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1 Introduction

1.1 Background and Motivation

Accurate information about the location and type of rotorcraft landing sites is an essential asset for
the Federal AviationAdministration (FAA) and the Department of Transportation (DOT). However,
the acquisition, verification, and regular updating of information about these landing sites is a
challenging task. The lack of reliable information on helipad sites is a risk factor in several accidents
and incidents involving rotorcrafts. The U.S. Helicopter Safety Team (USHST), of which the FAA
is a key member, has identified and produced recommendations from their infrastructure working
group to modernize and improve “the collection, dissemination, and accuracy of heliport/helipad
landing sites” as a high priority to increase helicopter safety.

There are thousands of landing locations for helicopters spread across the United States. In
general, rotorcraft operators can get information about helipads, heliports, and landing sites using
various databases, such as the FAA’s 5010 database. However, it is also well­known that the 5010
database and similar databases contain multiple inaccuracies where some helipads in the database
may no longer exist or their coordinates are imprecise, and other helipads are missing from the
database. The unreliability of this database is a consequence of the fact that there is no system to
verify that coordinates remain accurate, nor is there a system to search for unreported helipads.

In this project, we propose a machine learning solution to identify helipads, heliports, and other
landing sites, from aerial imagery using convolution neural networks or CNNs. We built a com­
prehensive database by manually checking the FAA and other databases with satellite images from
Google Earth. We subsequently trained and validated different state­of­the­art CNN models to
determine an appropriate machine learning model for this task.

The proposed machine learning solution based on modern artificial intelligence (AI) techniques
will allow the FAA and USDOT to automatically maintain an updated database of helipads, heli­
ports, and landing site infrastructure for the rotorcraft community. This work presents the first step
towards autonomous identification of specialized heliport infrastructure and can be optimized with
minimal cost using Google Earth API. The results of this project will help the FAA and USDOT
achieve the first strategic goal of “Improving durability and extending the life of infrastructure” by
providing an updated record of the infrastructure without committing additional resources for data
collection and recording.

1.2 Related Work

We can group the literature of identifying helipads from satellite or aerial imagery into two main
approaches. The first is a model­based approach, which relies on domain expert knowledge to ex­
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tract features that can be used to identify helipads from images. A common feature used to identify
helipads is the “H” marking [Prakash and Saravanan, 2016, Patruno et al., 2017]. For vision­based
autonomous landing systems, an improved version of the Scale Invariant Feature Transform (SIFT),
called SpeededUpRobust Features (SURF), was used in [Prakash and Saravanan, 2016] to perform
feature points matching and tracking. Features points are compared to points in an “H” template to
determine the similarity of the template and the aerial image.

In [Rungta et al., 2020], the detection process consists of finding candidate helipads based on
the following four properties: (1) a bold circle surrounding the “H”, (2) presence of “H” in a bright
color inside this circle against a dark background, (3) “H” is centered at the center of the circle,
and (4) intersection of diagonals of “H” at the center of the circle. A Hough transforms was used
to identify circles[Rungta et al., 2020]. Due to a large number of false positives, the authors used
three tests to eliminate these false positives. None of these tests are precise and as a consequence,
error ranges were added based on experiments. After a helipad has been detected, a Median Flow
tracker [Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas, 2010] was used to track the region.

A vision­based helipad detection algorithm based on curvature was proposed by Patruno et al.
[Patruno et al., 2017]. The method creates blobs of connected pixels, and exploits some intrinsic
properties of each blob, such as the location of its center of mass, the Euler number, the eccentricity,
the perimeter, and the area, to identify the blobs which represent the helipad marks, namely the
character “H” and the circumscribing circles. The Euler number is an integer value defined as
the number of connected components minus the whole number. In particular, the Euler number
is equal to zero for circle blobs and one for “H” blobs. A final classification level checks the
ratios between the areas and perimeters of blobs against expected values. Following detection, an
identification step checks if the Euclidean distance of the centroids of the detected blobs and the
ratios of related areas and perimeters are still met [Patruno et al., 2017]. Once the helipad marks
have been identified, the Canny edge detector is performed in order to extract the 12 corners of
“H” edge. Instead of using feature extraction operators, such as the Hough transform and line
following algorithms, the authors used a radius of curvature for every 2­D point of “H” edge to
detect the corners of interest. A big radius value denotes that the point is far from a corner while a
small value indicates that the point might be a possible candidate to be a corner. Three checks are
performed for all the possible corner candidates, based on the knowledge of “H” size and exploiting
the Euclidean distances between these points and the centroid of “H” contour.

Although quite exhaustive, these model­based detection algorithms have many restrictions.
First, they were shown to work only in simple simulated environments and may fail in more com­
plex environments. Secondly, these algorithms have limited effectiveness at further distances and
angles. Some of these issues were addressed in [Pierre et al., 2018], where the authors mainly re­
lied on flat ellipse detection as it is the most visible feature of a helipad seen from long distances.
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An adaption of the Hough transform was devised for the specific case of very flat ellipses. A vali­
dation step using many other properties and visual clues performs the verification of the presence
of the helicopter landing platform in the research areas delimited by the obtained ellipses.

The main advantage of the model­based approach is its explainability and its relatively good
performance on small datasets with no prior labeling. However, while model­based methods can
identify helipads that adhere to the recommended standard set in the FAA’s 150/5390­2C, neither the
circle nor the “H” is required for building a helipad. Model­based methods will need to consider
all possible features of all types of helipads/heliports, including those that do not adhere to the
recommended standard, to generalize their performance [FAA, 2012].

Data­driven algorithms, on the other hand, involve the collection of large amounts of labeled
data, autonomously learning salient features from the raw data, and identifying helipads based on
learned features. As such, data­driven systems can identify complex patterns of helipads that may
be hard to model. The price paid is the large data and computational resource requirements. To the
best of our knowledge, data­driven approaches to identify helipads are under­explored, despite the
growing prevalence of learning systems in real­world applications. Nonetheless, there are online
systems available.

HelloPad is a system that uses a machine learning algorithm to identify helipads within a spec­
ified region [Walker, 2019]. The system uses a sliding window and a trained neural network model
(ResNet) to identify if a helipad exists at a given location. HelloPad reported 67.2% precision and
90% recall in a Los Angeles downtown area. However, HelloPad collected negative (non­helipad)
examples from urban settings, and will likely not transfer well to all areas of the U.S.

Add David’s work here.

2 Deep Learning Methods

2.1 Classification Using Convolutional Neural Networks (CNNs)

Object detection and identification requires considerable domain expertise to design features that
transform the raw data (such as the pixel values of an image) into a lower­dimensional representa­
tion that is discriminatory for the input. Convolutional Neural Networks (CNNs) are designed to
process multidimensional data arrays, such as images, by automatically discovering the representa­
tions needed for detection or classification. There are three types of layers in a CNN: convolutional
layers, pooling layers, and fully connected layers. Each convolutional layer obtains, through con­
volutions followed by non­linear operators, representations that are important for the classification
task. A hierarchical composition of these representations (starting with the raw input), where each
representation is fed to the next convolutional layer, leads to learned features that are optimal for
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discrimination. The first (convolutional) layers typically learn low­level features, such as edges,
and later layers extract more complex semantic features. The key aspect of CNNs is that these
layers of features are not designed by human engineers or domain experts: they are learned from
data [LeCun et al., 2015].

A problem with the output feature maps is that they are sensitive to the precise location of the
features in the input. Thismeans that small variations in the position of the feature in the input image
will result in a different feature map. One approach to address this sensitivity is to coarse­grain the
position of each feature through down­sampling, referred to as “local translation invariance”. The
role of pooling layers is to summarize the feature maps by down­sampling, i.e., discarding the finer
details that may not be useful to the task, creating an invariance to small shifts, while maintaining
important structural elements. A typical pooling unit computes the maximum value for each patch
of the feature map.

Layers of convolutions, non­linearities, and pooling are stacked to learn robust optimal features
for the data, followed by fully­connected layers that form the classifier for the extracted features.
Backpropagating gradients through a CNN is as simple as through a regular neural network, allow­
ing all the weights in all the filters to be trained.

2.2 Interpreting and Explaining the Predictions of CNNs

While CNNs have achieved higher­than­human accuracy in many computer vision tasks, they pro­
vide little insight into computations that they perform to make these decisions or predictions. With
the composition of convolutions, non­lineariries, pooling and fully­connected layers, very complex
functions can be learned, making deep learning models black boxes. This poor interpretability sig­
nificantly hinders the robustness evaluation of the network, its further optimization, as well as
understanding the network adaptability and transferability to different datasets. In the case of he­
lipad detection, this question becomes “Does the network detect salient features of helipads in the
image, or does it detect other features that typically correlate with the presence of a helipad?”. An
understanding of the learning process will allow for the identification of cases where the algorithm
might fail, and also build trust in learning systems to allow for their safe deployment.

An intuitive approach to understand the inner workings of deep learningmodels (such as CNNs)
is the gradient saliency map. This approach computes the gradient of the class score with respect
to the input image; thus, highlighting the areas of the input image that are discriminative with
respect to the predicted class [Simonyan et al., 2014]. A popular gradient saliency method is the
Gradient­weighted Class Activation Mapping (Grad­CAM). Grad­CAM uses the gradient infor­
mation flowing into the last convolutional layer of the CNN to assign importance values to each
neuron for a particular decision of interest [Selvaraju et al., 2019].
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In this project, Grad­CAM provides a multifaceted advantage. First, the saliency map will be
able to verify that the network classifies imagery as helipads because of the presence of helipads
and not supporting facilities. Second, it can help with understanding and mitigating false positives,
i.e., the non­helipad samples classified as a helipad. Lastly, the saliency map can help locate the
helipad, which will allow for larger regions to be searched for helipads.

2.3 Detection Using Deep Neural Networks

2.3.1 You Only Look Once (YOLO) CNN architecture

The model designed in this work utilized the YOLO model architecture. This is one of the most
popular models used for object detection, and is known for its high accuracy and fast computa­
tion speeds. This model i based on the idea that a single network predicts bounding boxes and
class probabilities directly from full images in one pass. This allows for end to end optimization
specifically on detection performance.

Figure 1: Model Architecture of YOLOv3

Figure 1 displays the YOLO v3 model architecture. The input is a batch of imagery data, in
our case it will be places of interest with the potential to contain helipads. The output is a list
of bounding boxes along with recognized classes. Then utilizing intersection over union, or the
overlap of the predicted bounding box compared to the ground truth labels, a confidence score
can be given on the accuracy of the detection. The model is 53 layers deep and pretrained on the
imagenet model.
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2.3.2 SSD MobileNet Architecture

The SSD architecture is a single convolution network that learns to detect objects in one pass. The
SSD network consists of base architecture (MobileNet in this case) followed by several convolution
layers. SSD architecture allows faster processing compared to other models with a tradeoff for
accuracy.

2.3.3 Fast/Faster R­CNN

Fast/Faster R­CNN are also very popular convolution architectures,Fast R­CNN uses selective
search to generate region proposals.However, Faster R­CNN uses region proposal network (RPN)
for generating region proposals and a network using these proposals to detect objects. The time cost
of generating region proposals is much smaller in RPN than selective search. RPN ranks region
boxes and proposes the ones most likely containing objects.

2.4 Model Training, Testing and Validation Details

We trained 3 different models YOLO, SSD Tf and Pytorch Detectron to collect sample results for
comparison. Model comparison allowed us to compute different trade offs such as precesion and
accuracy. Based on our sample set we deemed YOLO V3 to be most appropriate for our project.
Following are model comparison metrics.
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Figure 2: Model Comparison

Figure 2 compares different performancemetrics, YOLO showed low number of False Positives
and good True Positive Numbers.

Our Model showed promising performance numbers as it had a 86% True Positive and 14%
False Positive on validation set.

3 Rotorcraft Landing Site Dataset

We acquired three datasets through the FAA, one dataset from the Iowa DOT website and one
dataset from ArcGIS. These five datasets provide the longitude and latitude of potential helipad
landing locations. We used Google Earth’s API to extract the corresponding images as well as
to sample negative helipad locations. We noticed some discrepancies in the FAA datasets and
manually curated the coordinates to ensure accuracy for our use cases. In the following, we will
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Figure 3: Sampling images from Google Earth for building datasets of positive (helipad is present)
and negative examples (no helipad is present). The dataset will be used to train machine learning
and AI models. The sampled area is enclosed in the black box. There is no helipad inside the
sampled area (negative example). However, a helipad is present just outside the sampled area. The
area containing helipad can be also be sampled as a positive example.

elaborate on each dataset, data cleaning approach, and our method for collecting negative samples
(satellite images with no designated helipads or landing sites present). Figure 3 shows the sampling
process for image collection for positive examples (a helipad is present in the satellite image) and
negative examples (helipad or landing site is not present in the image).

3.1 Google Static Maps API

We used Google static maps API to collect satellite imagery of positive (helipad) and negative (non­
helipad) locations. The service is accessed by sending anHTTP request with a query containing the
desired parameters. The Google server responds with an image based on the provided parameters.
The parameters used here are: center, zoom, the size, and maptype. The center provides the coordi­
nates of the center of the image. Zoom determines the zoom level, which defines the resolution of
the current view. Size determines the number of pixels in the image. Maptype determines the type
of image to be retrieved (as Google maps contains road maps). For the purposes of this project,
size was set to the maximum value of 640× 640, and the maptype was always satellite. The center
was set to the desired coordinates to be sampled for the image. The highest resolution images are
available at a zoom of 20; however, a zoom of 18 was used instead. At zoom 20, some images did
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not include the designated helipads as shown in Figure 3. The difference between the two zoom
levels can be seen in Figure 4. A lower zoom results in a larger area that will allow for sampling
helipads using fewer API calls. There is a cost associated with making API calls beyond a certain
limit, so efficiency of calls becomes important for scaling up the model to large areas.

Figure 4: Zoom level in Google Map API. Left image is downloaded at the zoom level of 18 and
the right image at the zoom level of 20. At a zoom of 18, numerous possible parking pads and a
helipad are visible. The helipad is not visible at the zoom of 20.

One major issue with the initial databases is the incorrect reporting of landing site coordinates.
In our experiments, a coordinate was considered correct if there was a landing area present in the
Google imagery taken of the area. This is to allow for a margin of error in the reported coordinates.
The margin is considered acceptable as it is believed to be reasonable for a pilot to identify a helipad
within the given area. However, there are few cases where helipads would be within a reasonable
range of the coordinates, yet not present within the imagery being sampled. Figure 3, shows a case
where there is a helipad near the coordinates, however the helipad is outside the range that was
annotated. A lower zoom could be used to sample a larger area, however while this may still be
within an acceptable margin of error, the markings on helipads become less noticeable.

Another known issue is the recency of Google’s satellite imagery. The images used in Google
maps are not real­time images, but rather imagery taken during an area survey. This means that
the overhead view that was sampled does not actually reflect the current state of the area. Google
attempts to keep the images up to date such that the available imagery should be less than three
years old; yet this may still lead to inaccuracies in landing site locations

Google Maps maintain a database that covers most of the world; however, it does not contain
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high resolution imagery for every coordinate in the world. Typically, at higher levels of zoom,
there are fewer coordinates with available imagery. Even when using a zoom of 18, there are a few
coordinates that simply did not have the imagery available. If a zoom of 20 were used, there would
likely be fewer locations from where images could be downloaded.

3.2 Building the Dataset

3.2.1 Positive Examples

Areas with helipads are needed to create a positive dataset for the training of the machine learning
model. While areas can be randomly sampled using Google Maps API and helipads in those areas
labeled, this would be an incredibly inefficient process. There is an extremely low probability that
a randomly sampled location would contain a helipad. We used the initial FAA, IOWA DOT, and
ArcGIS helipad datasets to sample positive areas, The FAA’s 5010 was the largest database. To
ensure accuracy, all coordinates were manually annotated so that only coordinates where a heli­
pad would be visible in the collected image was added to the training set. From an initial 6, 333
coordinates in the dataset, only 3, 887 were manually annotated to be helipads. An additional 157
positive coordinates were added from other databases provided by the FAA, including the Lifeflight
of Maine dataset

Two publicly available datasets were used. The first is a dataset found on ArcGIS containing
the coordinates of hospital helipads found in California. This dataset contained 170 coordinates,
and after annotation, 169 of these coordinates were used. The second is Iowa DOT’s dataset, which
listed 126 locations, and 111 of these coordinates were considered to contain helipads.

3.2.2 Negative Examples

A negative (non­helipad) set of images is also needed to train the machine learning model. The
negative set was collected using random sampling of Google Maps. These random samples were
manually checked to ensure that they did not contain any landing site. As the current goal is to
identify helipads in the U.S., the sampling was limited to an area such that the sampling region
includes most of the mainland U.S. However, most of these samples were of forested areas and
farmlands and contained very few urban areas. This could bias the network to predict helipads
mainly in urban areas It is therefore important to sample negative locations from urban areas as
well. It is noted that urban areas will likely have a higher helipad density, and thus a helipad will
be more likely to be found there. To lessen this risk, locations like Washington D.C. and New York
City were chosen due to the lower density of helipads. In New York City, ownership of rooftop
helipads became more restricted after the 1977 crash at the Pan Am building, along with noise
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complaints continuing to restrict helicopter flights. Washington D.C. is in restricted airspace and
allows only a few helipads to operate.

3.3 Benchmark Dataset for Training CNNs

After careful data collection, labeling, and organization, a helipad identification benchmark dataset
was created. The positive set contains 4, 324 samples. Some areas are more represented than others,
as some of the datasets used were specific to certain regions. However, the largest dataset making
up over 80% of the final dataset is the FAA’s dataset spread over the United States and its territories
covering different types of landing areas, including helicopter parking pads, helidecks, Emergency
Helicopter Landing Facilities (EHLFs), and heliports.

The negative set was created by randomly sampling 5,000 coordinates. A total of 2,000 of
these coordinates were from the mainland United States and contained woodland and other rural
areas. The remaining 3,000 negative images were sampled from urban areas, such as San Jose,
Washington D.C., New York City, and San Antonio.

Figure 5: Sample aerial images from the dataset that we developed as a part of the project. While
the term helipad is used for the positive set, the dataset also contains areas that helicopters are
intended to land at, e.g., helicopter runways.

The benchmark dataset has 9, 324 satellite images labeled as either helipad or non­helipad.
Figure 5 shows some of the images in the dataset. On the left, we show some landing locations,
including helistops, helidecks, and helicopter runways. On the right, we present some randomly
sampled imagery including rural and urban areas. It is noteworthy to mention the variety of landing
sites shown in Figure 5. In particular helipads have different sizes, as their minimum required
lengths are decided by the rotor diameter of helicopters intended to land. This causes the areas they
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represent in squared meters to be different. Other factors, such as the zoom level which takes into
account the distance from the satellite, the elevation, and the latitude add to the complexity of the
landing sites imagery.

3.4 Expanded Database Construction

With the initial database constructed, further work was conducted to expand this database, focus­
ing on particular places of interest (POI). The primary POI’s Searched for in this endeavor were
hospitals and Airports as they are two very promising locations to contain helipads. These helipads
also may vary in their shape and design, giving the models better training data to further improve
its ability to generalize on helipads. Utilizing the Statics map API To query these places of interest
A script was designs to query and collect images for 825 cities from throughout the United States.
This search returned 15000 places of interest from throughout the country that could be used to
simultaneously train the model to detect a wide range of helipad types, and expand the current data
set further. After checking this data and removing any duplicate imagery, the data set had 9089
hospitals or airports that were ready to be searched for helipads. This data set is titled Helipad_data
set. The labelling process involved Drawing ground truth boxes around helipads within this dataset.
The Model would then compare its predictions to the ground truth and use intersection over union
to determine the confidence level of a given prediction.

Figure 6: Examples of Hospitals in the dataset with Helipads
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Figure 7: Examples of Airports in the dataset with Helipads

Take out the sections on David’s work related to LA area.

4 Helipad Search in Large Areas

Using the CNN model validated in the previous section, it is now possible to identify imagery with
helipads, which can be used to verify the accuracy of coordinates in helipad databases. This system
can then be extended to be able to detect helipads within a designated region. In computer vision,
the distinction between identification and detection is that identification can determine the presence
of an object, while detection determines where in the image an object is. In this section, we extend
the problem of helipad identification from aerial images to the detection of helipads from a larger
area, e.g., downtown Los Angeles. To solve this new problem, without requiring new labeling, we
use a sliding window approach to determine where in a larger image a helipad is.

4.1 Searching for Helipads in Large Areas

Sampling a larger Google Earth area can be done using a lower value zoom, dividing it into sections,
then upsampling the images. This approach would minimize the number of API calls; However,
the images retrieved will be of lower resolution. The second approach would be to sample using
a higher zoom for higher resolution imagery, then combine the samples to form a larger image
referred to as a collage. This collage can then be searched for helipads with an overlapping sliding
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window. A mapping between the latitude/longitude coordinates and pixel values must be derived.
Google has provided the following relationship:

meter
pixel

= 156543.03392×
cos(latitude× π

180
)

2zoom
(1)

The distance represented by a pixel decreases as we sample further from the equator. Equation (1)
does not factor in elevation, and may cause issues at different elevations.

Figure 8: Searching helipads in large ares. The area scanned in a 5× 5 collage settings vs. a single
API call.

Assuming that the circumference of the earth is 40.075 million meters and taking elevation into
account, we can derive the following mapping from pixels to change in latitude/longitude.

∆ latitude
pixel

= 156543.03392×
cos(latitude× π

180
)

2zoom × 111320
(2)

∆ longitude
pixel

= 156543.03392× 1

2zoom × 111320
(3)
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An example of the created collage can be seen in Figure 8. This collage is created from a 5× 5

sliding window, and shows an area about 25 times larger than the initial aerial images, while still
keeping the level of detail at a higher zoom. Sub­images can then be extracted from this area to
search for helipads.

Figure 9: Los Angeles (LA) region to be sampled. As the network was not trained on a similar
cityscape, the top half of the area was used to supplement the training dataset and the model was
tested on the lower half.
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5 Helicheck Web App

With the ability to detect Helipads in mass, The Next step was to be able to directly search if a
helipad existed in a specific place of interest in a quick and accessible way. This lead to the design
of the Helicheck Web applications that provided a place that one could search a set of coordinates
and return and image of the location ran through the Yolo model to detect a helipad, if a detection
is made, a bounding box would be drawn around the helipad with an associated confidence score
that the detection is accurate. The coordinates for most hospitals can be found wit a quick search,
but information of the availability of a helipad is not such a trivial find, this webapp allows for the
quick check to determine if a given place of interest has a helipad available

Figure 11: Examples of Airports in the dataset with Helipads

Figure 11 displays the front end design of the Helicheck webapp. the app was designed to be
simple and intuitive, simply add the latitude and longitude of the location you wish to check for a
helipad
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Figure 12: Example of Helicheck web app detection

Figure 13: Example of Helicheck web app detection

Figures 12 and 13 display the web app functioning. these user simply inputs the latitude and
longitude of the place they would like to query and return an image with the helipad drawn in a
bounding box with the models confidence of detection.

6 Database Development

With a large data pool of places of interest with the potential to contain helipads, in addition to
searching a single area at once, it is also useful to contain a table of all the locations with a field
denoting if a helipad was detected in that location. This lead to the design of the csv confirmation
script. This framework also takes a csv file of locations with name latitude and longitude as opposed
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to the prior designs that took imagery data. Th csv Confirm script then queries these images from
the google maps API and runs them through the model. IT then outputs 2 csv files, once containing
all the locations with name, lat, and lon, that had a detection. The second csv returns the same list
input into the script, however there is now an additional field called detection with confirmed or
unconfirmed on each element. using this file one can quickly determine which locations that they
seek to identify have helipads

Figure 14: Database with detection column to determine which locations have a helipad

Figure 14 displays a snapshot of the database constructed withe name latitude, longitude, and
detection columns. This allows a user to input a list of POIs and determine which locations have
helipads. Following this naming convention, the Imagery data is also saved with its name as the
location lat and lon, this provides an image gallery of helipad locations with their associated name
and location.
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Figure 15: example of imagery data base with name, lat, lon, as the image title

with the identification of helipads a list of these locations could be compiled into one csv,
construction a database of known POI’s with helipads. This allows for the quick search of over
2133 locations with a helipad detected by the model. It is important to note however there is
potential for false positives and negatives as the models accuracy is not perfect. with ongoing
model improvement these can be reran through the model to mitigate this problem, as well as
manual verification. These steps are currently in progress, and this pipeline could be expanded
to other locations of interest if they were desired such has police stations, and other government
buildings.

Figure 16: Snap shot of the database with all the confirmed locations

Figure 16 displays the csv file with all the confirmed locations in a single table. this is essentially
the POI database, a collection of all the POI helipads detected so far. This is useful for quickly
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determining if a given location has a helipad with a simple search, filtering out all the unconfirmed
locations to reduce the size.

7 Conclusion

We developed a deep learning model for helipad identification and detection from aerial Google
Earth imagery. We also devised a framework to begin searching for helipads in designated ar­
eas. This framework was developed into a pipeline of Data acquisition, model training, and then
leveraging the model to acquire more data. The Helicheck web app was developed to provide an
accessible and easy to use platform for fast identification of a helipad in a given location. Then a
database of all the helipads found so far was created, as well as a method for inputting a table of
locations with lat and lon and determining which of these locations have a helipad in them. Further
work is being conducted to improve upon the sliding window approach, and the continuation of this
pipeline can be expanded to various other POIs to further expand this dataset, ultimately creating
a comprehensive data base of helipads in the US and potentially beyond.
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A Sample Results

A.1 True positives

Figure 17: example of a true positive
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Figure 18: example of a true positive
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Figure 19: example of a true positive
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Figure 20: example of a true positive
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Figure 21: example of a true positive
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A.2 False Negatives

Figure 22: example of a false positive
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Figure 23: example of a false positive
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Figure 24: example of a false positive

Figure 25: example of a false positive
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Figure 26: example of a false positive

Figure 27: example of a false positive

35



Figure 28: example of a false positive

Figure 29: example of a false positive
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