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DESCRIPTION OF THE PROBLEM 

The US rail transport network is among the largest in the globe. The rail network carries 16% of the nation’s 

freight by weight [1]. The day-to-day dependence and cost-effectiveness are reasons why the rail transport 

network is a critical infrastructure asset. Railway bridges provide the critical role of connecting the rail 

network over vast bodies of water, roads, and ravines. Increases in demand in recent years have translated 

to additional pressure on the railway bridge infrastructure through increases in speed of the traffic and the 

axle loads. As a result, a greater emphasis has been placed on condition monitoring of railway bridges.  

Railway bridges are typically constructed in ballasted or open-deck configurations. Initial construction costs 

are higher for ballasted bridges; however, maintenance costs are lower as special sleepers are not required, 

superstructure is better protected due to reinforced concrete cover, and maintaining a level track (by adding 

more ballast) is easier. Open-deck bridges have simpler sleeper-on-girder designs and are more cost-

effective to construct due to lower material use. Operational costs are higher in open-deck bridges, due to 

the need for specialized dimensions and customized fitting of the sleepers. Maintenance cost of the 

superstructure is higher too, as exposure to the elements result in more rapid degradation of the girders and 

other supporting elements. From a track elevation perspective, the open-deck configuration leads to a fixed 

track grade. Maintaining a flat track surface becomes a difficult task, as the bridge approaches are more 

flexible than the rigid deck. The approach grades must therefore be frequently fixed, adding to extensive 

maintenance costs. The typical railway bridge configurations discussed are illustrated in Fig. 1. 

(a) Open-deck (b) Ballasted

Figure 1 - Typical railway bridge configurations.

New Jersey Transit (NJT) is one of the largest transit operators in the nation, having a large fleet of bridges. 

Like many legacy railroads, NJT has inherited a large inventory of open-deck bridges. For NJT, sleeper 
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replacement is costly as custom fits are necessary for every sleeper. The traditional procedure for deck 

sleeper replacement begins with a survey of the structure, including general line, grade, dimensions, and 

other features. This data is provided to a structural engineer for calculating sleeper configurations and 

generation of sleeper tables, which are sent to a fabrication shop for manufacturing. Each sleeper is unique 

and requires specific dapping (e.g., holes and notches). Sleepers are then shipped to the open-deck bridge 

and installed with minimal adjustments. NJT is interested in expediting the sleeper assessment, outage 

times, and replacement procedures, through the use of modern technologies in order to potentially reduce 

maintenance costs. For these reasons, NJT has elected to investigate the use of 3D scanning technologies 

for condition monitoring of their open-deck bridges.  

APPROACH 

This project uses non-contact 3D scanning technology and AI for developing a geometry extraction 

framework which assists in the inspection and maintenance procedures for deck sleepers and rails on open-

deck bridges. The geometry extraction approach outlined for this project is as follows: 

i. Laser scan or unmanned aerial vehicle (UAV) photography of a benchmark bridge. 

ii. Photogrammetry and construction of 3D point cloud of the bridge. 

iii. Segmentation of the various point cloud components into recognizable elements (e.g., sleepers, rail, 

and girders). 

iv. Identification and quantification of geometric volumes and deviations in various recognized 

elements.  

Due to the pilot nature of this investigation, a real-life bridge is not used in this development. A database 

of graphically generated open-deck bridges is developed instead to assist with tasks i and iii.  

METHODOLOGY 

The methodologies described in this section are organized in relation to the four tasks listed in the previous 

section. The steps for photogrammetry and generation of 3D point cloud are first described. Several open-

deck bridges are created in a computer graphics imagery (CGI) environment. A deep learning approach is 

proposed next for 3D component segmentation. And lastly, individual components are fitted with geometric 

shapes.  

3D Scan and Photogrammetry 

A point cloud is the simplest form of a 3D model and is comprised of individual coordinates and RGB color 

values. Generating a 3D point cloud of a bridge can be attained through laser scans or photographic pictures 

in a process called photogrammetry. Laser scanners operate by emitting laser pulses which bounce off the 
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surface of an object, and the time for reflection is measured. Photogrammetry begins by detecting specific 

features in a picture, which are aligned with the same features in other pictures using triangulation. The 

various angles for each feature point on the objects are used to generate the position of the feature point in 

the 3D point cloud. The geometric extraction described in this report requires two separate procedures: (i) 

photogrammetry and (ii) direct point cloud generation. The first procedure pertains to the benchmark bridge 

under investigation. The second procedure is used for rapid generation of training data for the component 

segmentation step. Variations are created in the features of the open-deck bridges in both procedures. Some 

of the features include the bridge length, curvature, approach level, superelevation, and horizontal 

alignment.  

Several commercially available software are used in study. These include: (i) SketchUp, for construction of 

a CGI environment, (ii) RealityCapture, for point cloud generation through photogrammetry, and (iii) 

CloudCompare, for direct conversion of solid models to point clouds. For the photogrammetry procedure, 

an open-deck bridge with specific features is constructed in Sketchup. A hypothetical UAV path is planned 

around the bridge. Images collected by the UAV are converted to a 3D point cloud using RealityCapture. 

The direct procedure is designed for rapid production of 3D bridge models; hence the UAV-based 

photogrammetry step is eliminated. Instead, the 3D bridge models are converted directly to point clouds 

via the CloudCompare software. An illustration of both procedures is provided in Fig. 2.  

Figure 2 - Procedures for point cloud generation. 

The point clouds are next post-processed for scale and data structure size. Result from the photogrammetry 

procedure is scaled back to the original dimension of the benchmark bridge. Results from the direct 

procedure need not be scaled. All point clouds are downsampled due to the computational challenge posed 

by the semantic segmentation procedure discussed next.  

Semantic Segmentation 

Semantic segmentation is the process of classifying the 3D point cloud data structure into regions belonging 
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to the same component and having the same properties. Manual semantic segmentation is time consuming 

and inefficient. Other segmentation methods proposed in the literature include color-based segmentation, 

Random Sample Consensus (RANSAC), and Euclidean Clustering [2]–[4]. These methods however also a 

large degree of require manual tunning. PointNet is a supervised deep learning model which allows for 

fully autonomous component segmentation for point cloud data [5]. The PointNet requires a training 

database of pre-segmented bridge point clouds.  

The PointNet architecture accepts raw point cloud data as input and produces labeled point cloud as output. 

Each point in the point cloud is represented as (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖). There are 𝑛 points and 𝑚 segments.  Multi-layer

perceptron (mlp) blocks are installed throughout the model, mapping each point from 3 dimensions to 64, 

and from 64 dimensions to 1024, as shown in Fig. 3. The 64-dimensional features are concatenated with 

global features, resulting in a space of 𝑛 × 1088. Next, two mlp layers map to lower dimensional spaces of 

128, and 𝑚 for the number of segments. Concatenation of global features with point features allows the 

PointNet to combine global and local semantics for determining the interaction of neighboring points which 

carry useful information. To make the network geometric transformation invariant, networks of T-Net are 

trained  to perform affine transformation of the input coordinates. Due to the unstructured nature of point 

cloud data, 𝑛! many permutations of data representation are possible. The commutative property makes 

max pool a symmetric function. To make the feature detection permutation invariant, a max pooling 

operation is selected.  

Figure 3 - PointNet architecture. 

A standard Softmax loss (i.e., Softmax activation plus a cross-entropy loss) is used for training. The large 

number of parameters associated with the transformation matrices may lead to overfitting and instability 

4



problems during training. Hence, an 𝐿2 regularization term is added to the Softmax loss. See Qi et al. [5]

for additional information on the loss functions.  

Geometry Fitting 

The final step in developing a geometric extraction framework is to fit solid geometric volumes around the 

segmented point cloud components. By fitting standard geometric primitives (e.g., planes, lines, cubes, 

cylinders, and spheres) around the segmented point clouds, the geometry of various components can be 

quantified. For instance, fitting a cuboid around a sleeper point cloud allows for extraction of the 

component’s rotation along the longitudinal axis of the bridge (i.e., superelevation). Geometry fitting is a 

mathematical optimization process that computes the best fitting geometric primitive around some point 

cloud. Optimization often involves iterative solving of the best fit until some objective function is 

minimized. A RANSAC-based algorithm is employed for geometry fitting.  

High resolution point clouds are necessary for geometry fitting. The segmented point clouds from the 

previous step are first upsampled via a nearest neighbor approach. This algorithm begins with a segmented 

parent point, selection of the nearest 𝐾 points, and segmenting of those points with the same label as the 

parent point.  

Figure 4 - Upsampling using the nearest neighbor approach.

The RANSAC algorithm for fitting geometric primitives works by selecting a random set of points from a 

point cloud and minimizing the Euclidean distance between the random set and a geometric primitive. Some 

of the geometric primitives suitable for geometry extraction in open-deck bridges are cuboids for sleepers, 

lines for tracks, and combinations of planes for girder flanges and webs. This process is iterated until a 

suitable fit is acquired between point clouds and the designated geometric primitive. The RANSAC 

algorithm for cuboid fitting is outlined below. 

Algorithm 1 - RANSAC algorithm for cuboid fitting 
Determine: 

N – the maximum number of iterations 
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D – the distance threshold for well-fitting points 

for 𝑖 = 1: 6 

while j < N 

Draw random points from segmented point cloud 

Fit a plane to the drawn points 

Calculate the Euclidean distance between the plane and points 

if Euclidean distance < d 

Select all points close to the plane and move them from point 

cloud 

end 

Use the best fit plane from the collection and remove all point 

close to the plane. 

end 

Find intersection between planes 

end 

Present cuboid coordinates and parameters 

FINDINGS 

This section presents results and findings from the geometry extraction study. First, the CGI-generated 

open-deck bridges are constructed. UAV paths are planned around the benchmark bridge and 

photogrammetry software is used for point cloud construction. A database of pre-segmented bridge point 

clouds is constructed. The training process and predictions are visualized. Lastly, the geometry fitting 

results are presented.  

Photogrammetry and Point Clouds 

A database of 41 (1 benchmark and 40 training bridges) CGI-based open-deck bridges is constructed using 

SketchUp. Each bridge is generated with different features. The range of possible variations for the bridge 

features are summarized in Table 1. Presence of variations in the training database is intended for a more 

thorough training of the PointNet model.  

Table 1 - Variations in bridge features 

Feature Variation range 

Length 80-115 meters

Curvature 1/1000 ft - straight 

Girder count 2-4

Track count 2-4

Sleepers 
Superelevation: 0-0.5% 

Dapping: with/without notches 

Misc. Track signs, panels, and fences 
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For the benchmark structure, the surrounding environment are designed and textured in order to assist the 

photogrammetry software (RealityCapture) with feature detection. The training database does not need a 

surrounding environment as the solid-to-point cloud conversion feature of the software (CloudCompare) 

can directly and rapidly convert models. An illustration of a CGI-generated bridge is available in Fig. 5. 

Figure 5 - CGI-based bridge model. 

The photogrammetry procedure outlined in Fig. 1 is used to generate point cloud of the benchmark bridge. 

First, the UAV flight path, shown in Fig. 6(a), is planned. The aerial camera feature of SketchUp allows 

simulation of a UAV flight and photographing of the bridge from various angles. Photos of the bridge are 

next imported into RealityCapture for point cloud construction. The generated point cloud does not have 

the same scale as the original structure. Therefore, a known dimension from the bridge (e.g., sleeper length) 

is used to scale the point cloud. Finally, the surrounding environment are cropped out to create the 3D 

reconstruction shown in Fig. 6(b).  

(a) UAV path (b) Cropped point cloud

Figure 6 - Point cloud created through the first procedure. 

The second procedure is used to generate training point clouds. The points in the training data are 

automatically categorized with the correct segmentation labels. A total of 40 bridges are generated as shown 
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in Fig. 7. The color coding in this figure is as follows: yellow for tracks, green for sleepers, red for girders 

and cross-braces, and blue for other miscellaneous components.  

Figure 7 – Pre-segmented training database.

Segmentation Predictions 

The PointNet model was trained with 1000 epochs. An 𝐿2 multiplier 0.001 is selected. The Adam 

optimizing learning rate parameter of 0.001 was used. The training was conducted on an NVIDIA RTX 

3080Ti. The total time to train each network was approximately 1 hour. The setup and training of the 

PointNet architecture were implemented in Python using Keras, NumPy, Tensorflow and other standard 

libraries. 

The benchmark open-deck bridge was segmented following the training of the PointNet model. The 

predicted segmentation results are visualized in Fig. 8. Training and validation accuracies are plotted in 

Fig. 9. The final accuracies for the training and validation were determined as 91% and 83%, respectively. 

8



(a) Ground Truth   (b) Prediction

Figure 8 - PointNet: Prediction of benchmark.

Figure 9 - Train and validation accuracy over epochs. 

Finally, the nearest neighbor algorithm was used to upsample the segmented point cloud. In the example 

illustrated in Fig. 10, upsampling augmented the point cloud from 6000 points to 210,000 points. 

Figure 10 - Segmented and upsampled point cloud. 

Geometry Fitting 

For each cuboid, a 8 × 3 matrix of corner coordinates and a 9 × 1 (center X, center Y, center Z, length, 

width, roll, pitch, yaw) vector of best fit cuboid parameters are provided. Results from the RANSAC cuboid 

fitting algorithm are presented in Fig. 11. 
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(a) Single sleeper (b) Half of a bridge deck

Figure 11 - Results from RANSAC cuboid fitting of sleeper point cloud

CONCLUSIONS 

In conclusion, a geometry extraction framework is introduced for identifying the position and alignment of 

sleepers and tracks on open-deck bridges. This framework utilizes UAV-based 3D scans and artificial 

intelligence for rapid and autonomous processing of 3D sleeper deck geometries. Due to the pilot nature of 

this study, open-deck bridges were synthetically generated in a computer graphics environment. Following 

a UAV survey, the point cloud of the structure was generated. A deep learning algorithm, called PointNet, 

is used to segment the point cloud into various components (e.g., sleeper, track, and girders). Finally, 

geometric primitives are used to convert the component level point clouds to 3D solid geometries. The 

potential benefits of such approach include improved bridge deck monitoring and cost savings.  
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