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INTRODUCTION 

Hurricanes, as one of the most devastating natural hazards, can greatly threaten human lives and 

cause high economic losses. It is crucial for stakeholders from different societal sectors to make 

various decisions during hurricane events to mitigate hurricane-induced losses. Evacuations, albeit 

effective in reducing life losses, are usually reserved as the last resort for extreme cases (e.g., high-

intensity landfall hurricanes) due to the associated large economic cost, which hence rarely occur 

(Wolshon et al., 2005a and 2005b). More frequently encountered decision-making scenarios during 

hurricane events are to maintain the essential functionality of communities with minimum losses under 

low-intensity and/or bypassing hurricanes. As the backbone in supporting essential operations of 

communities, transportation infrastructures could be greatly impacted by the adverse hurricane 

weather. For instance, long-span bridges, due to the inherent flexible structural properties, may suffer 

from the high hurricane winds (Wu et al., 2013a and 2013b); low-clearance coastal bridges with weak 

connections between substructure and superstructure are vulnerable to deck unseating induced by 

storm surges and waves (Ataei and Padgett, 2013); low-lying road segments are prone to inundations 

caused by heavy hurricane rainfall (Gori et al., 2020). These deteriorated structural performances 

could also compromise the traffic safety on these infrastructures. Accordingly, stakeholders need to 

take measures, based on hurricane weather and traffic conditions, to close or restrict the traffic flow 

of the vulnerable components in the transportation network for balancing traffic safety (in terms of the 

vehicle accident risk) and mobility (in terms of travel time). Current decision-making practices under 

adverse weather conditions are mainly based on empirical judgements (e.g., road/bridge closure when 

wind/snow/rain exceeds certain threshold) and are usually performed independently for each critical 

component (FHWA, 2012). These component-level studies and the obtained traffic control strategies 

may fail to minimize the overall network-level loss considering the high interdependencies of these 

transportation infrastructures (e.g., reassignment of traffic flow on the closed infrastructures may lead 

to severe traffic jam on open road links). In fact, effectively managing hurricane-impacted 

transportation infrastructures involves a complex decision-making environment encompassing 

coupled modules of hurricane weather, transportation infrastructure, trip generation, traffic assignment 

and loss calculation. As illustrated in Fig. 1, the hurricane weather module generates hurricane wind, 

surge/wave and rain conditions at the site of critical infrastructures, which impact the structural 

performance and travel demand through the modules of transportation infrastructure and trip 

generation, respectively; hurricane-impacted structural performance (and hence road capacity) and 

the travel demand serve as the input to the traffic assignment module, which determines the traffic 

conditions on each component of the traffic network. Based on the hurricane weather and traffic 

condition, the overall network-level cost (composed of traffic-safety and traffic-mobility cost) is 

computed through the loss calculation module; the network-level cost can be utilized by the 

stakeholders as the objective function to optimize the decision support system. 

    Optimizing the decision support system for managing hurricane-impacted transportation 

infrastructures is essentially solving a stochastic sequential decision problem. Specifically, the term 

“stochastic” refers to the uncertainties from various sources (e.g., hurricane weather and travel 

demand) while “sequential” highlights that the traffic control decision at current step could change the 

traffic condition and hence affect the decision-making of next step. This stochastic sequential decision 

problem could be effectively formulated as a Markov decision process (MDP), where the goal is to find 

the optimal decision to minimize the accumulated losses on the traffic network over the whole 

hurricane-impacted period. Considering that analytical solution for hurricane-traffic system dynamics 

is not available, the model-free reinforcement learning (RL) methodology is leveraged in this study to 

obtain the optimal solution to MDP in a trial-and-error fashion through interacting with the “black-box” 

simulators (Sutton and Barto, 2018). Furthermore, a deep neural network (DNN) is utilized to efficiently 

represent the decision policy (i.e., mapping from high-dimensional continuous hurricane/traffic 



 

 
 

information to the traffic control decisions) while the optimal policy (represented by DNN weights) is 

obtained using the deep Q learning algorithm (Mnih et al., 2015). Compared to the component-level 

decision-making practice, the proposed deep RL-based scheme could effectively reduce the overall 

network-level loss, which, however, essentially sacrifices traffic safety for higher traffic mobility. The 

compromised traffic safety may be unacceptable to certain risk-averse stakeholders. As a result, it 

may hinder the practical implementations of the deep RL-based decision support system.  

    To address the issue of excessively high traffic safety risk, one promising approach is to actively 

redistribute the travel demand to the time periods with relatively low hurricane intensity. It may be 

accomplished by intelligently broadcasting travel advisories to travelers through various media 

channels. Efforts have been made recently to incorporate various types of media tools, especially the 

increasingly popular social media, into effective management of transportation systems and 

communities under adverse weather and natural hazards. For example, Kim et al. (2018) investigated 

the emergency information diffusion on online social media during storm Cindy, which highlights the 

importance of social media as a powerful tool in disaster management (2018). Lu et al. (2018) 

proposed to utilize adverse weather data in social media to contribute to city-level traffic situation 

awareness and alerting. Fan et al. (2021) presented a vision of digital twin for city under disasters, 

where the social media plays an important role in extracting weather/traffic information and informs 

travelers of critical information. To embrace the promising future of the intelligent transportation system 

in a smart city, this study incorporates both traffic control commands (e.g., opening/closing 

infrastructures) and travel advisories (e.g., postponing trips) into the action space of the deep RL-

based scheme. It is expected that the deep RL-based decision support system enhanced by intelligent 

travel advisories is able to maintain a low overall network-level loss without significantly increasing (or 

even reducing) the traffic-safety loss. The rest of study begins by formulating the stochastic sequential 

decision problem of managing hurricane-impacted transportation infrastructures as a MDP; then, the 

MDP is approached by the proposed deep RL-based decision support system with intelligent travel 

advisories; finally, a proof-of-concept case study on a hypothetical traffic network under hurricane 

events, involving aerodynamics-sensitive long-span bridges, hydrodynamics-sensitive coastal bridges 

and inundation-sensitive road segments, is utilized to demonstrate the good performance of the 

developed novel scheme. 



 

 
 

 
 

Figure 1. A general decision-making framework for managing hurricane-impacted transportation 

infrastructures 

 

PROBLEM FORMULATION 

The stochastic sequential decision problem of managing transportation infrastructures under 

hurricanes could be effectively formulated as a MDP. In MDP, an agent takes actions based on 

observations (i.e., states) and obtains rewards from the environment with the goal to maximize the 

accumulated rewards. In the case of transportation infrastructure management, the MDP state 𝑠𝑡 at 

time step t includes both traffic condition 𝒖𝑡 and hurricane information 𝒘𝑡, i.e., 𝑠𝑡 = [𝒖𝑡 , 𝒘𝑡]. Moreover, 

the state 𝑠𝑡 involves both current observation (denoted by superscript o) and future prediction (denoted 

by superscript p), i.e., 𝒖𝑡 = [𝒖𝑡
𝑜 , 𝒖𝑡+1

𝑝
, … , 𝒖𝑡+ℎ

𝑝
 ] and 𝒘𝑡 = [𝒘𝑡

𝑜 , 𝒘𝑡+1
𝑝

, … , 𝒘𝑡+ℎ
𝑝

] (h denotes the prediction 

horizon). Based on current state 𝑠𝑡 = [𝒖𝑡
𝑜 , 𝒖𝑡+1

𝑝
, … , 𝒖𝑡+ℎ

𝑝
, 𝒘𝑡

𝑜 , 𝒘𝑡+1
𝑝

, … , 𝒘𝑡+ℎ
𝑝

], stakeholders take an action 

𝑎𝑡, to open/close critical infrastructure components and to broadcast/not broadcast travel advisories. 

Accordingly, the system evolves to next state 𝑠𝑡+1 = [𝒖𝑡+1
𝑜 , 𝒖𝑡+2

𝑝
, … , 𝒖𝑡+ℎ+1

𝑝
, 𝒘𝑡+1

𝑜 , 𝒘𝑡+2
𝑝

, … , 𝒘𝑡+ℎ+1
𝑝

] due 

to the time-varying hurricane weather, change of travel demand and the traffic reassignment caused 

by road opening/closure. A user-designed reward (negative value of cost) 𝑟𝑡 = −𝑓𝑚(𝒖𝑡+1
𝑜 ) −

𝑓𝑠(𝒖𝑡+1
𝑜 , 𝒘𝑡+1

𝑜 ) is received at each time step, which includes cost from traffic mobility 𝑓𝑚(𝒖𝑡+1
𝑜 ) and 

safety 𝑓𝑠(𝒖𝑡+1
𝑜 , 𝒘𝑡+1

𝑜 ). The cost from traffic mobility 𝑓𝑚(𝒖𝑡+1
𝑜 ) could be related to the vehicle travel time 

in the traffic network. The traffic safety-related cost 𝑓𝑠(𝒖𝑡+1
𝑜 , 𝒘𝑡+1

𝑜 ), on the other hand, accounts for the 

vehicle accidents under hurricanes, and hence depends on both traffic condition 𝒖𝑡+1
𝑜 and weather 

information 𝒘𝑡+1
𝑜 . The decision-making goal for stakeholders is to obtain a policy 𝜋 that maps from 

state to action [i.e., 𝑎 = 𝜋(𝑠)] to maximize the expected cumulative reward E(∑ 𝛾𝑘𝑟𝑡+𝑘)∞
𝑘=0  over the 

whole hurricane-impacted period, where the expected value E(∙) is to consider the uncertainties from 

various sources (e.g., traffic condition, hurricane weather, and model predictions) and the discount 

factor 𝛾  (usually 0 ≤ 𝛾 ≤ 1 ) determines the relative importance of future reward compared with 

immediate reward. 



 

 
 

METHODOLOGY 

There are mainly two approaches to obtain the optimal policy 𝜋∗ that maximizes the expected 

cumulative reward, namely dynamic programming (DP) and RL (Sutton and Barto, 2018). 

Implementation of DP requires analytical system dynamics explicitly expressed in the form of 

state-transition probability (e.g., Nozhati et al., 2020), which, however, is infeasible here 

considering that existing models for the hurricane-traffic system are in fact “black-box” simulators 

with no close-form expressions. On the other hand, RL is able to obtain the optimal solution to 

MDP in a trial-and-error fashion through interacting with the “black-box” simulators, which 

eliminates the needs for explicit system dynamics and hence will be utilized in this study. As a 

classical RL algorithm, value-based method obtains the optimal policy indirectly through the use 

of value functions. Specifically, the action-value function 𝑞𝜋(𝑠, 𝑎) (also known as state-action 

value) is introduced, which is defined as the expected cumulative future reward starting from the 

state s, taking action a and following policy 𝜋 afterwards. Once optimal action-value function 

𝑞𝜋∗
(𝑠, 𝑎) is known, the optimal policy could be conveniently acquired by searching a greedy action 

that leads to highest value, i.e., 𝑎 = argmax
𝑎

[𝑞𝜋∗
(𝑠, 𝑎)] . As a typical value-based method, Q 

learning obtains 𝑞𝜋∗
(𝑠, 𝑎) based on Bellman equation, which recursively relates the action value 

of current state to the sum of the immediate reward and the discounted action value of next state 

(Watkins and Dayan, 1992): 

𝑄𝑘+1(𝑠𝑡 , 𝑎𝑡) = 𝑄𝑘(𝑠𝑡 , 𝑎𝑡) + 𝜂𝑄[𝑟𝑡 + 𝛾 max
𝑎

𝑄𝑘(𝑠𝑡+1, 𝑎) − 𝑄𝑘(𝑠𝑡 , 𝑎𝑡)]  (1) 

where capital Q indicates an estimate of lower-case q; 𝜂𝑄 denotes the learning rate; the subscript 

“k” is the iteration number. For applications with high-dimensional continuous state space, the 

lookup table-based representation of Q functions in conventional Q learning needs to be extended 

to DNN-based Q functions. This class of RL algorithms using DNN-based function approximations 

is known as deep RL, which has been used to solve various complicated tasks including recent 

civil engineering applications to aerodynamic shape optimization of wind-sensitive structures (Li 

et al., 2021a) as well as active simulation of transient wind field in a multiple-fan wind tunnel (Li 

et al., 2021b).  

    This study utilizes deep RL to tackle the decision-making problem for managing hurricane-

impacted transportation infrastructures. As shown in Fig. 2, RL state includes both hurricane 

weather and traffic information while the RL action is composed of both traffic control commands 

used for critical infrastructure components and travel advisories broadcasted to travelers through 

various media channels. RL environment is the hurricane-impacted traffic network simulated by 

coupled modules from different disciplines. For the hurricane weather module, a height-resolving 

boundary-layer model (Snaiki and Wu, 2017) is used to generate the hurricane wind while 

hurricane surge/wave, rainfall (and hence the inundation) are all assumed to depend on wind 

intensity (Snaiki and Wu, 2018; Snaiki et al., 2020). Regarding hurricane-impacted transportation 

infrastructures, travel risks on the long-span bridge and inundated road segment are represented 

by vehicle accident fragility curves (Baker, 2015). The surge/wave-induced coastal bridge 

damage (and hence the vehicle risk) is represented by a deck unseating fragility curve (Ataei and 

Padgett, 2013). To account for the effect of travel advisories on travel demand, this study assumes 

that only a portion of non-essential travel demand could be affected by the broadcasted travel 

advisories and redistributed to time periods with relatively low hurricane intensity. In addition, the 

traffic assignment under various decision scenarios is approached by finding the user equilibrium 

state (Wardrop, 1952). Considering the high-dimensional continuous state from hurricane/traffic 

information and the complex state-action relations, a DNN is utilized as a powerful function 

approximator to output the optimal actions of traffic control commands and travel advisories. The 

DNN weights (representing the management policy) are updated during training process by 



 

 
 

maximizing the user-defined reward (sum of weighted safety and mobility costs from three critical 

infrastructure components) using deep Q learning. 

    Deep Q learning leverages a deep Q network with the input of the high-dimensional continuous 

state and the output of the Q value for each discrete action. It is noted that divergence issues may 

occur when combining Q learning with DNN-based function approximations due mainly to two 

reasons, i.e., strong correlation between the consecutive samples (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1,𝑎𝑡+1, 𝑟𝑡+1, …) and 

nonstationarity of the target [𝑟𝑡 + 𝛾 max
𝑎

𝑄𝑘(𝑠𝑡+1, 𝑎)] in Eq. (1) (Mnih et al., 2015). To address the 

divergence issue caused by correlation, a replay buffer is introduced to store the past 

experiences, and the randomly sampled experiences from the replay buffer are utilized for 

updating the deep Q network. In addition to removing the strong correlation of samples, the 

adoption of replay buffer also enhances the training efficiency considering that past learning 

experiences are repetitively used. To overcome the divergence resulting from nonstationary 

target, a second DNN named target Q network with weights slowly tracking that of the original Q 

network is introduced to compute the slowly varying target Q value and hence improves stability. 

The details of deep Q learning, using two fully connected feedforward DNN [i.e., multilayer 

perceptron (MLP)] for Q network 𝑄𝑀𝐿𝑃(𝑠, 𝑎|𝜽𝑄𝑀𝐿𝑃 ) and target Q network 𝑄𝑀𝐿𝑃
′ (𝑠, 𝑎|𝜽𝑄𝑀𝐿𝑃

′
) (𝜽𝑄𝑀𝐿𝑃 

and 𝜽𝑄𝑀𝐿𝑃
′

 represent their weights), are shown in Algorithm 1 (Mnih et al., 2015) and schematically 

illustrated in Fig. 3. After offline training on the range of possible hurricane scenarios (obtained 

from hurricane forecast) using deep Q learning, the proposed deep RL-based decision support 

system could then be used online for the real hurricane events. It should be noted that the 

proposed scheme is generally applicable to management of transportation infrastructures under 

other adverse weather conditions (e.g., winter storm). 
Algorithm 1. Training MLP-based policy using deep Q learning 

Initialize Q network 𝑄𝑀𝐿𝑃(𝑠, 𝑎|𝜽𝑄𝑀𝐿𝑃) and target Q network 𝑄𝑀𝐿𝑃
′ (𝑠, 𝑎|𝜽𝑄𝑀𝐿𝑃

′
) with same weight 

Initialize replay buffer as an empty set 
While not convergent do 
    Take the initial state 𝑠0 as current state 𝑠𝑡 = 𝑠0 

    For istep=0, 1, 2,…., nstep do 
        With probability 𝜀𝑡 select a random action 𝑎𝑡, otherwise select an action based on Q network: 

𝑎𝑡 = argmax
𝑎

𝑄𝑀𝐿𝑃(𝑠𝑡 , 𝑎|𝜽𝑄𝑀𝐿𝑃) 

        Execute action 𝑎𝑡, observe new state 𝑠𝑡+1, and obtain reward 𝑟𝑡 

        Store the experience (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) in replay buffer 

        Sample nbatch experiences from replay buffer denoted as (𝑠𝑡
𝑖 , 𝑎𝑡

𝑖 ,  𝑟𝑡
𝑖 , 𝑠𝑡+1

𝑖 ), where i=1, 2,…, nbatch 

        For i=1, 2,…., nbatch do 

            Set the target value 𝑦𝑖 =   𝑟𝑡
𝑖 + 𝛾 max

𝑎
𝑄𝑀𝐿𝑃

′ (𝑠𝑡+1
𝑖 , 𝑎|𝜽𝑄𝑀𝐿𝑃′)   

        End for 
        Update Q network by gradient descent with learning rate 𝜂𝑄: 

𝜽𝑄𝑀𝐿𝑃 = 𝜽𝑄𝑀𝐿𝑃 − 𝜂𝑄

1

𝑛𝑏𝑎𝑡𝑐ℎ
 ∑ 𝛻𝜽𝑄𝑀𝐿𝑃 [𝑦𝑖 − 𝑄𝑀𝐿𝑃(𝑠𝑡

𝑖 , 𝑎𝑡
𝑖 |𝜽𝑄𝑀𝐿𝑃)]2

𝑛𝑏𝑎𝑡𝑐ℎ

𝑖=1

 

        Assign new state as the current state 𝑠𝑡 = 𝑠𝑡+1 

        For each Nupdate steps copy the weight of Q network to target Q network: 𝜽𝑸𝑴𝑳𝑷
′

= 𝜽𝑄𝑀𝐿𝑃 

End for 
End while 

 



 

 
 

 

Figure 2. Schematic of proposed deep RL-based decision support system with intelligent travel advisories 



 

 
 

 
Figure 3. Schematic diagram of deep Q learning in the hurricane-traffic environment 

 
CASE STUDY 

The case study considers a hypothetical traffic network under hurricane impact. As shown in Fig. 

4, the traffic network encompasses three critical hurricane-impacted components, namely an 

aerodynamics-sensitive long-span bridge, a hydrodynamics-sensitive coastal bridge and an 

inundation-sensitive road segment. The traffic network, although simple for demonstration 

purposes, is intentionally designed to accommodate common features in real applications. There 

are two origins (i.e., Nodes 1 and 2) and two destinations (i.e., Nodes 10 and 11) in the traffic 

network, where associated travel paths need to cross the river. Only one (Link 6-8) of the two 

river-crossing links (Links 5-7 and 6-8) is considered to be significantly impacted by hurricanes, 

which makes it possible to maintain the essential functionality of the traffic network; the long-span 

bridge and the coastal bridge are highly dependent on each other (considering traffic flow on Link 

2-4 will eventually go to Link 6-8) while the inundated road segment (Link 1-5) is less dependent 

on the other two critical components. The road link properties in terms of free-flow travel time and 

link capacity are presented in Table 1.  



 

 
 

 
Figure 4. A hypothetical hurricane-impacted traffic network 

 
Table 1. Road link properties of the traffic network 

Link number Connected nodes 
Free-flow travel time 

(min) 
Link capacity 

(veh/h) 

1 1-3 6 3000 

2 1-5 6 3600 

3 2-3 6 3600 

4 2-4 3 3600 

5 3-5 6 4200 

6 3-6 6 3600 

7 4-6 3 3600 

8 5-7 6 4800 

9 6-8 6 4800 

10 7-9 6 3600 

11 7-10 6 3600 

12 8-9 6 3600 

13 8-11 6 3600 

14 9-10 6 3600 

15 9-11 6 3600 

 

    A low-intensity bypassing hurricane (shown in Fig. 5) is used to evaluate the performance of 

the proposed decision support system. This study assumes a relatively short duration of the 

considered hurricane and adopts a 12-hour (daytime) decision-making window with one-hour 

interval (a reasonable interval length for sequential decision-making of stakeholders). Hurricane 

weather observation 𝒘𝑡
𝑜  is composed of four relevant hazard intensity measures [𝑉𝑡

𝑜, 𝐻𝑡
𝑜, 𝜂𝑡

𝑜, 𝑑𝑡
𝑜], 

where 𝑉𝑡
𝑜  is the hurricane wind speed at the site of long-span bridge;  𝐻𝑡

𝑜  and 𝜂𝑡
𝑜  are the 

significant wave height and surge elevation at the coastal bridge, respectively; 𝑑𝑡
𝑜 denotes the 

inundation depth of the road segment. Hurricane weather prediction 𝒘𝑡+1
𝑝

 is the noisy estimate of 

the true value 𝒘𝑡+1
𝑜  with 𝑉𝑡+1

𝑝 = 𝑉𝑡+1
𝑜 (1 + 𝑁𝑉) , 𝐻𝑡+1

𝑝 = 𝐻𝑡+1
𝑜 (1 + 𝑁𝐻) , 𝜂𝑡+1

𝑝 = 𝜂𝑡+1
𝑜 (1 + 𝑁𝜂)  and 

𝑑𝑡+1
𝑝 = 𝑑𝑡+1

𝑜 (1 + 𝑁𝑑), where 𝑁𝑉, 𝑁𝐻, 𝑁𝜂   and 𝑁𝑑 are the selected random noises. It is noted that 

“future” observation is based on the information of best track, and the prediction-related random 

noises are assumed to follow independent zero-mean Gaussian distributions with standard 

deviation determined based on prediction errors (as illustrated by the possible hurricane track 

range in Fig. 5).  



 

 
 

To generate the time-varying mean wind speed 𝑉𝑡
𝑜 at the bridge site (assuming 25m elevation 

of bridge), a height-resolving hurricane boundary-layer model developed by Snaiki and Wu (2017) 

is used in this study, where the model input is the storm parameter of central pressure deficit 

Δ𝑝(𝑡), radius to maximum winds 𝑅𝑚𝑎𝑥(𝑡), heading direction 𝜑𝑎(𝑡), translational speed 𝑐(𝑡) and 

the relative location of bridge with respect to the hurricane center in terms of radial distance 𝑟(𝑡) 

and azimuth angle 𝜃(𝑡). The details regarding the hurricane wind model are referred to Snaiki 

and Wu (2017). The bypassing hurricane tracks are determined such that the bridge site wind 

speed starts at 10m/s (assuming the decision-making system is triggered at 10m/s wind speed) 

and the peak wind speed is constrained between 25m/s to 30m/s. In addition, the peak wind is 

designed to occur around 5 to 7h after initialization of the decision-making process for the purpose 

of showing a complete decision sequence involving open-close-reopen of the infrastructures. 

Despite the rapid development of high-fidelity simulations for coupled wind-wave-surge and wind-

rain-flood fields, they may be infeasible for the real-time decision support system considering the 

required large amount of simulations of hurricanes under uncertainties. As a result, this study 

simply considers that the storm surge/wave at the coastal bridge and the hurricane rainfall (and 

hence the road inundation depth) are dependent on wind intensity measure (Snaiki and Wu, 2018; 

Snaiki et al., 2020). It is also noted that unsynchronized behaviors may exist in these hazards. 

For instance, the storm surge/wave may propagate to the coastal areas before the hurricane wind 

arrives. There may be a time delay for the maximum inundated depth with respect to the maximum 

wind speed due to, for example, the saturation of the drainage system. In this study, these 

unsynchronized behaviors are considered by relating the hazard intensities to wind speed with 

introduced time lags using the following relation 𝐻𝑡
𝑜 = 𝑓𝐻𝑉(𝑉𝑡+𝑡𝐻

𝑜 ) + 𝑁𝐻𝑉, 𝜂𝑡
𝑜 = 𝑓𝜂𝑉 (𝑉𝑡+𝑡𝜂

𝑜 ) + 𝑁𝜂𝑉  

and 𝑑𝑡
𝑜 = 𝑓𝑑𝑉(𝑉𝑡+𝑡𝑑

𝑜 ) + 𝑁𝑑𝑉 , where 𝑡𝐻 , 𝑡𝜂  and 𝑡𝑑  are the time lags while 𝑁𝐻𝑉 , 𝑁𝜂𝑉  and 𝑁𝑑𝑉  are 

random noises to consider the uncertainties on the predefined relations of 𝑓𝐻𝑉, 𝑓𝜂𝑉 and 𝑓𝑑𝑉. Fifty 

random realizations of the hurricane weather conditions based on linear functions of 𝑓𝐻𝑉, 𝑓𝜂𝑉 and 

𝑓𝑑𝑉 with time lags 𝑡𝐻 = 1h, 𝑡𝜂 = 2h and 𝑡𝑑 = −1h are shown in Fig. 6. 

 

 
Figure 5. Range of possible tracks of a bypassing hurricane 
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Figure 6. Fifty random realizations of the hurricane weather conditions for the critical infrastructures 

 
The adverse hurricane weather could greatly impact the performance of critical infrastructure 

components and hence the traffic safety on them. This could be evaluated using fragility curves, 

which map hazard intensities to vehicle damage probabilities. For the aerodynamics-sensitive 

long-span bridges, both the high aerodynamic load on the vehicles and the significant wind-

induced bridge vibrations contribute to the traffic-safety issue (Baker, 2015; Zhou, Y. and Chen, 

S., 2015). Moving beyond conventional approach of using critical wind speed as a function of 

vehicle speed for vehicle instability (Baker, 1987), Baker (2015) introduced the uncertainties in 

vehicle parameters and speeds and utilized a fragility curve relating the wind speed 𝑉𝑜vehicle to 

accident probability 𝑃𝑙𝑏 : 

𝑃𝑙𝑏 = {

0                          0m/s <  𝑉𝑜 ≤ 20𝑚/𝑠 

(𝑉𝑜 − 20)/30          20m/s < 𝑉𝑜 ≤ 50m/s
1                                   𝑉𝑜 > 50m/s 

 (2) 

Regarding the inundated road segments, critical water depth related to vehicle speed is also 

available (Pregnolato et al., 2017), which, using a similar approach as in Baker (2015), leads to a 

fragility curve relating accident probability 𝑃𝑖𝑟  to water depth 𝑑𝑜: 

𝑃𝑖𝑟 = {
0                                            𝑑𝑜 ≤ 0.25m 

25(𝑑𝑜 − 0.25)2          0.25m < 𝑑𝑜 ≤ 0.45m
1                                            𝑑𝑜 > 0.45m 

 (3) 

The use of Eqs. (2) and (3) could help to demonstrate the generality of the proposed scheme as 

applied to both linear and nonlinear scenarios. Instead of directly examining vehicle safety on 

hydrodynamics-sensitive coastal bridges, existing studies usually target at investigating the 

unseating probability of the bridge deck. Ataei and Padgett (2013) developed an empirical relation 

between the unseating damage probability 𝑃𝑐𝑏  and the intensity measures of wave 𝐻𝑜 and surge 

𝜂𝑜: 



 

 
 

𝑃𝑐𝑏 = {

0                                           0.1𝐻𝑜 + 0.25𝜂𝑜 − 0.35 ≤ 0m 

0.1𝐻𝑜 + 0.25𝜂𝑜 − 0.35          0m < 0.1𝐻𝑜 + 0.25𝜂𝑜 − 0.35 ≤ 1m
1                                            0.1𝐻𝑜 + 0.25𝜂𝑜 − 0.35 > 1m 

 (4) 

It is noted that the vehicle accident probability here is set to be the same with the deck unseating 

probability. 

Variation in travel demand during hurricanes can change traffic condition and hence impact 

decision-making. It is known that travelers may voluntarily choose to cancel or delay their travel 

plans due to the adverse weather condition even without explicit instructions from authorities 

(Cools et al., 2010). This time-varying travel demands during hurricanes is very complex and 

location-dependent, which are usually estimated by survey studies and/or traffic measurement. 

Considering the focus is to investigate the benefit of active redistribution of travel demand through 

broadcasting travel advisories, this study simply assumes constant travel demand when no travel 

advisories are broadcasted. Specifically, the travel demands for O-D 1-10, 1-11, 2-10 and 2-11 in 

the designed traffic network are respectively assumed to be 4500, 4750, 5000 and 4250 

vehicles/hour. The conservation of travel demand during the decision-making window (i.e., no trip 

cancellation) also ensures a fair comparison of different decision-making schemes. Furthermore, 

this study only considers the travel advisory of postponing trips since it is easier and more 

reasonable to convince travelers to delay trips compared to suggesting early departures. The 

mechanism of the postpone-trip advisory affecting travel demand distribution is schematically 

shown in Fig. 7. After broadcasting the travel advisory of postponing trips at time t, a portion of 

travel demand at future steps is moved to the ending time steps of the decision-making period 

(for the conservation of travel demand). Furthermore, this study assumes that only the travel 

demand immediately after the broadcasted travel advisories is impacted considering that travelers 

may tend to finalize their trip decisions according to the latest travel advisories. Specifically, this 

study assumes a small portion (randomly distributed between 5% and 7%) of the next-step travel 

demand is impacted by the broadcasted travel advisories considering that only part of the non-

essential travelers that have access to the media may change their travel plans. The impacted 

travel demand is redistributed to the last two steps of the decision-making window (70% to the 

last step and 30% to the second to last step) It is noted that 100% of the impacted travel demand 

of the second to last step is redistributed to the last step. In addition, this study assumes that the 

travel advisories have the same effect on the travel demand of all four O-D pairs. 

 

 
Figure 7. Effect of travel advisories on travel demand 

 
    To obtain the optimal traffic control decisions for critical infrastructures, it is necessary to 



 

 
 

evaluate the network performance (e.g., travel time and traffic volume on each road link) under 

different traffic control actions and travel advisories, which is a typical traffic assignment problem. 

This study assumes that stakeholders can only determine the opening/closure of critical 

infrastructure components and broadcast travel advisories without direct control over individual 

route choices. Accordingly, the traffic assignment problem is approached by finding the state of 

user equilibrium (Wardrop, 1952), where all alternative routes have equal travel time and no single 

user could reduce the travel time by unilaterally changing the travel route. It is known that finding 

the user equilibrium state is equivalent to solving the following optimization problem while meeting 

the travel demand for each origin-destination (OD) pair (Bell and Iida, 1997): 

min
𝒙

𝑓(𝒙) = ∑ ∫ 𝑇𝑘(𝑥)d𝑥
𝑥𝑘

0

𝑁𝑙𝑖𝑛𝑘
𝑘=1  (5) 

where 𝒙 represents the traffic flow vector composed of all link flows 𝑥𝑘 (𝑘 = 1,2, … , 𝑁𝑙𝑖𝑛𝑘); 𝑁𝑙𝑖𝑛𝑘  

denotes the number of road links in the traffic network; 𝑇𝑘(𝑥) is the link performance function 

determining the link travel time 𝑇𝑘 given the link flow x. One commonly used link performance 

function is in the following form (Bureau of Public Roads, 1964): 

𝑇𝑘(𝑥𝑘) = 𝑇𝑘̅̅̅̅ [1 + 0.15 (
𝑥𝑘

𝑐𝑘)
4

] (6) 

where 𝑇𝑘̅̅̅̅  is the free-flow travel time of link k and 𝑐𝑘 is the road capacity. It is noted that both free-

flow travel time and road capacities of these critical infrastructures may be impacted by the 

hurricane weather considering, for example, travelers tend to drive with more caution under 

adverse weather conditions. The hurricane-impacted free-flow travel time and road capacity of 

the long-span bridge and inundated road are respectively assumed to be: 

𝑇𝑙𝑏 = {
6                          0m/s <  𝑉𝑜 ≤ 20𝑚/𝑠 
6 + (𝑉𝑜 − 20)/10             𝑉𝑜 > 20m/s

 (7) 

𝑐𝑙𝑏 = {
4800                          0m/s <  𝑉𝑜 ≤ 20𝑚/𝑠 
4800 − 30(𝑉𝑜 − 20)              𝑉𝑜 > 20m/s

 (8) 

𝑇𝑖𝑟 = {
6                                           0𝑚 < 𝑑𝑜 ≤ 0.25m 
6 + 10(𝑑𝑜 − 0.25)                      𝑑𝑜 > 0.25m

 (9) 

𝑐𝑖𝑟 = {
3600                                           0𝑚 < 𝑑𝑜 ≤ 0.25m 
3600 − 1000(𝑑𝑜 − 0.25)                 𝑑𝑜 > 0.25m

 (10) 

where superscript lb and ir denote the long-span bridge and the inundated road, respectively. The 

weather effect on the coastal bridge is not considered here because the storm surge/wave loads 

mainly affect the structural safety instead of serviceability. 

    The link flows under user equilibrium state are obtained iteratively using Frank-Wolf algorithm 

(Bell and Iida, 1997), which is schematically shown in the flowchart of Fig. 8. It should be pointed 

out that the user equilibrium-based model used in this study is a quasi-static approach with many 

simplifications. Further investigations on advanced models of hurricane-impacted traffic network 

(e.g., agent-based modeling that captures the behavior of individual vehicles) are required to more 

accurately simulate the system performance. 

 



 

 
 

 
Figure 8. Flowchart of obtaining user equilibrium using Frank-Wolf algorithm 

 
With traffic condition obtained from traffic assignment module, the overall network-level loss 

could be computed through loss calculation module for evaluating and optimizing decision-making 

strategies. The reward function 𝑟𝑡  (the negative value of cost) could be designed as sum of 

weighted costs from traffic mobility and traffic safety: 

𝑟𝑡 = −𝐴 ∑ 𝑥𝑡+1
𝑘 𝑇𝑡+1

𝑘𝑁𝑙𝑖𝑛𝑘
𝑘=1 − 𝐵𝑙𝑏 × 𝑃𝑙𝑏(𝑉𝑡+1

𝑜 ) × 𝑥𝑡+1
𝑙𝑏 − 𝐵𝑐𝑏 × 𝑃𝑐𝑏(𝐻𝑡+1

𝑜 , 𝜂𝑡+1
𝑜 ) × 𝑥𝑡+1

𝑐𝑏 − 𝐵𝑖𝑟 × 𝑃𝑖𝑟(𝑑𝑡+1
𝑜 ) ×

𝑥𝑡+1
𝑖𝑟  (10) 

where the first term is the traffic mobility-related cost (i.e., the sum of travel time for all vehicles in 

the network); while the other three terms represent the traffic-safety cost from vehicle accidents 

on the three critical infrastructure components;  𝑃𝑙𝑏(𝑉𝑡+1
𝑜 ), 𝑃𝑐𝑏(𝐻𝑡+1

𝑜 , 𝜂𝑡+1
𝑜 ) and 𝑃𝑖𝑟(𝑑𝑡+1

𝑜 ) are the 

vehicle accident probabilities defined previously; 𝑥𝑡+1
𝑙𝑏 , 𝑥𝑡+1

𝑐𝑏  and 𝑥𝑡+1
𝑖𝑟  are the traffic flow on the 

three critical infrastructures;  𝐴, 𝐵𝑙𝑏, 𝐵𝑐𝑏 and 𝐵𝑖𝑟 are the relative weights of these cost terms. In 

this study, the relative weights are chosen to be 𝐴 = 1, 𝐵𝑙𝑏 = 1000, 𝐵𝑐𝑏 = 4 and 𝐵𝑖𝑟 = 125. The 

large value of 𝐵𝑙𝑏 is due to the high severity of car accidents on a long-span bridge (e.g., rollover 

and sideslip) while the low value of 𝐵𝑐𝑏 is to account for the low possibility of a vehicle happening 

to run on an unseating span of the coastal bridge. It should be noted that determining these 

relative weights is essentially based on stakeholders’ value judgement and requires further 

investigations. 

After constructing the hurricane-traffic environment, the DNN-based decision support system 

is trained using RL methodology. In this study, the DNN input (i.e., state) is selected to be: 

𝑠𝑡 = [𝑥𝑡
1, 𝑥𝑡

2 , … , 𝑥𝑡
𝑁𝑙𝑖𝑛𝑘 , 𝑉𝑡

𝑜 , 𝐻𝑡
𝑜 , 𝜂𝑡

𝑜 , 𝑑𝑡
𝑝, 𝑉𝑡+1

𝑝 , 𝐻𝑡+1
𝑝 , 𝜂𝑡+1

𝑝 , 𝑑𝑡+1
𝑝 , 𝑛𝑡

𝑡𝑎] (11) 

where 𝑛𝑡
𝑡𝑎 is the number of travel advisories that have been broadcasted up to the current time 

step.  Intuitively, 𝑛𝑡
𝑡𝑎 provides the information on how many trips have been postponed to the final 



 

 
 

steps, which is important for decision-making because it may be undesirable to postpone trips if 

the travel demand postponed to the final steps is already high and the associated traffic-mobility 

cost of the final steps is large. It is noted that the traffic prediction for next step is not explicitly 

included in the state since it could be fully determined by current traffic condition, the enforced 

traffic control and the broadcasted travel advisories. It is also worthwhile to mention that prediction 

with longer horizon may be important for decision-making in more complicated cases, 

considering, for example, some traffic control actions may involve preparation stages that need 

to be deployed in advance. Although not discussed in this study, it is straightforward to include 

long-term predictions as additional states in the proposed framework. 

The action 𝑎𝑡 for the deep RL-based scheme with travel advisories is 𝑎𝑡= [𝑎𝑡
𝑙𝑏 , 𝑎𝑡

𝑖𝑟 , 𝑎𝑡
𝑡𝑎], where 

𝑎𝑡
𝑙𝑏 and 𝑎𝑡

𝑖𝑟 are the binary actions to open/close the aerodynamics-sensitive long-span bridge and 

the inundation-sensitive road segment, respectively; 𝑎𝑡
𝑡𝑎  is binary action to “do nothing” or 

“broadcast the travel advisory of postponing trips”. The reason that the traffic control of the 

hydrodynamics-sensitive coastal bridge is not included is to consider general situations, where 

stakeholders may not have enough resources to control all hurricane-impacted infrastructures. It 

is obvious that adding the action of travel advisories 𝑎𝑡
𝑡𝑎 expands the action space of the plain-

vanilla deep RL-based scheme with 𝑎𝑡= [𝑎𝑡
𝑙𝑏 , 𝑎𝑡

𝑖𝑟], which hence leads to a better (at least not 

worse) performance in terms of minimizing hurricane-induced losses.  

The deep RL-based decision support system with intelligent travel advisories is first trained 

offline on the set of possible hurricanes before online application to the real hurricane impacting 

the location of interest. The hyperparameters in Table 2 are used to train the proposed decision 

support system using deep Q learning. It is found that the most critical hyperparameter to the 

learning performance is the exploration probability 𝜀𝑡 , which is set to decay exponentially as 

learning proceeds, i.e., 𝜀𝑡 = 0.999995𝑛𝑖 (𝑛𝑖 is iteration number). Training of 45000 episodes (each 

episode is a realization of a random hurricane scenario) is required to reach convergence, which 

takes around four hours on a personal computer (Intel i7-6700 CPU @ 3.40 Hz). Two hurricane 

scenarios are used to test the performance. Hurricane Case A has a peak wind speed of 26m/s. 

The results of conventional component-level decision-making (denoted here as the base policy), 

plain-vanilla deep RL-based policy and deep RL with travel advisories are shown and compared 

in Fig. 9. Specifically, the base policy indicates that the long-span bridge is closed when the next-

step wind speed prediction (with prediction noise considered) exceeds 22.5m/s while the 

inundated road is closed when the next-step water depth prediction (with prediction noise 

considered) is over 0.3m. The values of 22.5m/s and 0.3m are chosen to be slightly higher than 

the threshold values used previously for the accident probability, considering that stakeholders 

may have, to some extent, taken into account the component-level traffic mobility-safety tradeoff. 

Compared to the base policy, the plain-vanilla deep RL-based policy avoids closing the long-span 

bridge and the inundated road simultaneously under hurricane Case A, which reduces overall 

network-level cost by 16% at the expense of increasing the traffic-safety cost by 75%. On the 

other hand, travel advisory-enhanced deep RL-based policy broadcasts the “postpone-trip” 

advisories from t=3h to 9h, which, compared to base policy, reduces overall network-level cost by 

27% while obtaining 17% reduction in the traffic-safety cost. Particularly, due to the decreased 

travel demand caused by travel advisories, the optimal decision for t=7h to 9h becomes to close 

both the infrastructure components, which contributes to the reduction of traffic-safety cost. The 

use of travel advisories only expands the solution space for optimizing the overall network-level 

cost (sum of traffic-safety and traffic-mobility costs) without explicit restrictions on traffic-safety 

cost, hence, it does not necessarily guarantee the reduction in traffic-safety cost compared to 

base policy. This observation is demonstrated by the simulation result under hurricane Case B 

with peak wind speed of 29m/s (see Fig. 10). Under hurricane Case B, the plain-vanilla deep RL-

based policy, compared to based policy, obtains 9% reduction in overall network-level cost while 



 

 
 

increasing the traffic-safety cost by 51%. On the other hand, deep RL-based policy with 

broadcasted travel advisories from t=2 to 10h leads to a larger reduction in network-level cost 

(22%) with a smaller increase (14%) in traffic-safety cost. 

Table 2. Hyperparameters of deep Q learning 

Hyperparameters Values 

Number of layers 5 
Number of neurons of each layer 60 

Learning rate 𝜂𝑄 0.00015 

Activation functions in hidden layers Rectified linear unit 

Update frequency of target Q network 𝑁𝑢𝑝𝑑𝑎𝑡𝑒 2000 

Batch size 𝑛𝑏𝑎𝑡𝑐ℎ 128 
Exploration probability 𝜀 0.999995𝑛𝑖 (𝑛𝑖 is iteration number) 

 
 

 
(a) Decisions using base policy 

 
(b) Decisions using deep RL-based policy 

 
(c) Decisions using deep RL-based policy with travel advisories 



 

 
 

 
(d) Travel demand impacted by travel advisories 

 
(e) Comparison of cost 

Figure 9. Simulation result under hurricane Case A 
 
 

 
(a) Decisions using base policy 

 
(b) Decisions using deep RL-based policy 



 

 
 

 
(c) Decisions using deep RL-based policy with travel advisories 

 
(d) Travel demand impacted by travel advisories 

 
(e) Comparison of cost 

Figure 10. Simulation result under hurricane Case B 

 
CONCLUSIONS 

For effective management of hurricane-impacted transportation infrastructures, this study 

proposes a deep reinforcement learning (RL)-based decision support system enhanced by 

intelligent travel advisories. A proof-of-concept example on a hypothetical traffic network under 

two hurricane events suggests the improved performance of the proposed scheme compared to 

conventional component-level decision-making and plain-vanilla deep RL-based approach. For 

the weak hurricane case with peak wind speed of 26m/s, the plain-vanilla deep RL-based policy 

reduces overall network-level cost by 16% at the expense of increasing the traffic-safety cost by 

75% (compared to component-level policy), while travel advisory-enhanced deep RL-based 



 

 
 

scheme could reduce both overall network-level cost and traffic-safety cost by 27% and 17%, 

respectively (compared to component-level policy). For the strong hurricane case with peak wind 

speed of 29 m/s, the deep RL-based scheme with intelligent travel advisories leads to a higher 

reduction in network-level cost (22%) with a smaller increase (14%) in traffic-safety cost 

(compared to component-level policy), while the plain-vanilla deep RL-based approach obtains 

9% reduction in overall network-level cost and 51% increase in traffic-safety cost (compared to 

component-level policy). These results demonstrate the good performance of the proposed travel 

advisory-enhanced deep RL-based scheme to maintain a low overall network-level cost without 

significantly increasing the traffic-safety cost. 
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