiment in this section is designed to provide insights and guidelines on the 

proper selection of hyperparameters  ,  , fN , FFTN , and wt . Table 1 presents the possible 

values for these hyperparameters considered in this experiment.  

 

                                         Table 1. Hyperparameter search space 

Hyperparameter Possible values 

   
min , mid , 700 

   0, 0.2, 0.5 

Range of filters 

( fN ) 

1-12 (12), 1-24 (24),13-24 (24), 1-36 

(36), 13-36 (36), 25-36 (24) 

FFTN ( wt ) 512 (1s), 1024 (2s) 

Filter shape Triangle, Rectangle  

Feature type MFB, MFCC 

Ignore the first filter Logical argument (True or False) 

 

Two window sizes of 1s and 2s are selected. Based on the maximum value of SR in the 

GM bin, FFTN  is selected as 512 and 1024, which is slightly greater than the maximum possible 

number of time steps in each time window. The possible number of filters ( fN )  is set to 12, 24, 

and 36. Some studies on using MFCC for ASR only keep a portion of filter banks. This study also 

considers six possible combinations by keeping a specific range of filters, as shown in Table 1. 

Moreover, the initial investigations show that the magnitude of the first filter bank is relatively 
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larger than the others for most time frames. The effect of ignoring the first filter is also investigated 

in feature extraction. Three distinct values are considered for  , assuming an upper bound of 700, 

a lower bound determined based on Eq. 7, and an intermediate value
mid .   

mid  is obtained by 

taking the average of uniform filter spacing in the custom Mel scale, assuming the two bounds of 

 . Lastly, it is also essential to investigate if post-processing MFB into MFCC offers any 

advantage.  

 

Previous assumptions regarding hyperparameter search space result in 864 unique 

combinations. The 180 GMs are randomly divided into an 80-20% split. While keeping the 20% 

test set unchanged, 6-Fold cross-validation is performed to obtain training and validation sets. Note 

that for a GM in each data split, all possible intercept angles and intensities are considered. A 

simplified version of HyDRA is used to design filters and evaluate the effect of different 

hyperparameters (Figure 7). This model is trained independently for 5,184 possible folds and input 

hyperparameters.  

 

 

Figure 7. The deep learning architecture used for sensitivity analyses. The value inside parentheses 

indicates the number of output units. GRU(300) will pass processed features for all time frames to 

the next layer. GRU(50) will pass the extracted features from the last time frame to the Dense(50).  

 

This simplified model is designed by evaluating a pool of several candidates. In designing 

this HyDRA variation, both computational efficiency and accuracy are taken into account. All 
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HyDRA designs are enabled with Masking layers at network heads that enable inputting variable-

length processed seismic records directly into the model. Masking will eliminate the need to run 

all FE simulations for the longest GM or record the vibration response for a fixed duration. This 

will also accelerate the training and inference time by ignoring the padded frames in each batch.   

 

Gated Recurrent Unit (GRU) layers (Cho et al. 2014) yields slightly better results in our 

experiments when dealing with sequential seismic data. Moreover, increasing the output 

dimension of GRUs is more effective than having a stack of multiple GRU layers. For the 

bottleneck of the network, a combination of ReLU and Tanh activation functions boosted both the 

accuracy and numerical stability of the model. Nadam Optimizer is utilized along with L1L2 

regularization for kernel and biases. For further numerical stability, all drift values are scaled by 

division to a maximum drift of 0.075. It is also discovered that an 8% dropout for the first GRU 

layer could slightly improve the model’s performance.  

 

6.2 Sensitivity Analyses 

 

This part discusses the proper selection of filters and features based on the validation set’s 

mean absolute error (MAE) metric. The reported MAEs are an average of 6 folds for 864 feature 

sets. The test MAE is also provided for further reference but is not used as a selection criterion. 

The MFB settings for the top ten filter designs are given in Table 2.  
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Table 2. Hyperparameter settings for the top 10 models with the lowest validation MAE 

ID. Val. MAE (×10-3) Test MAE (×10-3) Filter shape β α Nf tw (s) Nfk
(b) 1st filter(a) Type 

1 3.921 4.390 Rec 0.0 700 24 2 24 F MFB 

2 3.927 4.442 Tri 0.5 700 24 2 24 F MFB 

3 3.928 4.406 Rec 0.2 700 24 2 24 F MFB 

4 3.954 4.343 Tri 0.0 700 24 2 24 F MFB 

5 3.959 4.400 Rec 0.5 700 24 2 24 F MFB 

6 3.973 4.184 Tri 0.2 700 24 2 23 T MFB 

7 4.009 4.396 Tri 0.2 700 24 2 24 F MFB 

8 4.032 4.332 Tri 0.0 700 24 2 23 T MFB 

9 4.039 4.561 Rec 0.5 700 36 2 24 F MFB 

10 4.047 4.325 Rec 0.5 700 24 2 23 T MFB 

(a) This column denotes whether the first filter is ignored (True or False)  

(b) The number of filters out of Nf that are kept are expressed as Nfk 

 

The settings used for the remainder of the HyDRA models in this report are from the best-

performing model in Table 2. It is also worthy to see how the model performs concerning different 

hyperparameters. To this end, 50 best and 50 worst-performing cases are also investigated. The 

bar charts in Figure 8 are divided into two categories of best and worst-performing, and the 

frequency of distinct hyperparameter values are provided for each category. These graphs show 

that the model is not sensitive to β, and the default value of 0 will be appropriate. Both filter shapes 

of triangular and rectangular seem to be performing well. However, rectangular and triangular 

filter shapes are higher, respectively, in the best and worst-performing settings. MFB is superior 

to MFCC in all top 10 models. This evaluation shows that 24 is the optimal number of filters, 

achieving good performance in all 24 cases, and there is no significant gain in ignoring the first 

filter. It is also evident that setting FFTN  ( wt )  to 1,024 (2s) results in superior performance as all 

top 50 models have a 2s window size.   
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Figure 8. Frequency bar plots comparing the frequency of different hyperparameter selections in 

the best and worst 50 models based on validation mean absolute error (MAE)  

 

Probably the most important observation from these sensitivity analyses is the spacing of 

filters based on α. Uniform spacing between the filters works better for this seismic application 

(i.e., α=700). The higher performance of uniform filter spacings is better observed in Figure 9. 
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One can hypothesize that this phenomenon is due to two reasons. First, seismic signals and human 

speech are different physical waveforms, especially considering the sampling frequency. Second, 

the bin of GM includes variable sampling rates for different observations. It is possible that the 

nonlinear variable spacing between filters makes the learning process more challenging because 

signals of different sampling rates are present in the dataset.  

 

  

Figure 9. Histogram of validation and test MAE for different filter spacings based on α 
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Chapter 7: Multiheaded Network Architectures 

 

HyDRA is proposed as a model that enables end-to-end training by combining different 

EFs. While enriching the feature space can result in more robust predictions, this framework also 

helps conduct a series of comparative studies for the importance of different EFs. MFB is a single 

type of EF investigated in the previous section as the network head corresponding to this feature 

will be referred to as M from this point forward. Inspired by the existing literature, we consider 

two other benchmark EFs that result in a total of 3 possible network heads and, therefore, 7 neural 

network architectures (Figure. 10). Details on the two benchmark EFs and their network heads are 

given in what follows.   

 

Mangalathu and Jeon (2020) have used Continuous Wavelet Transform (CWT) for 

vibration-based seismic damage diagnosis. CWT is based on mathematically different concepts 

compared to MFBs, yet the data structure for both feature types is similar (time vs. frequency). It 

should be noted that this work is different from several perspectives. For example, the mentioned 

methodology treats CWT output as an image and utilizes deep learning computer vision models 

(e.g., Liang 2019). HyDRA architectures are based on recurrent neural network architectures that 

learn from temporal variations in data. The models in this report are custom-designed and trained 

from scratch on a substantial number of seismic events and tailored for damage diagnosis. 

Regardless of these differences, a comparison between the two EFs is desired. To this end, the 

input of the second HyDRA branch is obtained by CWT on acceleration channels. The Morse basis 

function is adopted as the wavelet basis function to be consistent with Mangalathu and Jeon (2020). 

The CWT input tensors are further resized with average pooling resulting in 1s time frames and 
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24 frequency coefficients for each sensor channel. These assumptions are used to obtain relatively 

close CWT and MFB tensor sizes for a better comparison. The same subtraction and vertical 

stacking techniques used for MFBs are considered to combine CWT output from different sensor 

channels. This feature tensor will be the first benchmark EF, and its corresponding network head 

will be denoted as W. The W branch is identical to M in terms of architecture, as shown in 

Figure10.h.  

 

Muin et al. (2020) studied several scaler index EFs for data-driven vibration-based damage 

diagnosis. Inspired by this study and the authors’ previous work on cumulative intensity measures 

(Sajedi and Liang 2020a), the second benchmark EF is a stacked input vector of scalar indices. 

This vector includes the ground motion duration ( gt ), SR, and peak acceleration (PA) for each 

sensor channel. Four R  features assuming  0.4, 0.8,1.2,1.6 , as the ratio of I  values in the 

bottom and top column nodes in each direction is also appended to the previous feature vector. 

Details regarding the implementation of R  can be found in Sajedi and Liang (2020b). This 

stacked vector of scaler features will be the second benchmark EF, and the corresponding branch 

will be detonated as Z. It is possible to include a multilayer perceptron before these stacked vectors 

similar to the MFB and CWT feature. For simplicity, these features are directly fed to the network 

bottleneck.  

 

Each branch will produce a set of ALFs concatenated in the pipeline before the multilayer 

perceptron in the bottleneck. The notations B and C correspond to the network bottleneck and the 

concatenation operator. Compared with the architecture shown in Figure.7, in the network 

bottleneck, everything is similar except that the first dense layer has 500 output units instead of 
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50. This modification accommodates the extra feature size due to concatenation. Depending on 

EFs and the corresponding branches used in each HyDRA architecture, MW, MZ, WZ, and MWZ 

models and a single M are compared with benchmark W, and Z. Detailed architecture of each 

component can be found in Figure 10.h.   

 

 

Figure 10. HyDRA architecture designs with different input branches. 

 

Four training sessions are conducted with different weight initializations, and the model 

with the lowest validation loss is chosen for evaluating the test performance. Test and validation 

MAEs of each model are illustrated in Figure 11.a. This scatter plot illustrates that all candidates 

equipped with MFB (M, MW, ZW, MZW) outperform the benchmarks in drift regression accuracy. 
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It is also discovered that the ensemble model that averages the predictions of each fold results in 

better performance (Figure 11.b). Moreover, features containing temporal variations of frequency 

(M, W) yielded better performance than Z.   

 

Later in the report, we will integrate the HyDRA in the PBEE formulation. To this end, the 

Bayesian version of the best-performing model (MZW) is also included in the performance metrics. 

The only difference between the standard and Bayesian versions of MZW is the use of dropout 

after the Dense(500) layers in the network’s bottleneck. Bayesian inference takes the expected 

values of a model’s prediction after drawing T Monte Carlo dropout samples. The improvement 

in results is insignificant when using T=50 instead of 20, while the inference time is almost doubled. 

This HyDRA design is also used for the next section, where the model uncertainty output is 

required. A detailed summary of test performance for all HyDRA variants discussed previously 

can be found in Table 3.    

 

Table 3. Test MAE (×10-3) for different HyDRA variants 

  Benchmarks    MZW 

Fold M W Z MZ MW ZW Standard 
Bayesian 

(T=20) 

Bayesian 

(T=50) 

1 4.000 5.818 6.263 4.091 4.163 5.213 3.979 3.996 3.991 

2 4.174 5.301 5.961 3.993 4.197 5.213 3.879 3.994 3.990 

3 3.975 5.397 5.816 4.219 4.208 5.296 4.064 4.045 4.045 

4 4.069 5.286 6.026 4.031 4.196 5.242 3.960 3.897 3.906 

5 4.118 5.557 6.032 4.213 4.035 5.083 4.275 4.038 4.044 

6 4.168 5.142 6.549 4.104 4.628 5.107 4.188 3.967 3.958 

Average(a) 4.084 5.417 6.108 4.109 4.238 5.192 4.058 3.990 3.989 

Ensemble(b) 3.792 4.984 5.922 3.800 3.861 4.789 3.761 3.675 3.673 

(a)Average MAE error with respect to different folds 
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(b)Ensemble MAE is obtained by comparing the ground truth with the average predictions of different folds 

 

Figure 11. Test performance of 7 HyDRA variants and the ensemble models. 
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Chapter 8: Fragility Analyses 

 

In this section, we briefly showcase how ( | , )G EDP W S  and ( | )G DM EDP  in Eq. 9 can be 

estimated. While taking the expected values from a Monte Carlo dropout sample, the standard 

deviation can be used as a measure to estimate the deep vibration-based model uncertainty (Sajedi 

and Liang 2021a,b, Sajedi et al. 2022). To this end, the processed seismic input is repeatedly fed 

to the Hydra Model while a random set of network parameters is activated each time. Dropout 

layers with 50% probability are placed after the Dense layers. This hyperparameter design 

adequately captured the HyDRA model’s uncertainty. It is also discovered that by combining the 

samples from the models trained for each fold, a more reliable estimate of the model uncertainty 

is obtained considering the more diverse and larger sample size that considers the difference in 

each fold’s training data distributions. Figure 12 presents a scatter plot of the Bayesian MZW 

(T=50) in which expected predictions vs. the ground truth are illustrated. The predictions are sorted 

in magnitude, and uncertainty contours are obtained by different coefficients of standard deviation 

from the mean drift predictions. It can be observed that the model uncertainty increases with larger 

drifts which are expected since the structural behavior will be more complex in more significant 

nonlinear deformations.  

 

The next step is to estimate the probability distribution of ( | )G DM EDP . To this end, the 

large simulation bin obtained from the previous incremental dynamic analyses (IDA) is used. The 

following procedure briefly describes how fragility curves are extracted for performance-based 

labeling and loss estimation. Despite differences in some concepts, this implementation is highly 

inspired by the methodology and mathematical derivations from Baker (2015). It was mentioned 
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earlier that the strain-based limit states are considered in this report. Therefore, pairs of (strain, 

peak drift) are sorted based on the peak drift values to construct an IDA line for each ground 

motion event. We considered 144 training ground motions in 6 different intercept angles, resulting 

in 864 IDA lines. The scatter plots of (strain, peak drift) values are demonstrated in Figure 13.  

 

The parameter Di needs to be interpolated by finding the smallest drift value that interests 

the ith IDA line. However, m IDA lines may exceed the maximum drift of 7.5% (Dcap). 

Additionally, q IDA lines might never reach the limits for both Dcap and the strain associated with 

the limit state. The values of m and q depend on the data distribution and the severity of damage 

states. Assuming that the fragility curves follow a lognormal distribution, maximizing the 

likelihood function can help estimate ˆ ˆ,  , as the two parameters of a smoot fragility curve: 

 
( )

1

ln /ln( / )ˆ ˆ, arg max ln ( ) ln 1 ln
m

capi

i

DD
n m q


  

 =

    
  = + − − −          

     (10) 

where   and   are PDF and CDF of the standard normal distribution, and n is the total 

number of IDA lines. The BFGS algorithm from the SciPy python library (Virtanen et al. 2020) is 

used to numerically estimate ˆ ˆ,  . The fragility curves corresponding to different limit states can 

be found in Figure 13.h. 
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Figure 12. Bayesian XYZ HyDRA (T=50) model uncertainty quantification  
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Figure 13. Scatter plots for different strain-based limit states and the corresponding fragility curves 
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The deep learning model’s uncertainty and fragility curves can be used in different ways. 

A user can obtain the probabilities of different damage states by directly using the drift output of 

the ML model and reason about the probabilities of different limit states using the fragility curves. 

Since the output of the HyDRA is associated with uncertainty, this uncertainty can be propagated 

to the calculation of ( | )G DM EDP  by performing global Monte Carlo sampling, considering the 

uncertainty of all terms in Eq. 9. Upon the availability of probabilistic models for loss estimation, 

one can further propagate the deep model’s uncertainty in Eq. 9. In this way, a more reliable 

estimate of the expected DVs (e.g., financial losses) can be obtained.  
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Chapter 9: Compute Times 

 

The feature selection and filter design simulations are conducted on clusters at the University at 

Buffalo’s Center for Computational Research (UB-CCR). This cloud computing service was 

especially helpful in conducting parallel FE analyses and further preprocessing the raw vibrations 

into MFB and MFCC features for 32,209 nonlinear seismic response simulations. The deep 

learning models are built-in python using Keras deep learning library (Chollet et al. 2015). 

Multiheaded HyDRA architectures are trained on a personal workstation equipped with an 

NVIDIA Titan V GPU with 12 GB memory and an Intel Core i9-10980XE CPU.  

GM events have different durations, and inference times can vary depending on the 

sequence length. Furthermore, training convergence and early stopping are not the same for 

different models depending on weight initialization and random shuffling of batches. Each model 

is trained and evaluated multiple times on different folds and random initializations to consider 

these variations. The average and standard deviation required to complete each task and the 

number of network parameters are given in Table 4. It is observed that once a model is trained, it 

can process thousands of seismic input tensors in a matter of seconds which can aid rapid damage 

assessments and post-disaster decision making.  
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Table 4. Computational details of conducting training and inference in HyDRA architectures 

  

Training and validation duration (min) 

 25920 events, batch size = 100 

Test set inference duration (sec) 

 6480 events, batch size = 2000 

Model # Parameters Avg. Std. Avg. Std. 

M 664301 8.25 2.24 4.03 0.24 

W 664301 11.16 2.34 3.95 0.07 

Z 258501 1.45 0.62 0.09 0.01 

MW 1037101 22.23 8.38 7.85 0.17 

MZ 651301 9.10 2.68 3.96 0.06 

WZ 651301 11.17 3.02 4.24 0.10 

MWZ 1044101 48.42 18.71 8.24 0.26 
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Chapter 10: Conclusion 

Changes in vibration patterns can be indicators of structural damage after seismic events. 

Finding mappings between vibration data and the extent of damage can be challenging due to 

nonlinear structural behavior. Machine and deep learning algorithms can be practical tools for 

interpreting vibration data and rapidly assessing structural damage. The existing machine learning 

frameworks for vibration-based damage detection often rely on manual feature extractions from 

signals based on the existing knowledge on scaler indicates that can correlate with damage (PGA, 

CAV, ..). While these features can be helpful, such manual feature extraction techniques often 

result in the loss of information because they transform time series data into highly compressed 

representations. From a different perspective, feeding raw vibration data to ML models is 

challenging due to the limitations in learning algorithms and the computational costs of training 

such models. This report tries to address the previous limitations by offering solutions in two 

different stages.  

 

The first solution is a novel feature extraction technique for deep vibration-based SHM. 

Inspired by speech recognition technology, custom Mel filter banks (MFBs) are investigated. It 

shows that the default filter parameters and feature extraction techniques used in audio engineering 

cannot yield optimal performance for seismic signal processing due to substantial differences in 

sampling rates and the physical nature of data types. The original formulation of MFBs is modified 

by introducing several new hyperparameters, including  ,  , fN , FFTN , and wt , and filter 

shapes, that enable MFBs to be customized for seismic damage assessments. The second solution 

is concerned with the design of deep learning architecture. This report develops a multiheaded 

neural network architecture called HyDRA to learn from different vibration data types with end-
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to-end training. A significant advantage of this architecture is that variable length GMs with 

different sampling rates can be used without further preprocessing or running all GM simulations 

for extended free vibration periods to achieve fixed-size compatible inputs. The final contribution 

of this report is that the original PBEE formulation is adjusted to incorporate the deep learning 

model uncertainty in loss estimations with Bayesian variants of HyDRA.  

 

An RC highway bridge in California is considered as a case study in this report. 32,400 

nonlinear response history analyses are conducted on 180 GMs with 6 intercept angles and 30 

PGV intensities. The vibration data is used to predict bridge column drifts due to seismic events. 

A simplified model is initially evaluated for 5,184 different filter bank designs and feature 

extraction strategies to present insights on selecting filters that maximize seismic performance. 

More advanced HyDRA architectures are investigated that compared MFB features with 

benchmark CWT features and a stack of scaler indices, including peak accelerations and R . The 

numerical experiments show that models equipped with MFB outperform the benchmark models. 

Furthermore, the model that combines all three features yields the lowest MAE in 6-Fold validation 

and test sets. Lastly, it shows how uncertainty quantification in ML-based predictions and fragility 

analysis can be integrated into the modified PBEE equation.  

 

This report proposes the concept of customized filter banks for vibration signal 

preprocessing in ML-based damage diagnoses. Future work is required to study the potential of 

using other techniques such as Hilbert Vibration Decomposition (HVD) or Empirical Mode 

Decomposition instead of FFT to extract features in the frequency domain and build filter banks 

accordingly. Subtraction and stacking techniques also have limited capabilities to handle effective 
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learning from large sensor arrays. In this regard, convolutional embedding layers can be used in 

network heads in the presence of several sensor records. HyDRA presents several opportunities 

for future research and development by considering different damage diagnosis setups and 

embedding more advanced neural architectures. The concept of attention can be integrated within 

the recurrent modules for more effective learning.  
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